// random_test.cpp /* Copyright 2012 10gen Inc. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License, version 3, * as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see . * * As a special exception, the copyright holders give permission to link the * code of portions of this program with the OpenSSL library under certain * conditions as described in each individual source file and distribute * linked combinations including the program with the OpenSSL library. You * must comply with the GNU Affero General Public License in all respects * for all of the code used other than as permitted herein. If you modify * file(s) with this exception, you may extend this exception to your * version of the file(s), but you are not obligated to do so. If you do not * wish to do so, delete this exception statement from your version. If you * delete this exception statement from all source files in the program, * then also delete it in the license file. */ #include #include #include "mongo/platform/random.h" #include "mongo/unittest/unittest.h" namespace mongo { TEST(RandomTest, Seed1) { PseudoRandom a(12); PseudoRandom b(12); for (int i = 0; i < 100; i++) { ASSERT_EQUALS(a.nextInt32(), b.nextInt32()); } } TEST(RandomTest, Seed2) { PseudoRandom a(12); PseudoRandom b(12); for (int i = 0; i < 100; i++) { ASSERT_EQUALS(a.nextInt64(), b.nextInt64()); } } TEST(RandomTest, Seed3) { PseudoRandom a(11); PseudoRandom b(12); ASSERT_NOT_EQUALS(a.nextInt32(), b.nextInt32()); } TEST(RandomTest, Seed4) { PseudoRandom a(11); std::set s; for (int i = 0; i < 100; i++) { s.insert(a.nextInt32()); } ASSERT_EQUALS(100U, s.size()); } TEST(RandomTest, Seed5) { const int64_t seed = 0xCC453456FA345FABLL; PseudoRandom a(seed); std::set s; for (int i = 0; i < 100; i++) { s.insert(a.nextInt32()); } ASSERT_EQUALS(100U, s.size()); } TEST(RandomTest, R1) { PseudoRandom a(11); std::set s; for (int i = 0; i < 100; i++) { s.insert(a.nextInt32()); } ASSERT_EQUALS(100U, s.size()); } TEST(RandomTest, R2) { PseudoRandom a(11); std::set s; for (int i = 0; i < 100; i++) { s.insert(a.nextInt64()); } ASSERT_EQUALS(100U, s.size()); } /** * Test that if two PsuedoRandom's have the same seed, then subsequent calls to * nextCanonicalDouble() will return the same value. */ TEST(RandomTest, NextCanonicalSameSeed) { PseudoRandom a(12); PseudoRandom b(12); for (int i = 0; i < 100; i++) { ASSERT_EQUALS(a.nextCanonicalDouble(), b.nextCanonicalDouble()); } } /** * Test that if two PsuedoRandom's have different seeds, then nextCanonicalDouble() will return * different values. */ TEST(RandomTest, NextCanonicalDifferentSeeds) { PseudoRandom a(12); PseudoRandom b(11); ASSERT_NOT_EQUALS(a.nextCanonicalDouble(), b.nextCanonicalDouble()); } /** * Test that nextCanonicalDouble() avoids returning a value soon after it has previously returned * that value. */ TEST(RandomTest, NextCanonicalDistinctValues) { PseudoRandom a(11); std::set s; for (int i = 0; i < 100; i++) { s.insert(a.nextCanonicalDouble()); } ASSERT_EQUALS(100U, s.size()); } /** * Test that nextCanonicalDouble() always returns values between 0 and 1. */ TEST(RandomTest, NextCanonicalWithinRange) { PseudoRandom prng(10); for (int i = 0; i < 100; i++) { double next = prng.nextCanonicalDouble(); ASSERT_LTE(0.0, next); ASSERT_LT(next, 1.0); } } TEST(RandomTest, NextInt32SanityCheck) { // Generate 1000 int32s and assert that each bit is set between 40% and 60% of the time. This is // a bare minimum sanity check, not an attempt to ensure quality random numbers. PseudoRandom a(11); std::vector nums; for (int i = 0; i < 1000; i++) { nums.push_back(a.nextInt32()); } for (int bit = 0; bit < 32; bit++) { int onesCount = 0; for (auto&& num : nums) { bool isSet = (num >> bit) & 1; if (isSet) onesCount++; } if (onesCount < 400 || onesCount > 600) FAIL(str::stream() << "bit " << bit << " was set " << (onesCount / 10.) << "% of the time."); } } TEST(RandomTest, NextInt64SanityCheck) { // Generate 1000 int64s and assert that each bit is set between 40% and 60% of the time. This is // a bare minimum sanity check, not an attempt to ensure quality random numbers. PseudoRandom a(11); std::vector nums; for (int i = 0; i < 1000; i++) { nums.push_back(a.nextInt64()); } for (int bit = 0; bit < 64; bit++) { int onesCount = 0; for (auto&& num : nums) { bool isSet = (num >> bit) & 1; if (isSet) onesCount++; } if (onesCount < 400 || onesCount > 600) FAIL(str::stream() << "bit " << bit << " was set " << (onesCount / 10.) << "% of the time."); } } TEST(RandomTest, NextInt32InRange) { PseudoRandom a(11); for (int i = 0; i < 1000; i++) { auto res = a.nextInt32(10); ASSERT_GTE(res, 0); ASSERT_LT(res, 10); } } TEST(RandomTest, NextInt64InRange) { PseudoRandom a(11); for (int i = 0; i < 1000; i++) { auto res = a.nextInt64(10); ASSERT_GTE(res, 0); ASSERT_LT(res, 10); } } TEST(RandomTest, Secure1) { auto a = SecureRandom::create(); auto b = SecureRandom::create(); for (int i = 0; i < 100; i++) { ASSERT_NOT_EQUALS(a->nextInt64(), b->nextInt64()); } } }