// Copyright 2005 Google Inc. All Rights Reserved. #include using std::min; using std::max; using std::swap; using std::reverse; #include "s2edgeutil.h" #include "base/logging.h" bool S2EdgeUtil::SimpleCrossing(S2Point const& a, S2Point const& b, S2Point const& c, S2Point const& d) { // We compute SimpleCCW() for triangles ACB, CBD, BDA, and DAC. All // of these triangles need to have the same orientation (CW or CCW) // for an intersection to exist. Note that this is slightly more // restrictive than the corresponding definition for planar edges, // since we need to exclude pairs of line segments that would // otherwise "intersect" by crossing two antipodal points. S2Point ab = a.CrossProd(b); double acb = -(ab.DotProd(c)); double bda = ab.DotProd(d); if (acb * bda <= 0) return false; S2Point cd = c.CrossProd(d); double cbd = -(cd.DotProd(b)); double dac = cd.DotProd(a); return (acb * cbd > 0) && (acb * dac > 0); } int S2EdgeUtil::RobustCrossing(S2Point const& a, S2Point const& b, S2Point const& c, S2Point const& d) { S2EdgeUtil::EdgeCrosser crosser(&a, &b, &c); return crosser.RobustCrossing(&d); } bool S2EdgeUtil::VertexCrossing(S2Point const& a, S2Point const& b, S2Point const& c, S2Point const& d) { // If A == B or C == D there is no intersection. We need to check this // case first in case 3 or more input points are identical. if (a == b || c == d) return false; // If any other pair of vertices is equal, there is a crossing if and only // if OrderedCCW() indicates that the edge AB is further CCW around the // shared vertex O (either A or B) than the edge CD, starting from an // arbitrary fixed reference point. if (a == d) return S2::OrderedCCW(S2::Ortho(a), c, b, a); if (b == c) return S2::OrderedCCW(S2::Ortho(b), d, a, b); if (a == c) return S2::OrderedCCW(S2::Ortho(a), d, b, a); if (b == d) return S2::OrderedCCW(S2::Ortho(b), c, a, b); // Changing the following to a warning is a workaround fix for SERVER-19674. // // Because ExpensiveCCW is subject to numerical errors there are some // edge cases where this function will be called with 4 distinct // (but with two extremely close) vertices // S2LOG(WARN) << "VertexCrossing called with 4 distinct vertices"; return false; } bool S2EdgeUtil::EdgeOrVertexCrossing(S2Point const& a, S2Point const& b, S2Point const& c, S2Point const& d) { int crossing = RobustCrossing(a, b, c, d); if (crossing < 0) return false; if (crossing > 0) return true; return VertexCrossing(a, b, c, d); } static void ReplaceIfCloser(S2Point const& x, S2Point const& y, double *dmin2, S2Point* vmin) { // If the squared distance from x to y is less than dmin2, then replace // vmin by y and update dmin2 accordingly. double d2 = (x - y).Norm2(); if (d2 < *dmin2 || (d2 == *dmin2 && y < *vmin)) { *dmin2 = d2; *vmin = y; } } S2Point S2EdgeUtil::GetIntersection(S2Point const& a0, S2Point const& a1, S2Point const& b0, S2Point const& b1) { DCHECK_GT(RobustCrossing(a0, a1, b0, b1), 0); // We use RobustCrossProd() to get accurate results even when two endpoints // are close together, or when the two line segments are nearly parallel. S2Point a_norm = S2::RobustCrossProd(a0, a1).Normalize(); S2Point b_norm = S2::RobustCrossProd(b0, b1).Normalize(); S2Point x = S2::RobustCrossProd(a_norm, b_norm).Normalize(); // Make sure the intersection point is on the correct side of the sphere. // Since all vertices are unit length, and edges are less than 180 degrees, // (a0 + a1) and (b0 + b1) both have positive dot product with the // intersection point. We use the sum of all vertices to make sure that the // result is unchanged when the edges are reversed or exchanged. if (x.DotProd((a0 + a1) + (b0 + b1)) < 0) x = -x; // The calculation above is sufficient to ensure that "x" is within // kIntersectionTolerance of the great circles through (a0,a1) and (b0,b1). // However, if these two great circles are very close to parallel, it is // possible that "x" does not lie between the endpoints of the given line // segments. In other words, "x" might be on the great circle through // (a0,a1) but outside the range covered by (a0,a1). In this case we do // additional clipping to ensure that it does. if (S2::OrderedCCW(a0, x, a1, a_norm) && S2::OrderedCCW(b0, x, b1, b_norm)) return x; // Find the acceptable endpoint closest to x and return it. An endpoint is // acceptable if it lies between the endpoints of the other line segment. double dmin2 = 10; S2Point vmin = x; if (S2::OrderedCCW(b0, a0, b1, b_norm)) ReplaceIfCloser(x, a0, &dmin2, &vmin); if (S2::OrderedCCW(b0, a1, b1, b_norm)) ReplaceIfCloser(x, a1, &dmin2, &vmin); if (S2::OrderedCCW(a0, b0, a1, a_norm)) ReplaceIfCloser(x, b0, &dmin2, &vmin); if (S2::OrderedCCW(a0, b1, a1, a_norm)) ReplaceIfCloser(x, b1, &dmin2, &vmin); DCHECK(S2::OrderedCCW(a0, vmin, a1, a_norm)); DCHECK(S2::OrderedCCW(b0, vmin, b1, b_norm)); return vmin; } // IEEE floating-point operations have a maximum error of 0.5 ULPS (units in // the last place). For double-precision numbers, this works out to 2**-53 // (about 1.11e-16) times the magnitude of the result. It is possible to // analyze the calculation done by GetIntersection() and work out the // worst-case rounding error. I have done a rough version of this, and my // estimate is that the worst case distance from the intersection point X to // the great circle through (a0, a1) is about 12 ULPS, or about 1.3e-15. // This needs to be increased by a factor of (1/0.866) to account for the // edge_splice_fraction() in S2PolygonBuilder. Note that the maximum error // measured by the unittest in 1,000,000 trials is less than 3e-16. S1Angle const S2EdgeUtil::kIntersectionTolerance = S1Angle::Radians(1.5e-15); double S2EdgeUtil::GetDistanceFraction(S2Point const& x, S2Point const& a0, S2Point const& a1) { DCHECK_NE(a0, a1); double d0 = x.Angle(a0); double d1 = x.Angle(a1); return d0 / (d0 + d1); } S2Point S2EdgeUtil::InterpolateAtDistance(S1Angle const& ax, S2Point const& a, S2Point const& b, S1Angle const& ab) { DCHECK(S2::IsUnitLength(a)); DCHECK(S2::IsUnitLength(b)); // As of crosstool v14, gcc tries to calculate sin(ax_radians), // cos(ax_radians), sin(ab_radians), cos(ab_radians) in the // following section by two sincos() calls. However, for some // inputs, sincos() returns significantly different values between // AMD and Intel. // // As a temporary workaround, "volatile" is added to ax_radians and // ab_radians, to prohibit the compiler to use such sincos() call, // because sin() and cos() don't seem to have the problem. See // b/3088321 for details. volatile double ax_radians = ax.radians(); volatile double ab_radians = ab.radians(); // The result X is some linear combination X = e*A + f*B of the input // points. The fractions "e" and "f" can be derived by looking at the // components of this equation that are parallel and perpendicular to A. // Let E = e*A and F = f*B. Then OEXF is a parallelogram. You can obtain // the distance f = OF by considering the similar triangles produced by // dropping perpendiculars from the segments OF and OB to OA. double f = sin(ax_radians) / sin(ab_radians); // Form the dot product of the first equation with A to obtain // A.X = e*A.A + f*A.B. Since A, B, and X are all unit vectors, // cos(ax) = e*1 + f*cos(ab), so double e = cos(ax_radians) - f * cos(ab_radians); // Mathematically speaking, if "a" and "b" are unit length then the result // is unit length as well. But we normalize it anyway to prevent points // from drifting away from unit length when multiple interpolations are done // in succession (i.e. the result of one interpolation is fed into another). return (e * a + f * b).Normalize(); } S2Point S2EdgeUtil::InterpolateAtDistance(S1Angle const& ax, S2Point const& a, S2Point const& b) { return InterpolateAtDistance(ax, a, b, S1Angle(a, b)); } S2Point S2EdgeUtil::Interpolate(double t, S2Point const& a, S2Point const& b) { if (t == 0) return a; if (t == 1) return b; S1Angle ab(a, b); return InterpolateAtDistance(t * ab, a, b, ab); } S1Angle S2EdgeUtil::GetDistance(S2Point const& x, S2Point const& a, S2Point const& b, S2Point const& a_cross_b) { DCHECK(S2::IsUnitLength(a)); DCHECK(S2::IsUnitLength(b)); DCHECK(S2::IsUnitLength(x)); // There are three cases. If X is located in the spherical wedge defined by // A, B, and the axis A x B, then the closest point is on the segment AB. // Otherwise the closest point is either A or B; the dividing line between // these two cases is the great circle passing through (A x B) and the // midpoint of AB. if (S2::SimpleCCW(a_cross_b, a, x) && S2::SimpleCCW(x, b, a_cross_b)) { // The closest point to X lies on the segment AB. We compute the distance // to the corresponding great circle. The result is accurate for small // distances but not necessarily for large distances (approaching Pi/2). DCHECK_NE(a, b); // Due to the guarantees of SimpleCCW(). double sin_dist = fabs(x.DotProd(a_cross_b)) / a_cross_b.Norm(); return S1Angle::Radians(asin(min(1.0, sin_dist))); } // Otherwise, the closest point is either A or B. The cheapest method is // just to compute the minimum of the two linear (as opposed to spherical) // distances and convert the result to an angle. Again, this method is // accurate for small but not large distances (approaching Pi). double linear_dist2 = min((x-a).Norm2(), (x-b).Norm2()); return S1Angle::Radians(2 * asin(min(1.0, 0.5 * sqrt(linear_dist2)))); } S1Angle S2EdgeUtil::GetDistance(S2Point const& x, S2Point const& a, S2Point const& b) { return GetDistance(x, a, b, S2::RobustCrossProd(a, b)); } S2Point S2EdgeUtil::GetClosestPoint(S2Point const& x, S2Point const& a, S2Point const& b, S2Point const& a_cross_b) { DCHECK(S2::IsUnitLength(a)); DCHECK(S2::IsUnitLength(b)); DCHECK(S2::IsUnitLength(x)); // Find the closest point to X along the great circle through AB. S2Point p = x - (x.DotProd(a_cross_b) / a_cross_b.Norm2()) * a_cross_b; // If this point is on the edge AB, then it's the closest point. if (S2::SimpleCCW(a_cross_b, a, p) && S2::SimpleCCW(p, b, a_cross_b)) return p.Normalize(); // Otherwise, the closest point is either A or B. return ((x - a).Norm2() <= (x - b).Norm2()) ? a : b; } S2Point S2EdgeUtil::GetClosestPoint(S2Point const& x, S2Point const& a, S2Point const& b) { return GetClosestPoint(x, a, b, S2::RobustCrossProd(a, b)); } bool S2EdgeUtil::IsEdgeBNearEdgeA(S2Point const& a0, S2Point const& a1, S2Point const& b0, S2Point const& b1, S1Angle const& tolerance) { DCHECK_LT(tolerance.radians(), M_PI / 2); DCHECK_GT(tolerance.radians(), 0); // The point on edge B=b0b1 furthest from edge A=a0a1 is either b0, b1, or // some interior point on B. If it is an interior point on B, then it must be // one of the two points where the great circle containing B (circ(B)) is // furthest from the great circle containing A (circ(A)). At these points, // the distance between circ(B) and circ(A) is the angle between the planes // containing them. S2Point a_ortho = S2::RobustCrossProd(a0, a1).Normalize(); S2Point const a_nearest_b0 = GetClosestPoint(b0, a0, a1, a_ortho); S2Point const a_nearest_b1 = GetClosestPoint(b1, a0, a1, a_ortho); // If a_nearest_b0 and a_nearest_b1 have opposite orientation from a0 and a1, // we invert a_ortho so that it points in the same direction as a_nearest_b0 x // a_nearest_b1. This helps us handle the case where A and B are oppositely // oriented but otherwise might be near each other. We check orientation and // invert rather than computing a_nearest_b0 x a_nearest_b1 because those two // points might be equal, and have an unhelpful cross product. if (S2::RobustCCW(a_ortho, a_nearest_b0, a_nearest_b1) < 0) a_ortho *= -1; // To check if all points on B are within tolerance of A, we first check to // see if the endpoints of B are near A. If they are not, B is not near A. S1Angle const b0_distance(b0, a_nearest_b0); S1Angle const b1_distance(b1, a_nearest_b1); if (b0_distance > tolerance || b1_distance > tolerance) return false; // If b0 and b1 are both within tolerance of A, we check to see if the angle // between the planes containing B and A is greater than tolerance. If it is // not, no point on B can be further than tolerance from A (recall that we // already know that b0 and b1 are close to A, and S2Edges are all shorter // than 180 degrees). The angle between the planes containing circ(A) and // circ(B) is the angle between their normal vectors. S2Point const b_ortho = S2::RobustCrossProd(b0, b1).Normalize(); S1Angle const planar_angle(a_ortho, b_ortho); if (planar_angle <= tolerance) return true; // As planar_angle approaches M_PI, the projection of a_ortho onto the plane // of B approaches the null vector, and normalizing it is numerically // unstable. This makes it unreliable or impossible to identify pairs of // points where circ(A) is furthest from circ(B). At this point in the // algorithm, this can only occur for two reasons: // // 1.) b0 and b1 are closest to A at distinct endpoints of A, in which case // the opposite orientation of a_ortho and b_ortho means that A and B are // in opposite hemispheres and hence not close to each other. // // 2.) b0 and b1 are closest to A at the same endpoint of A, in which case // the orientation of a_ortho was chosen arbitrarily to be that of a0 // cross a1. B must be shorter than 2*tolerance and all points in B are // close to one endpoint of A, and hence to A. // // The logic applies when planar_angle is robustly greater than M_PI/2, but // may be more computationally expensive than the logic beyond, so we choose a // value close to M_PI. if (planar_angle >= S1Angle::Radians(M_PI - 0.01)) { return (S1Angle(b0, a0) < S1Angle(b0, a1)) == (S1Angle(b1, a0) < S1Angle(b1, a1)); } // Finally, if either of the two points on circ(B) where circ(B) is furthest // from circ(A) lie on edge B, edge B is not near edge A. // // The normalized projection of a_ortho onto the plane of circ(B) is one of // the two points along circ(B) where it is furthest from circ(A). The other // is -1 times the normalized projection. S2Point furthest = (a_ortho - a_ortho.DotProd(b_ortho) * b_ortho).Normalize(); DCHECK(S2::IsUnitLength(furthest)); S2Point furthest_inv = -1 * furthest; // A point p lies on B if you can proceed from b_ortho to b0 to p to b1 and // back to b_ortho without ever turning right. We test this for furthest and // furthest_inv, and return true if neither point lies on B. return !((S2::RobustCCW(b_ortho, b0, furthest) > 0 && S2::RobustCCW(furthest, b1, b_ortho) > 0) || (S2::RobustCCW(b_ortho, b0, furthest_inv) > 0 && S2::RobustCCW(furthest_inv, b1, b_ortho) > 0)); } bool S2EdgeUtil::WedgeContains(S2Point const& a0, S2Point const& ab1, S2Point const& a2, S2Point const& b0, S2Point const& b2) { // For A to contain B (where each loop interior is defined to be its left // side), the CCW edge order around ab1 must be a2 b2 b0 a0. We split // this test into two parts that test three vertices each. return S2::OrderedCCW(a2, b2, b0, ab1) && S2::OrderedCCW(b0, a0, a2, ab1); } bool S2EdgeUtil::WedgeIntersects(S2Point const& a0, S2Point const& ab1, S2Point const& a2, S2Point const& b0, S2Point const& b2) { // For A not to intersect B (where each loop interior is defined to be // its left side), the CCW edge order around ab1 must be a0 b2 b0 a2. // Note that it's important to write these conditions as negatives // (!OrderedCCW(a,b,c,o) rather than Ordered(c,b,a,o)) to get correct // results when two vertices are the same. return !(S2::OrderedCCW(a0, b2, b0, ab1) && S2::OrderedCCW(b0, a2, a0, ab1)); } S2EdgeUtil::WedgeRelation S2EdgeUtil::GetWedgeRelation( S2Point const& a0, S2Point const& ab1, S2Point const& a2, S2Point const& b0, S2Point const& b2) { // There are 6 possible edge orderings at a shared vertex (all // of these orderings are circular, i.e. abcd == bcda): // // (1) a2 b2 b0 a0: A contains B // (2) a2 a0 b0 b2: B contains A // (3) a2 a0 b2 b0: A and B are disjoint // (4) a2 b0 a0 b2: A and B intersect in one wedge // (5) a2 b2 a0 b0: A and B intersect in one wedge // (6) a2 b0 b2 a0: A and B intersect in two wedges // // We do not distinguish between 4, 5, and 6. // We pay extra attention when some of the edges overlap.When edges // overlap, several of these orderings can be satisfied, and we take // the most specific. if (a0 == b0 && a2 == b2) return WEDGE_EQUALS; if (S2::OrderedCCW(a0, a2, b2, ab1)) { // The cases with this vertex ordering are 1, 5, and 6, // although case 2 is also possible if a2 == b2. if (S2::OrderedCCW(b2, b0, a0, ab1)) return WEDGE_PROPERLY_CONTAINS; // We are in case 5 or 6, or case 2 if a2 == b2. return (a2 == b2) ? WEDGE_IS_PROPERLY_CONTAINED : WEDGE_PROPERLY_OVERLAPS; } // We are in case 2, 3, or 4. if (S2::OrderedCCW(a0, b0, b2, ab1)) return WEDGE_IS_PROPERLY_CONTAINED; return S2::OrderedCCW(a0, b0, a2, ab1) ? WEDGE_IS_DISJOINT : WEDGE_PROPERLY_OVERLAPS; } int S2EdgeUtil::EdgeCrosser::RobustCrossingInternal(S2Point const* d) { // ACB and BDA have the appropriate orientations, so now we check the // triangles CBD and DAC. S2Point c_cross_d = c_->CrossProd(*d); int cbd = -S2::RobustCCW(*c_, *d, *b_, c_cross_d); if (cbd != acb_) return -1; int dac = S2::RobustCCW(*c_, *d, *a_, c_cross_d); return (dac == acb_) ? 1 : -1; } void S2EdgeUtil::RectBounder::AddPoint(S2Point const* b) { DCHECK(S2::IsUnitLength(*b)); S2LatLng b_latlng(*b); if (bound_.is_empty()) { bound_.AddPoint(b_latlng); } else { // We can't just call bound_.AddPoint(b_latlng) here, since we need to // ensure that all the longitudes between "a" and "b" are included. bound_ = bound_.Union(S2LatLngRect::FromPointPair(a_latlng_, b_latlng)); // Check whether the min/max latitude occurs in the edge interior. We find // the normal to the plane containing AB, and then a vector "dir" in this // plane that also passes through the equator. We use RobustCrossProd to // ensure that the edge normal is accurate even when the two points are very // close together. S2Point a_cross_b = S2::RobustCrossProd(*a_, *b); S2Point dir = a_cross_b.CrossProd(S2Point(0, 0, 1)); double da = dir.DotProd(*a_); double db = dir.DotProd(*b); if (da * db < 0) { // Minimum/maximum latitude occurs in the edge interior. double abs_lat = acos(fabs(a_cross_b[2] / a_cross_b.Norm())); if (da < 0) { // It's possible that abs_lat < lat_.lo() due to numerical errors. bound_.mutable_lat()->set_hi(max(abs_lat, bound_.lat().hi())); } else { bound_.mutable_lat()->set_lo(min(-abs_lat, bound_.lat().lo())); } // If the edge comes very close to the north or south pole then we may // not be certain which side of the pole it is on. We handle this by // expanding the longitude bounds if the maximum absolute latitude is // approximately Pi/2. if (abs_lat >= M_PI_2 - 1e-15) { *bound_.mutable_lng() = S1Interval::Full(); } } } a_ = b; a_latlng_ = b_latlng; } S2EdgeUtil::LongitudePruner::LongitudePruner(S1Interval const& interval, S2Point const& v0) : interval_(interval), lng0_(S2LatLng::Longitude(v0).radians()) { }