1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
|
/*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 2008-2010 WiredTiger, Inc.
* All rights reserved.
*
* $Id$
*/
#include "wt_internal.h"
static void __wt_bt_page_size_minimum(DB *, WT_PAGE *, WT_PAGE *);
static int __wt_bt_rcc_expand_compare(const void *, const void *);
static int __wt_bt_rcc_expand_sort(
ENV *, WT_PAGE *, WT_COL *, WT_COL_EXPAND ***, u_int32_t *);
static int __wt_bt_rec_col_fix(WT_TOC *, WT_PAGE *, WT_PAGE *);
static int __wt_bt_rec_col_fix_rcc(WT_TOC *, WT_PAGE *, WT_PAGE *);
static int __wt_bt_rec_col_int(WT_TOC *, WT_PAGE *, WT_PAGE *);
static int __wt_bt_rec_col_var(WT_TOC *, WT_PAGE *, WT_PAGE *);
static int __wt_bt_rec_row(WT_TOC *, WT_PAGE *, WT_PAGE *);
static int __wt_bt_rec_row_int(WT_TOC *, WT_PAGE *, WT_PAGE *);
/*
* __wt_bt_rec_page --
* Move a page from its in-memory state out to disk.
*/
int
__wt_bt_rec_page(WT_TOC *toc, WT_PAGE *page)
{
DB *db;
IDB *idb;
ENV *env;
WT_PAGE *new;
WT_PAGE_HDR *hdr;
u_int32_t max;
int ret;
db = toc->db;
idb = db->idb;
env = toc->env;
hdr = page->hdr;
WT_VERBOSE(env, WT_VERB_CACHE,
(env, "reconcile page/addr %p/%lu", page, (u_long)page->addr));
/* If the page isn't dirty, we're done. */
WT_ASSERT(toc->env, WT_PAGE_MODIFY_ISSET(page));
/*
* Multiple pages are marked for "draining" by the cache drain server,
* which means nobody can read them -- but, this thread of control has
* to update higher pages in the tree when it writes this page, which
* requires reading other pages, which might themselves be marked for
* draining. Set a flag to allow this thread of control to see pages
* marked for draining -- we know it's safe, because only this thread
* is writing pages.
*
* Reconciliation is probably running because the cache is full, which
* means reads are locked out -- reconciliation can read, regardless.
*/
F_SET(toc, WT_READ_DRAIN | WT_READ_PRIORITY);
/*
* Pages allocated by bulk load, but never subsequently modified don't
* need to be reconciled, they can simply be written to their allocated
* file blocks. Those pages are "modified", but don't have in-memory
* versions.
*/
if (page->indx_count == 0) {
ret = __wt_page_write(db, page);
goto done;
}
switch (hdr->type) {
case WT_PAGE_DESCRIPT:
case WT_PAGE_OVFL:
ret = __wt_page_write(db, page);
goto done;
case WT_PAGE_COL_FIX:
case WT_PAGE_COL_VAR:
case WT_PAGE_DUP_LEAF:
case WT_PAGE_ROW_LEAF:
/* We'll potentially need a new leaf page. */
max = db->leafmax;
break;
case WT_PAGE_COL_INT:
case WT_PAGE_DUP_INT:
case WT_PAGE_ROW_INT:
/* We'll potentially need a new internal page. */
max = db->intlmax;
break;
WT_ILLEGAL_FORMAT_ERR(db, ret);
}
/* Make sure the TOC's scratch buffer is big enough. */
if (toc->tmp1.mem_size < sizeof(WT_PAGE) + max)
WT_ERR(__wt_realloc(env, &toc->tmp1.mem_size,
sizeof(WT_PAGE) + max, &toc->tmp1.data));
memset(toc->tmp1.data, 0, sizeof(WT_PAGE) + max);
/* Initialize the reconciliation buffer as a replacement page. */
new = toc->tmp1.data;
new->hdr =
(WT_PAGE_HDR *)((u_int8_t *)toc->tmp1.data + sizeof(WT_PAGE));
new->size = max;
new->addr = page->addr;
__wt_bt_set_ff_and_sa_from_offset(new, WT_PAGE_BYTE(new));
new->hdr->type = page->hdr->type;
new->hdr->level = page->hdr->level;
switch (hdr->type) {
case WT_PAGE_COL_FIX:
if (F_ISSET(idb, WT_REPEAT_COMP))
WT_ERR(__wt_bt_rec_col_fix_rcc(toc, page, new));
else
WT_ERR(__wt_bt_rec_col_fix(toc, page, new));
break;
case WT_PAGE_COL_VAR:
WT_ERR(__wt_bt_rec_col_var(toc, page, new));
break;
case WT_PAGE_COL_INT:
WT_ERR(__wt_bt_rec_col_int(toc, page, new));
break;
case WT_PAGE_DUP_INT:
case WT_PAGE_ROW_INT:
WT_ERR(__wt_bt_rec_row_int(toc, page, new));
break;
case WT_PAGE_ROW_LEAF:
case WT_PAGE_DUP_LEAF:
WT_ERR(__wt_bt_rec_row(toc, page, new));
break;
WT_ILLEGAL_FORMAT_ERR(db, ret);
}
err:
done: /*
* Clear the modification flag. This doesn't sound safe, because the
* cache thread might decide to discard this page as "clean". That's
* not correct, because we're either the Db.sync method and holding a
* hazard reference and we finish our write before releasing our hazard
* reference, or we're the cache drain server and no other thread can
* discard the page. Flush the change explicitly in case we're the
* Db.sync method, and the cache drain server needs to know the page
* is clean.
*/
WT_PAGE_MODIFY_CLR(page);
WT_MEMORY_FLUSH;
F_CLR(toc, WT_READ_DRAIN | WT_READ_PRIORITY);
return (ret);
}
/*
* __wt_bt_rec_col_int --
* Reconcile a column store internal page.
*/
static int
__wt_bt_rec_col_int(WT_TOC *toc, WT_PAGE *page, WT_PAGE *rp)
{
rp = NULL;
return (__wt_page_write(toc->db, page));
}
/*
* __wt_bt_rec_row_int --
* Reconcile a row store internal page.
*/
static int
__wt_bt_rec_row_int(WT_TOC *toc, WT_PAGE *page, WT_PAGE *rp)
{
rp = NULL;
return (__wt_page_write(toc->db, page));
}
/*
* __wt_bt_rec_col_fix --
* Reconcile a fixed-width column-store leaf page (does not handle
* repeat-count compression).
*/
static int
__wt_bt_rec_col_fix(WT_TOC *toc, WT_PAGE *page, WT_PAGE *new)
{
DB *db;
ENV *env;
WT_COL *cip;
WT_PAGE_HDR *hdr;
WT_REPL *repl;
u_int32_t i, len;
u_int8_t *data;
db = toc->db;
env = toc->env;
hdr = new->hdr;
/*
* We need a "deleted" data item to store on the page. Make sure the
* WT_TOC's scratch buffer is big enough (our caller is using tmp1 so
* we use tmp2). Clear the buffer's contents and set the delete flag.
*/
len = db->fixed_len;
if (toc->tmp2.mem_size < len)
WT_RET(__wt_realloc(
env, &toc->tmp2.mem_size, len, &toc->tmp2.data));
memset(toc->tmp2.data, 0, len);
WT_FIX_DELETE_SET(toc->tmp2.data);
WT_INDX_FOREACH(page, cip, i) {
/*
* Get a reference to the data, on- or off- page, and see if
* it's been deleted.
*/
if ((repl = WT_COL_REPL(page, cip)) != NULL) {
if (WT_REPL_DELETED_ISSET(repl->data))
data = toc->tmp2.data; /* Replaced deleted */
else
data = repl->data; /* Replaced data */
} else if (WT_FIX_DELETE_ISSET(cip->data))
data = toc->tmp2.data; /* On-page deleted */
else
data = cip->data; /* On-page data */
if (len > new->space_avail) {
fprintf(stderr, "PAGE %lu SPLIT\n", (u_long)page->addr);
__wt_abort(toc->env);
}
memcpy(new->first_free, data, len);
new->first_free += len;
new->space_avail -= len;
++new->records;
++hdr->u.entries;
}
__wt_bt_page_size_minimum(db, page, new);
WT_ASSERT(toc->env, __wt_bt_verify_page(toc, new, NULL) == 0);
return (__wt_page_write(db, new));
}
/*
* __wt_bt_rec_col_fix_rcc --
* Reconcile a repeat-count compressed, fixed-width column-store leaf page.
*/
static int
__wt_bt_rec_col_fix_rcc(WT_TOC *toc, WT_PAGE *page, WT_PAGE *new)
{
DB *db;
ENV *env;
WT_COL *cip;
WT_COL_EXPAND *exp, **expsort, **expp;
WT_PAGE_HDR *hdr;
WT_REPL *repl;
u_int32_t i, len, n_expsort;
u_int16_t n, repeat_count, total;
u_int8_t *data, *last_data;
db = toc->db;
env = toc->env;
expsort = NULL;
hdr = new->hdr;
n_expsort = 0; /* Necessary for the sort function */
last_data = NULL;
/*
* We need a "deleted" data item to store on the page. Make sure the
* WT_TOC's scratch buffer is big enough (our caller is using tmp1 so
* we use tmp2). Clear the buffer's contents and set the delete flag.
*/
len = db->fixed_len + sizeof(u_int16_t);
if (toc->tmp2.mem_size < len)
WT_RET(__wt_realloc(
env, &toc->tmp2.mem_size, len, &toc->tmp2.data));
memset(toc->tmp2.data, 0, len);
WT_FIX_REPEAT_COUNT(toc->tmp2.data) = 1;
WT_FIX_DELETE_SET(WT_FIX_REPEAT_DATA(toc->tmp2.data));
WT_INDX_FOREACH(page, cip, i) {
/*
* Get a sorted list of any expansion entries we've created for
* this set of records. The sort function returns a NULL-
* terminated array of references to WT_COL_EXPAND structures,
* sorted by record offset.
*/
WT_RET(__wt_bt_rcc_expand_sort(
env, page, cip, &expsort, &n_expsort));
/*
* Generate entries on the page: using the WT_REPL entry for
* records listed in the WT_COL_EXPAND array, and original data
* otherwise.
*/
total = WT_FIX_REPEAT_COUNT(cip->data);
for (expp = expsort, n = 1; n <= total; n += repeat_count) {
if ((exp = *expp) != NULL && n == exp->rcc_offset) {
++expp;
repl = exp->repl;
if (WT_REPL_DELETED_ISSET(repl->data))
data = toc->tmp2.data;
else
data = repl->data;
repeat_count = 1;
} else {
if (WT_FIX_DELETE_ISSET(cip->data))
data = toc->tmp2.data;
else
data = cip->data;
/*
* The repeat count is the number of records
* up to the next WT_COL_EXPAND record, or
* up to the end of this entry if we have no
* more WT_COL_EXPAND records.
*/
if (exp == NULL)
repeat_count = (total - n) + 1;
else
repeat_count = exp->rcc_offset - n;
}
/*
* In all cases, check the last entry written on the
* page to see if it's identical, and increment its
* repeat count where possible.
*/
if (last_data != NULL &&
memcmp(WT_FIX_REPEAT_DATA(last_data),
WT_FIX_REPEAT_DATA(data), db->fixed_len) == 0 &&
WT_FIX_REPEAT_COUNT(last_data) < UINT16_MAX) {
WT_FIX_REPEAT_COUNT(last_data) += repeat_count;
continue;
}
if (len > new->space_avail) {
fprintf(stderr,
"PAGE %lu SPLIT\n", (u_long)page->addr);
__wt_abort(toc->env);
}
last_data = new->first_free;
memcpy(new->first_free, data, len);
new->first_free += len;
new->space_avail -= len;
++hdr->u.entries;
}
}
__wt_bt_page_size_minimum(db, page, new);
/* Free the sort array. */
if (expsort != NULL)
__wt_free(env, expsort, n_expsort * sizeof(WT_COL_EXPAND *));
WT_ASSERT(toc->env, __wt_bt_verify_page(toc, new, NULL) == 0);
return (__wt_page_write(db, new));
}
/*
* __wt_bt_rcc_expand_compare --
* Qsort function: sort WT_COL_EXPAND structures based on the record
* offset, in ascending order.
*/
static int
__wt_bt_rcc_expand_compare(const void *a, const void *b)
{
WT_COL_EXPAND *a_exp, *b_exp;
a_exp = *(WT_COL_EXPAND **)a;
b_exp = *(WT_COL_EXPAND **)b;
return (a_exp->rcc_offset > b_exp->rcc_offset ? 1 : 0);
}
/*
* __wt_bt_rcc_expand_sort --
* Return the current on-page index's array of WT_COL_EXPAND structures,
* sorted by record offset.
*/
static int
__wt_bt_rcc_expand_sort(ENV *env,
WT_PAGE *page, WT_COL *cip, WT_COL_EXPAND ***expsortp, u_int32_t *np)
{
WT_COL_EXPAND *exp;
u_int16_t n;
/* Figure out how big the array needs to be. */
for (n = 0,
exp = WT_COL_EXPCOL(page, cip); exp != NULL; exp = exp->next, ++n)
;
/*
* Allocate that big an array -- always allocate at least one slot,
* our caller expects NULL-termination.
*/
if (n >= *np) {
if (*expsortp != NULL)
__wt_free(
env, *expsortp, *np * sizeof(WT_COL_EXPAND *));
WT_RET(__wt_calloc(
env, n + 10, sizeof(WT_COL_EXPAND *), expsortp));
*np = n + 10;
}
/* Enter the WT_COL_EXPAND structures into the array. */
for (n = 0,
exp = WT_COL_EXPCOL(page, cip); exp != NULL; exp = exp->next, ++n)
(*expsortp)[n] = exp;
/* Sort the entries. */
if (n != 0)
qsort(*expsortp, (size_t)n,
sizeof(WT_COL_EXPAND *), __wt_bt_rcc_expand_compare);
/* NULL-terminate the array. */
(*expsortp)[n] = NULL;
return (0);
}
/*
* __wt_bt_rec_col_var --
* Reconcile a variable-width column-store leaf page.
*/
static int
__wt_bt_rec_col_var(WT_TOC *toc, WT_PAGE *page, WT_PAGE *new)
{
enum { DATA_ON_PAGE, DATA_OFF_PAGE } data_loc;
DB *db;
DBT *data, data_dbt;
WT_COL *cip;
WT_ITEM data_item;
WT_OVFL data_ovfl;
WT_PAGE_HDR *hdr;
WT_REPL *repl;
u_int32_t i, len;
db = toc->db;
hdr = new->hdr;
WT_CLEAR(data_dbt);
WT_CLEAR(data_item);
data = &data_dbt;
WT_INDX_FOREACH(page, cip, i) {
/*
* Get a reference to the data: it's either a replacement value
* or the original on-page item.
*/
if ((repl = WT_COL_REPL(page, cip)) != NULL) {
/*
* Check for deletion, else build the data's WT_ITEM
* chunk from the most recent replacement value.
*/
if (WT_REPL_DELETED_ISSET(repl->data)) {
WT_CLEAR(data_item);
WT_ITEM_TYPE_SET(&data_item, WT_ITEM_DEL);
WT_ITEM_LEN_SET(&data_item, 0);
len = WT_ITEM_SPACE_REQ(0);
} else {
data->data = repl->data;
data->size = repl->size;
WT_RET(__wt_bt_build_data_item(
toc, data, &data_item, &data_ovfl));
len = WT_ITEM_SPACE_REQ(data->size);
}
data_loc = DATA_OFF_PAGE;
} else {
data->data = cip->data;
data->size = WT_ITEM_SPACE_REQ(WT_ITEM_LEN(cip->data));
len = data->size;
data_loc = DATA_ON_PAGE;
}
if (len > new->space_avail) {
fprintf(stderr, "PAGE %lu SPLIT\n", (u_long)page->addr);
__wt_abort(toc->env);
}
switch (data_loc) {
case DATA_ON_PAGE:
memcpy(new->first_free, data->data, data->size);
new->first_free += data->size;
new->space_avail -= data->size;
break;
case DATA_OFF_PAGE:
memcpy(new->first_free, &data_item, sizeof(data_item));
memcpy(new->first_free +
sizeof(data_item), data->data, data->size);
new->first_free += len;
new->space_avail -= len;
}
++new->records;
++hdr->u.entries;
}
__wt_bt_page_size_minimum(db, page, new);
WT_ASSERT(toc->env, __wt_bt_verify_page(toc, new, NULL) == 0);
return (__wt_page_write(db, new));
}
/*
* __wt_bt_rec_row --
* Reconcile a row-store leaf page.
*/
static int
__wt_bt_rec_row(WT_TOC *toc, WT_PAGE *page, WT_PAGE *new)
{
enum { DATA_ON_PAGE, DATA_OFF_PAGE } data_loc;
enum { KEY_ON_PAGE, KEY_NONE } key_loc;
DB *db;
DBT *key, key_dbt, *data, data_dbt;
WT_ITEM key_item, data_item, *item;
WT_OVFL data_ovfl;
WT_PAGE_HDR *hdr;
WT_ROW *rip;
WT_REPL *repl;
u_int32_t i, len, type;
db = toc->db;
hdr = new->hdr;
WT_CLEAR(data_dbt);
WT_CLEAR(key_dbt);
WT_CLEAR(data_item);
WT_CLEAR(key_item);
key = &key_dbt;
data = &data_dbt;
/*
* Walk the page, accumulating key/data groups (groups, because a key
* can reference a duplicate data set).
*
* We have to walk both the WT_ROW structures as well as the original
* page: the problem is keys that require processing. When a page is
* read into memory from a simple database, the WT_ROW key/size pair
* is set to reference an on-page group of bytes in the key's WT_ITEM
* structure. As Btree keys are immutable, that original WT_ITEM is
* usually what we want to write, and we can pretty easily find it by
* moving to immediately before the on-page key.
*
* Keys that require processing are harder (for example, a Huffman
* encoded key). When we have to use a key that requires processing,
* we process the key and set the WT_ROW key/size pair to reference
* the allocated memory that holds the key. At that point we've lost
* any reference to the original WT_ITEM structure, which is what we
* want to re-write when reconciling the page. We don't want to make
* the WT_ROW structure bigger by another sizeof(void *) bytes, so we
* walk the original page at the same time we walk the WT_PAGE array
* when reconciling the page so we can find the original WT_ITEM.
*/
item = NULL;
WT_INDX_FOREACH(page, rip, i) {
/* Move to the next key on the original page. */
if (item == NULL)
item = (WT_ITEM *)WT_PAGE_BYTE(page);
else
do {
item = WT_ITEM_NEXT(item);
} while (WT_ITEM_TYPE(item) != WT_ITEM_KEY &&
WT_ITEM_TYPE(item) != WT_ITEM_KEY_OVFL);
/*
* Get a reference to the data. We get the data first because
* it may have been deleted, in which case we ignore the pair.
*/
if ((repl = WT_ROW_REPL(page, rip)) != NULL) {
if (WT_REPL_DELETED_ISSET(repl->data))
continue;
/*
* Build the data's WT_ITEM chunk from the most recent
* replacement value.
*/
data->data = repl->data;
data->size = repl->size;
WT_RET(__wt_bt_build_data_item(
toc, data, &data_item, &data_ovfl));
data_loc = DATA_OFF_PAGE;
} else {
/* Copy the item off the page. */
data->data = rip->data;
data->size = WT_ITEM_SPACE_REQ(WT_ITEM_LEN(rip->data));
data_loc = DATA_ON_PAGE;
}
/*
* Check if the key is a duplicate (the key preceding it on the
* page references the same information). We don't store the
* key for the second and subsequent data items in duplicated
* groups.
*/
if (i > 0 && rip->key == (rip - 1)->key) {
type = data_loc == DATA_ON_PAGE ?
WT_ITEM_TYPE(rip->data) : WT_ITEM_TYPE(&data_item);
switch (type) {
case WT_ITEM_DATA:
case WT_ITEM_DUP:
type = WT_ITEM_DUP;
break;
case WT_ITEM_DATA_OVFL:
case WT_ITEM_DUP_OVFL:
type = WT_ITEM_DUP_OVFL;
break;
WT_ILLEGAL_FORMAT(db);
}
if (data_loc == DATA_ON_PAGE)
WT_ITEM_TYPE_SET(rip->data, type);
else
WT_ITEM_TYPE_SET(&data_item, type);
key_loc = KEY_NONE;
} else {
/* Take the key's WT_ITEM from the original page. */
key->data = item;
key->size = WT_ITEM_SPACE_REQ(WT_ITEM_LEN(item));
key_loc = KEY_ON_PAGE;
}
len = 0;
switch (key_loc) {
case KEY_ON_PAGE:
len = key->size;
break;
case KEY_NONE:
break;
}
switch (data_loc) {
case DATA_OFF_PAGE:
len += WT_ITEM_SPACE_REQ(data->size);
break;
case DATA_ON_PAGE:
len += data->size;
break;
}
if (len > new->space_avail) {
fprintf(stderr, "PAGE %lu SPLIT\n", (u_long)page->addr);
__wt_abort(toc->env);
}
switch (key_loc) {
case KEY_ON_PAGE:
memcpy(new->first_free, key->data, key->size);
new->first_free += key->size;
new->space_avail -= key->size;
++hdr->u.entries;
break;
case KEY_NONE:
break;
}
switch (data_loc) {
case DATA_ON_PAGE:
memcpy(new->first_free, data->data, data->size);
new->first_free += data->size;
new->space_avail -= data->size;
++hdr->u.entries;
break;
case DATA_OFF_PAGE:
memcpy(new->first_free, &data_item, sizeof(data_item));
memcpy(new->first_free +
sizeof(WT_ITEM), data->data, data->size);
new->first_free += WT_ITEM_SPACE_REQ(data->size);
new->space_avail -= WT_ITEM_SPACE_REQ(data->size);
++hdr->u.entries;
break;
}
++new->records;
}
__wt_bt_page_size_minimum(db, page, new);
WT_ASSERT(toc->env, __wt_bt_verify_page(toc, new, NULL) == 0);
return (__wt_page_write(db, new));
}
/*
* __wt_bt_page_size_minimum --
* Reset a reconciled page's size.
*/
static void
__wt_bt_page_size_minimum(DB *db, WT_PAGE *old, WT_PAGE *new)
{
/*
* Reset the page's size to the minimum required, and if the resulting
* page size is larger or smaller than the original page, we allocate
* a new page. The difference is that if the page is smaller, we don't
* extend the file to get a replacement page, we just waste the space.
*/
new->size = WT_MAX(old->size,
(new->size + (db->allocsize - 1)) % db->allocsize);
if (new->size > old->size) {
fprintf(stderr, "PAGE GREW: %lu\n", (u_long)new->addr);
__wt_abort(db->env);
}
}
|