// Copyright 2005 Google Inc. All Rights Reserved. #include using std::min; using std::max; using std::swap; using std::reverse; #include using std::set; using std::multiset; #include using std::vector; #include "s2.h" #include "hash.h" #include using std::pair; using std::make_pair; #include "s2loop.h" #include "base/logging.h" #include "base/scoped_ptr.h" #include "util/coding/coder.h" #include "s2cap.h" #include "s2cell.h" #include "s2edgeindex.h" static const unsigned char kCurrentEncodingVersionNumber = 1; S2Point const* S2LoopIndex::edge_from(int index) const { return &loop_->vertex(index); } S2Point const* S2LoopIndex::edge_to(int index) const { return &loop_->vertex(index+1); } int S2LoopIndex::num_edges() const { return loop_->num_vertices(); } S2Loop::S2Loop() : num_vertices_(0), vertices_(NULL), owns_vertices_(false), bound_(S2LatLngRect::Empty()), depth_(0), index_(this), num_find_vertex_calls_(0) { } S2Loop::S2Loop(vector const& vertices) : num_vertices_(0), vertices_(NULL), owns_vertices_(false), bound_(S2LatLngRect::Full()), depth_(0), index_(this), num_find_vertex_calls_(0) { Init(vertices); } void S2Loop::ResetMutableFields() { index_.Reset(); num_find_vertex_calls_ = 0; vertex_to_index_.clear(); } void S2Loop::Init(vector const& vertices) { ResetMutableFields(); if (owns_vertices_) delete[] vertices_; num_vertices_ = vertices.size(); if (vertices.empty()) { vertices_ = NULL; } else { vertices_ = new S2Point[num_vertices_]; memcpy(vertices_, &vertices[0], num_vertices_ * sizeof(vertices_[0])); } owns_vertices_ = true; bound_ = S2LatLngRect::Full(); // InitOrigin() must be called before InitBound() because the latter // function expects Contains() to work properly. InitOrigin(); InitBound(); } bool S2Loop::IsValid() const { // Loops must have at least 3 vertices. if (num_vertices() < 3) { VLOG(2) << "Degenerate loop"; return false; } // All vertices must be unit length. for (int i = 0; i < num_vertices(); ++i) { if (!S2::IsUnitLength(vertex(i))) { VLOG(2) << "Vertex " << i << " is not unit length"; return false; } } // Loops are not allowed to have any duplicate vertices. hash_map vmap; for (int i = 0; i < num_vertices(); ++i) { if (!vmap.insert(make_pair(vertex(i), i)).second) { VLOG(2) << "Duplicate vertices: " << vmap[vertex(i)] << " and " << i; return false; } } // Non-adjacent edges are not allowed to intersect. bool crosses = false; index_.PredictAdditionalCalls(num_vertices()); S2EdgeIndex::Iterator it(&index_); for (int i = 0; i < num_vertices(); ++i) { S2EdgeUtil::EdgeCrosser crosser(&vertex(i), &vertex(i+1), &vertex(0)); int previous_index = -2; for (it.GetCandidates(vertex(i), vertex(i+1)); !it.Done(); it.Next()) { int ai = it.Index(); // There is no need to test the same thing twice. Moreover, two edges // that abut at ai+1 will have been tested for equality above. if (ai > i+1) { if (previous_index != ai) crosser.RestartAt(&vertex(ai)); // Beware, this may return the loop is valid if there is a // "vertex crossing". // TODO(user): Fix that. crosses = crosser.RobustCrossing(&vertex(ai+1)) > 0; previous_index = ai + 1; if (crosses) { VLOG(2) << "Edges " << i << " and " << ai << " cross"; // additional debugging information: VLOG(2) << "Edge locations in degrees: " << S2LatLng(vertex(i)) << "-" << S2LatLng(vertex(i+1)) << " and " << S2LatLng(vertex(ai)) << "-" << S2LatLng(vertex(ai+1)); break; } } } if (crosses) break; } return !crosses; } bool S2Loop::IsValid(vector const& vertices, int max_adjacent) { if (vertices.size() < 3) return false; S2Loop loop(vertices); return loop.IsValid(); } bool S2Loop::IsValid(int max_adjacent) const { return IsValid(); } void S2Loop::InitOrigin() { // The bounding box does not need to be correct before calling this // function, but it must at least contain vertex(1) since we need to // do a Contains() test on this point below. DCHECK(bound_.Contains(vertex(1))); // To ensure that every point is contained in exactly one face of a // subdivision of the sphere, all containment tests are done by counting the // edge crossings starting at a fixed point on the sphere (S2::Origin()). // We need to know whether this point is inside or outside of the loop. // We do this by first guessing that it is outside, and then seeing whether // we get the correct containment result for vertex 1. If the result is // incorrect, the origin must be inside the loop. // // A loop with consecutive vertices A,B,C contains vertex B if and only if // the fixed vector R = S2::Ortho(B) is on the left side of the wedge ABC. // The test below is written so that B is inside if C=R but not if A=R. origin_inside_ = false; // Initialize before calling Contains(). bool v1_inside = S2::OrderedCCW(S2::Ortho(vertex(1)), vertex(0), vertex(2), vertex(1)); if (v1_inside != Contains(vertex(1))) origin_inside_ = true; } void S2Loop::InitBound() { // The bounding rectangle of a loop is not necessarily the same as the // bounding rectangle of its vertices. First, the loop may wrap entirely // around the sphere (e.g. a loop that defines two revolutions of a // candy-cane stripe). Second, the loop may include one or both poles. // Note that a small clockwise loop near the equator contains both poles. S2EdgeUtil::RectBounder bounder; for (int i = 0; i <= num_vertices(); ++i) { bounder.AddPoint(&vertex(i)); } S2LatLngRect b = bounder.GetBound(); // Note that we need to initialize bound_ with a temporary value since // Contains() does a bounding rectangle check before doing anything else. bound_ = S2LatLngRect::Full(); if (Contains(S2Point(0, 0, 1))) { b = S2LatLngRect(R1Interval(b.lat().lo(), M_PI_2), S1Interval::Full()); } // If a loop contains the south pole, then either it wraps entirely // around the sphere (full longitude range), or it also contains the // north pole in which case b.lng().is_full() due to the test above. // Either way, we only need to do the south pole containment test if // b.lng().is_full(). if (b.lng().is_full() && Contains(S2Point(0, 0, -1))) { b.mutable_lat()->set_lo(-M_PI_2); } bound_ = b; } S2Loop::S2Loop(S2Cell const& cell) : bound_(cell.GetRectBound()), index_(this), num_find_vertex_calls_(0) { num_vertices_ = 4; vertices_ = new S2Point[num_vertices_]; depth_ = 0; for (int i = 0; i < 4; ++i) { vertices_[i] = cell.GetVertex(i); } owns_vertices_ = true; InitOrigin(); InitBound(); } S2Loop::~S2Loop() { if (owns_vertices_) { delete[] vertices_; } } S2Loop::S2Loop(S2Loop const* src) : num_vertices_(src->num_vertices_), vertices_(new S2Point[num_vertices_]), owns_vertices_(true), bound_(src->bound_), origin_inside_(src->origin_inside_), depth_(src->depth_), index_(this), num_find_vertex_calls_(0) { memcpy(vertices_, src->vertices_, num_vertices_ * sizeof(vertices_[0])); } S2Loop* S2Loop::Clone() const { return new S2Loop(this); } int S2Loop::FindVertex(S2Point const& p) const { num_find_vertex_calls_++; if (num_vertices() < 10 || num_find_vertex_calls_ < 20) { // Exhaustive search for (int i = 1; i <= num_vertices(); ++i) { if (vertex(i) == p) return i; } return -1; } if (vertex_to_index_.empty()) { // We haven't computed it yet. for (int i = num_vertices(); i > 0; --i) { vertex_to_index_[vertex(i)] = i; } } map::const_iterator it; it = vertex_to_index_.find(p); if (it == vertex_to_index_.end()) return -1; return it->second; } bool S2Loop::IsNormalized() const { // Optimization: if the longitude span is less than 180 degrees, then the // loop covers less than half the sphere and is therefore normalized. if (bound_.lng().GetLength() < M_PI) return true; // We allow some error so that hemispheres are always considered normalized. // TODO(user): This might not be necessary once S2Polygon is enhanced so // that it does not require its input loops to be normalized. return GetTurningAngle() >= -1e-14; } void S2Loop::Normalize() { CHECK(owns_vertices_); if (!IsNormalized()) Invert(); DCHECK(IsNormalized()); } void S2Loop::Invert() { CHECK(owns_vertices_); ResetMutableFields(); reverse(vertices_, vertices_ + num_vertices()); origin_inside_ ^= true; if (bound_.lat().lo() > -M_PI_2 && bound_.lat().hi() < M_PI_2) { // The complement of this loop contains both poles. bound_ = S2LatLngRect::Full(); } else { InitBound(); } } double S2Loop::GetArea() const { double area = GetSurfaceIntegral(S2::SignedArea); // The signed area should be between approximately -4*Pi and 4*Pi. DCHECK_LE(fabs(area), 4 * M_PI + 1e-12); if (area < 0) { // We have computed the negative of the area of the loop exterior. area += 4 * M_PI; } return max(0.0, min(4 * M_PI, area)); } S2Point S2Loop::GetCentroid() const { // GetSurfaceIntegral() returns either the integral of position over loop // interior, or the negative of the integral of position over the loop // exterior. But these two values are the same (!), because the integral of // position over the entire sphere is (0, 0, 0). return GetSurfaceIntegral(S2::TrueCentroid); } // Return (first, dir) such that first..first+n*dir are valid indices. int S2Loop::GetCanonicalFirstVertex(int* dir) const { int first = 0; int n = num_vertices(); for (int i = 1; i < n; ++i) { if (vertex(i) < vertex(first)) first = i; } if (vertex(first + 1) < vertex(first + n - 1)) { *dir = 1; // 0 <= first <= n-1, so (first+n*dir) <= 2*n-1. } else { *dir = -1; first += n; // n <= first <= 2*n-1, so (first+n*dir) >= 0. } return first; } double S2Loop::GetTurningAngle() const { // Don't crash even if the loop is not well-defined. if (num_vertices() < 3) return 0; // To ensure that we get the same result when the loop vertex order is // rotated, and that we get the same result with the opposite sign when the // vertices are reversed, we need to be careful to add up the individual // turn angles in a consistent order. In general, adding up a set of // numbers in a different order can change the sum due to rounding errors. int n = num_vertices(); int dir, i = GetCanonicalFirstVertex(&dir); double angle = S2::TurnAngle(vertex((i + n - dir) % n), vertex(i), vertex((i + dir) % n)); while (--n > 0) { i += dir; angle += S2::TurnAngle(vertex(i - dir), vertex(i), vertex(i + dir)); } return dir * angle; } S2Cap S2Loop::GetCapBound() const { return bound_.GetCapBound(); } bool S2Loop::Contains(S2Cell const& cell) const { // A future optimization could also take advantage of the fact than an S2Cell // is convex. // It's not necessarily true that bound_.Contains(cell.GetRectBound()) // because S2Cell bounds are slightly conservative. if (!bound_.Contains(cell.GetCenter())) return false; S2Loop cell_loop(cell); return Contains(&cell_loop); } bool S2Loop::MayIntersect(S2Cell const& cell) const { // It is faster to construct a bounding rectangle for an S2Cell than for // a general polygon. A future optimization could also take advantage of // the fact than an S2Cell is convex. if (!bound_.Intersects(cell.GetRectBound())) return false; return S2Loop(cell).Intersects(this); } bool S2Loop::Contains(S2Point const& p) const { if (!bound_.Contains(p)) return false; bool inside = origin_inside_; S2Point origin = S2::Origin(); S2EdgeUtil::EdgeCrosser crosser(&origin, &p, &vertex(0)); // The s2edgeindex library is not optimized yet for long edges, // so the tradeoff to using it comes later. if (num_vertices() < 2000) { for (int i = 1; i <= num_vertices(); ++i) { inside ^= crosser.EdgeOrVertexCrossing(&vertex(i)); } return inside; } S2EdgeIndex::Iterator it(&index_); int previous_index = -2; for (it.GetCandidates(origin, p); !it.Done(); it.Next()) { int ai = it.Index(); if (previous_index != ai - 1) crosser.RestartAt(&vertex(ai)); previous_index = ai; inside ^= crosser.EdgeOrVertexCrossing(&vertex(ai+1)); } return inside; } void S2Loop::Encode(Encoder* const encoder) const { encoder->Ensure(num_vertices_ * sizeof(*vertices_) + 20); // sufficient encoder->put8(kCurrentEncodingVersionNumber); encoder->put32(num_vertices_); encoder->putn(vertices_, sizeof(*vertices_) * num_vertices_); encoder->put8(origin_inside_); encoder->put32(depth_); DCHECK_GE(encoder->avail(), 0); bound_.Encode(encoder); } bool S2Loop::Decode(Decoder* const decoder) { return DecodeInternal(decoder, false); } bool S2Loop::DecodeWithinScope(Decoder* const decoder) { return DecodeInternal(decoder, true); } bool S2Loop::DecodeInternal(Decoder* const decoder, bool within_scope) { unsigned char version = decoder->get8(); if (version > kCurrentEncodingVersionNumber) return false; num_vertices_ = decoder->get32(); if (owns_vertices_) delete[] vertices_; if (within_scope) { vertices_ = const_cast(reinterpret_cast( decoder->ptr())); decoder->skip(num_vertices_ * sizeof(*vertices_)); owns_vertices_ = false; } else { vertices_ = new S2Point[num_vertices_]; decoder->getn(vertices_, num_vertices_ * sizeof(*vertices_)); owns_vertices_ = true; } origin_inside_ = decoder->get8(); depth_ = decoder->get32(); if (!bound_.Decode(decoder)) return false; DCHECK(IsValid()); return decoder->avail() >= 0; } // This is a helper class for the AreBoundariesCrossing function. // Each time there is a point in common between the two loops passed // as parameters, the two associated wedges centered at this point are // passed to the ProcessWedge function of this processor. The function // updates an internal state based on the wedges, and returns true to // signal that no further processing is needed. // // To use AreBoundariesCrossing, subclass this class and keep an // internal state that you update each time ProcessWedge is called, // then query this internal state in the function that called // AreBoundariesCrossing. class WedgeProcessor { public: virtual ~WedgeProcessor() { } virtual bool ProcessWedge(S2Point const& a0, S2Point const& ab1, S2Point const& a2, S2Point const& b0, S2Point const& b2) = 0; }; bool S2Loop::AreBoundariesCrossing( S2Loop const* b, WedgeProcessor* wedge_processor) const { // See the header file for a description of what this method does. index_.PredictAdditionalCalls(b->num_vertices()); S2EdgeIndex::Iterator it(&index_); for (int j = 0; j < b->num_vertices(); ++j) { S2EdgeUtil::EdgeCrosser crosser(&b->vertex(j), &b->vertex(j+1), &b->vertex(0)); int previous_index = -2; for (it.GetCandidates(b->vertex(j), b->vertex(j+1)); !it.Done(); it.Next()) { int ai = it.Index(); if (previous_index != ai - 1) crosser.RestartAt(&vertex(ai)); previous_index = ai; int crossing = crosser.RobustCrossing(&vertex(ai + 1)); if (crossing < 0) continue; if (crossing > 0) return true; // We only need to check each shared vertex once, so we only // consider the case where vertex(i+1) == b->vertex(j+1). if (vertex(ai+1) == b->vertex(j+1) && wedge_processor->ProcessWedge(vertex(ai), vertex(ai+1), vertex(ai+2), b->vertex(j), b->vertex(j+2))) { return false; } } } return false; } // WedgeProcessor to be used to check if loop A contains loop B. // DoesntContain() then returns true if there is a wedge of B not // contained in the associated wedge of A (and hence loop B is not // contained in loop A). class ContainsWedgeProcessor: public WedgeProcessor { public: ContainsWedgeProcessor(): doesnt_contain_(false) {} bool DoesntContain() { return doesnt_contain_; } protected: virtual bool ProcessWedge(S2Point const& a0, S2Point const& ab1, S2Point const& a2, S2Point const& b0, S2Point const& b2) { doesnt_contain_ = !S2EdgeUtil::WedgeContains(a0, ab1, a2, b0, b2); return doesnt_contain_; } private: bool doesnt_contain_; }; bool S2Loop::Contains(S2Loop const* b) const { // For this loop A to contains the given loop B, all of the following must // be true: // // (1) There are no edge crossings between A and B except at vertices. // // (2) At every vertex that is shared between A and B, the local edge // ordering implies that A contains B. // // (3) If there are no shared vertices, then A must contain a vertex of B // and B must not contain a vertex of A. (An arbitrary vertex may be // chosen in each case.) // // The second part of (3) is necessary to detect the case of two loops whose // union is the entire sphere, i.e. two loops that contains each other's // boundaries but not each other's interiors. if (!bound_.Contains(b->bound_)) return false; // Unless there are shared vertices, we need to check whether A contains a // vertex of B. Since shared vertices are rare, it is more efficient to do // this test up front as a quick rejection test. if (!Contains(b->vertex(0)) && FindVertex(b->vertex(0)) < 0) return false; // Now check whether there are any edge crossings, and also check the loop // relationship at any shared vertices. ContainsWedgeProcessor p_wedge; if (AreBoundariesCrossing(b, &p_wedge) || p_wedge.DoesntContain()) { return false; } // At this point we know that the boundaries of A and B do not intersect, // and that A contains a vertex of B. However we still need to check for // the case mentioned above, where (A union B) is the entire sphere. // Normally this check is very cheap due to the bounding box precondition. if (bound_.Union(b->bound_).is_full()) { if (b->Contains(vertex(0)) && b->FindVertex(vertex(0)) < 0) return false; } return true; } // WedgeProcessor to be used to check if loop A intersects loop B. // Intersects() then returns true when A and B have at least one pair // of associated wedges that intersect. class IntersectsWedgeProcessor: public WedgeProcessor { public: IntersectsWedgeProcessor(): intersects_(false) {} bool Intersects() { return intersects_; } protected: virtual bool ProcessWedge(S2Point const& a0, S2Point const& ab1, S2Point const& a2, S2Point const& b0, S2Point const& b2) { intersects_ = S2EdgeUtil::WedgeIntersects(a0, ab1, a2, b0, b2); return intersects_; } private: bool intersects_; }; bool S2Loop::Intersects(S2Loop const* b) const { // a->Intersects(b) if and only if !a->Complement()->Contains(b). // This code is similar to Contains(), but is optimized for the case // where both loops enclose less than half of the sphere. // The largest of the two loops should be edgeindex'd. if (b->num_vertices() > num_vertices()) return b->Intersects(this); if (!bound_.Intersects(b->bound_)) return false; // Unless there are shared vertices, we need to check whether A contains a // vertex of B. Since shared vertices are rare, it is more efficient to do // this test up front as a quick acceptance test. if (Contains(b->vertex(0)) && FindVertex(b->vertex(0)) < 0) return true; // Now check whether there are any edge crossings, and also check the loop // relationship at any shared vertices. IntersectsWedgeProcessor p_wedge; if (AreBoundariesCrossing(b, &p_wedge) || p_wedge.Intersects()) { return true; } // We know that A does not contain a vertex of B, and that there are no edge // crossings. Therefore the only way that A can intersect B is if B // entirely contains A. We can check this by testing whether B contains an // arbitrary non-shared vertex of A. Note that this check is usually cheap // because of the bounding box precondition. if (b->bound_.Contains(bound_)) { if (b->Contains(vertex(0)) && b->FindVertex(vertex(0)) < 0) return true; } return false; } // WedgeProcessor to be used to check if the interior of loop A // contains the interior of loop B, or their boundaries cross each // other (therefore they have a proper intersection). // CrossesOrMayContain() then returns -1 if A crossed B, 0 if it is // not possible for A to contain B, and 1 otherwise. class ContainsOrCrossesProcessor: public WedgeProcessor { public: ContainsOrCrossesProcessor(): has_boundary_crossing_(false), a_has_strictly_super_wedge_(false), b_has_strictly_super_wedge_(false), has_disjoint_wedge_(false) {} int CrossesOrMayContain() { if (has_boundary_crossing_) return -1; if (has_disjoint_wedge_ || b_has_strictly_super_wedge_) return 0; return 1; } protected: virtual bool ProcessWedge(S2Point const& a0, S2Point const& ab1, S2Point const& a2, S2Point const& b0, S2Point const& b2) { const S2EdgeUtil::WedgeRelation wedge_relation = S2EdgeUtil::GetWedgeRelation(a0, ab1, a2, b0, b2); if (wedge_relation == S2EdgeUtil::WEDGE_PROPERLY_OVERLAPS) { has_boundary_crossing_ = true; return true; } a_has_strictly_super_wedge_ |= (wedge_relation == S2EdgeUtil::WEDGE_PROPERLY_CONTAINS); b_has_strictly_super_wedge_ |= (wedge_relation == S2EdgeUtil::WEDGE_IS_PROPERLY_CONTAINED); if (a_has_strictly_super_wedge_ && b_has_strictly_super_wedge_) { has_boundary_crossing_ = true; return true; } has_disjoint_wedge_ |= (wedge_relation == S2EdgeUtil::WEDGE_IS_DISJOINT); return false; } private: // True if any crossing on the boundary is discovered. bool has_boundary_crossing_; // True if A (B) has a strictly superwedge on a pair of wedges that // share a common center point. bool a_has_strictly_super_wedge_; bool b_has_strictly_super_wedge_; // True if there is a pair of disjoint wedges with common center // point. bool has_disjoint_wedge_; }; int S2Loop::ContainsOrCrosses(S2Loop const* b) const { // There can be containment or crossing only if the bounds intersect. if (!bound_.Intersects(b->bound_)) return 0; // Now check whether there are any edge crossings, and also check the loop // relationship at any shared vertices. Note that unlike Contains() or // Intersects(), we can't do a point containment test as a shortcut because // we need to detect whether there are any edge crossings. ContainsOrCrossesProcessor p_wedge; if (AreBoundariesCrossing(b, &p_wedge)) { return -1; } const int result = p_wedge.CrossesOrMayContain(); if (result <= 0) return result; // At this point we know that the boundaries do not intersect, and we are // given that (A union B) is a proper subset of the sphere. Furthermore // either A contains B, or there are no shared vertices (due to the check // above). So now we just need to distinguish the case where A contains B // from the case where B contains A or the two loops are disjoint. if (!bound_.Contains(b->bound_)) return 0; if (!Contains(b->vertex(0)) && FindVertex(b->vertex(0)) < 0) return 0; return 1; } bool S2Loop::ContainsNested(S2Loop const* b) const { if (!bound_.Contains(b->bound_)) return false; // We are given that A and B do not share any edges, and that either one // loop contains the other or they do not intersect. int m = FindVertex(b->vertex(1)); if (m < 0) { // Since b->vertex(1) is not shared, we can check whether A contains it. return Contains(b->vertex(1)); } // Check whether the edge order around b->vertex(1) is compatible with // A containing B. return S2EdgeUtil::WedgeContains(vertex(m-1), vertex(m), vertex(m+1), b->vertex(0), b->vertex(2)); } bool S2Loop::BoundaryEquals(S2Loop const* b) const { if (num_vertices() != b->num_vertices()) return false; for (int offset = 0; offset < num_vertices(); ++offset) { if (vertex(offset) == b->vertex(0)) { // There is at most one starting offset since loop vertices are unique. for (int i = 0; i < num_vertices(); ++i) { if (vertex(i + offset) != b->vertex(i)) return false; } return true; } } return false; } bool S2Loop::BoundaryApproxEquals(S2Loop const* b, double max_error) const { if (num_vertices() != b->num_vertices()) return false; for (int offset = 0; offset < num_vertices(); ++offset) { if (S2::ApproxEquals(vertex(offset), b->vertex(0), max_error)) { bool success = true; for (int i = 0; i < num_vertices(); ++i) { if (!S2::ApproxEquals(vertex(i + offset), b->vertex(i), max_error)) { success = false; break; } } if (success) return true; // Otherwise continue looping. There may be more than one candidate // starting offset since vertices are only matched approximately. } } return false; } static bool MatchBoundaries(S2Loop const* a, S2Loop const* b, int a_offset, double max_error) { // The state consists of a pair (i,j). A state transition consists of // incrementing either "i" or "j". "i" can be incremented only if // a(i+1+a_offset) is near the edge from b(j) to b(j+1), and a similar rule // applies to "j". The function returns true iff we can proceed all the way // around both loops in this way. // // Note that when "i" and "j" can both be incremented, sometimes only one // choice leads to a solution. We handle this using a stack and // backtracking. We also keep track of which states have already been // explored to avoid duplicating work. vector > pending; set > done; pending.push_back(make_pair(0, 0)); while (!pending.empty()) { int i = pending.back().first; int j = pending.back().second; pending.pop_back(); if (i == a->num_vertices() && j == b->num_vertices()) { return true; } done.insert(make_pair(i, j)); // If (i == na && offset == na-1) where na == a->num_vertices(), then // then (i+1+offset) overflows the [0, 2*na-1] range allowed by vertex(). // So we reduce the range if necessary. int io = i + a_offset; if (io >= a->num_vertices()) io -= a->num_vertices(); if (i < a->num_vertices() && done.count(make_pair(i+1, j)) == 0 && S2EdgeUtil::GetDistance(a->vertex(io+1), b->vertex(j), b->vertex(j+1)).radians() <= max_error) { pending.push_back(make_pair(i+1, j)); } if (j < b->num_vertices() && done.count(make_pair(i, j+1)) == 0 && S2EdgeUtil::GetDistance(b->vertex(j+1), a->vertex(io), a->vertex(io+1)).radians() <= max_error) { pending.push_back(make_pair(i, j+1)); } } return false; } bool S2Loop::BoundaryNear(S2Loop const* b, double max_error) const { for (int a_offset = 0; a_offset < num_vertices(); ++a_offset) { if (MatchBoundaries(this, b, a_offset, max_error)) return true; } return false; }