1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
|
// json.cpp
/**
* Copyright (C) 2008 10gen Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License, version 3,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "stdafx.h"
#include "json.h"
#include "../util/builder.h"
using namespace boost::spirit;
struct ObjectBuilder {
BSONObjBuilder *back() { return builders.back().get(); }
// Storage for field names of elements within builders.back().
const char *fieldName() { return fieldNames.back().c_str(); }
void push() {
boost::shared_ptr< BSONObjBuilder > b( new BSONObjBuilder() );
builders.push_back( b );
fieldNames.push_back( "" );
indexes.push_back( 0 );
}
BSONObj pop() {
BSONObj ret = back()->doneAndDecouple();
builders.pop_back();
fieldNames.pop_back();
indexes.pop_back();
return ret;
}
void nameFromIndex() {
fieldNames.back() = BSONObjBuilder::numStr( indexes.back() );
}
string popString() {
string ret = ss.str();
ss.str( "" );
return ret;
}
// Cannot use auto_ptr because its copy constructor takes a non const reference.
vector< boost::shared_ptr< BSONObjBuilder > > builders;
vector< string > fieldNames;
vector< int > indexes;
stringstream ss;
string ns;
OID oid;
string binData;
BinDataType binDataType;
string regex;
string regexOptions;
unsigned long long date;
};
struct objectStart {
objectStart( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char &c ) const {
b.push();
}
ObjectBuilder &b;
};
struct arrayStart {
arrayStart( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char &c ) const {
b.push();
b.nameFromIndex();
}
ObjectBuilder &b;
};
struct arrayNext {
arrayNext( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char &c ) const {
++b.indexes.back();
b.nameFromIndex();
}
ObjectBuilder &b;
};
struct ch {
ch( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char c ) const {
b.ss << c;
}
ObjectBuilder &b;
};
struct chE {
chE( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char c ) const {
char o = '\0';
switch( c ) {
case '\"':
o = '\"';
break;
case '\\':
o = '\\';
break;
case '/':
o = '/';
break;
case 'b':
o = '\b';
break;
case 'f':
o = '\f';
break;
case 'n':
o = '\n';
break;
case 'r':
o = '\r';
break;
case 't':
o = '\t';
break;
default:
assert( false );
}
b.ss << o;
}
ObjectBuilder &b;
};
namespace hex {
int val( char c ) {
if ( '0' <= c && c <= '9' )
return c - '0';
if ( 'a' <= c && c <= 'f' )
return c - 'a' + 10;
if ( 'A' <= c && c <= 'F' )
return c - 'A' + 10;
assert( false );
return 0xff;
}
char val( const char *c ) {
return ( val( c[ 0 ] ) << 4 ) | val( c[ 1 ] );
}
} // namespace hex
struct chU {
chU( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
unsigned char first = hex::val( start );
unsigned char second = hex::val( start + 2 );
if ( first == 0 && second < 0x80 )
b.ss << second;
else if ( first < 0x08 ) {
b.ss << char( 0xc0 | ( ( first << 2 ) | ( second >> 6 ) ) );
b.ss << char( 0x80 | ( ~0xc0 & second ) );
} else {
b.ss << char( 0xe0 | ( first >> 4 ) );
b.ss << char( 0x80 | ( ~0xc0 & ( ( first << 2 ) | ( second >> 6 ) ) ) );
b.ss << char( 0x80 | ( ~0xc0 & second ) );
}
}
ObjectBuilder &b;
};
struct chClear {
chClear( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char c ) const {
b.popString();
}
ObjectBuilder &b;
};
struct fieldNameEnd {
fieldNameEnd( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
b.fieldNames.back() = b.popString();
}
ObjectBuilder &b;
};
struct stringEnd {
stringEnd( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
b.back()->append( b.fieldName(), b.popString() );
}
ObjectBuilder &b;
};
struct numberValue {
numberValue( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( double d ) const {
b.back()->append( b.fieldName(), d );
}
ObjectBuilder &b;
};
struct subobjectEnd {
subobjectEnd( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
BSONObj o = b.pop();
b.back()->append( b.fieldName(), o );
}
ObjectBuilder &b;
};
struct arrayEnd {
arrayEnd( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
BSONObj o = b.pop();
b.back()->appendArray( b.fieldName(), o );
}
ObjectBuilder &b;
};
struct trueValue {
trueValue( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
b.back()->appendBool( b.fieldName(), true );
}
ObjectBuilder &b;
};
struct falseValue {
falseValue( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
b.back()->appendBool( b.fieldName(), false );
}
ObjectBuilder &b;
};
struct nullValue {
nullValue( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
b.back()->appendNull( b.fieldName() );
}
ObjectBuilder &b;
};
struct dbrefNS {
dbrefNS( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
b.ns = b.popString();
}
ObjectBuilder &b;
};
// NOTE s must be 24 characters.
OID stringToOid( const char *s ) {
OID oid;
char *oidP = (char *)( &oid );
for( int i = 0; i < 12; ++i )
oidP[ i ] = hex::val( s[ i * 2 ] );
return oid;
}
struct oidValue {
oidValue( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
b.oid = stringToOid( start );
}
ObjectBuilder &b;
};
struct dbrefEnd {
dbrefEnd( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
b.back()->appendDBRef( b.fieldName(), b.ns.c_str(), b.oid );
}
ObjectBuilder &b;
};
struct oidEnd {
oidEnd( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
b.back()->appendOID( "_id", &b.oid );
}
ObjectBuilder &b;
};
// NOTE The boost base64 library code was originally written for use only by the
// boost::archive package, however a google search reveals that these base64
// routines are used in a lot of non-boost code as well. The library can't
// handle '=' padding bytes, so here I replace them with 'A' (the value for 0
// in base64's 6bit encoding) and then drop the garbage zeroes produced by
// boost's conversion.
struct binDataBinary {
typedef
boost::archive::iterators::transform_width
< boost::archive::iterators::binary_from_base64
< string::const_iterator >, 8, 6
> binary_t;
binDataBinary( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
assert( ( end - start ) % 4 == 0 );
string base64( start, end );
int len = base64.length();
int pad = 0;
for(; len - pad > 0 && base64[ len - 1 - pad ] == '='; ++pad )
base64[ len - 1 - pad ] = 'A';
b.binData = string( binary_t( base64.begin() ), binary_t( base64.end() ) );
b.binData.resize( b.binData.length() - pad );
}
ObjectBuilder &b;
};
struct binDataType {
binDataType( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
b.binDataType = BinDataType( hex::val( start ) );
}
ObjectBuilder &b;
};
struct binDataEnd {
binDataEnd( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
b.back()->appendBinData( b.fieldName(), b.binData.length(),
b.binDataType, b.binData.data() );
}
ObjectBuilder &b;
};
struct dateValue {
dateValue( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( unsigned long long v ) const {
b.date = v;
}
ObjectBuilder &b;
};
struct dateEnd {
dateEnd( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
b.back()->appendDate( b.fieldName(), b.date );
}
ObjectBuilder &b;
};
struct regexValue {
regexValue( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
b.regex = b.popString();
}
ObjectBuilder &b;
};
struct regexOptions {
regexOptions( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
b.regexOptions = b.popString();
}
ObjectBuilder &b;
};
struct regexEnd {
regexEnd( ObjectBuilder &_b ) : b( _b ) {}
void operator() ( const char *start, const char *end ) const {
b.back()->appendRegex( b.fieldName(), b.regex.c_str(),
b.regexOptions.c_str() );
}
ObjectBuilder &b;
};
// One gotcha with this parsing library is probably best ilustrated with an
// example. Say we have a production like this:
// z = ( ch_p( 'a' )[ foo ] >> ch_p( 'b' ) ) | ( ch_p( 'a' )[ foo ] >> ch_p( 'c' ) );
// On input "ac", action foo() will be called twice -- once as the parser tries
// to match "ab", again as the parser successfully matches "ac". Sometimes
// the grammar can be modified to eliminate these situations. Here, for example:
// z = ch_p( 'a' )[ foo ] >> ( ch_p( 'b' ) | ch_p( 'c' ) );
// However, this is not always possible. In my implementation I've tried to
// stick to the following pattern: store fields fed to action callbacks
// temporarily as ObjectBuilder members, then append to a BSONObjBuilder once
// the parser has completely matched a nonterminal and won't backtrack. It's
// worth noting here that this parser follows a short-circuit convention. So,
// in the original z example on line 3, if the input was "ab", foo() would only
// be called once.
struct JsonGrammar : public grammar< JsonGrammar > {
public:
JsonGrammar( ObjectBuilder &_b ) : b( _b ) {}
template < typename ScannerT >
struct definition {
definition( JsonGrammar const &self ) {
object = ch_p( '{' )[ objectStart( self.b ) ] >> !members >> '}';
members = pair >> !( ',' >> members );
pair =
oid[ oidEnd( self.b ) ] |
str[ fieldNameEnd( self.b ) ] >> ':' >> value;
array = ch_p( '[' )[ arrayStart( self.b ) ] >> !elements >> ']';
elements = value >> !( ch_p( ',' )[ arrayNext( self.b ) ] >> elements );
value =
dbref[ dbrefEnd( self.b ) ] |
bindata[ binDataEnd( self.b ) ] |
date[ dateEnd( self.b ) ] |
regex[ regexEnd( self.b ) ] |
str[ stringEnd( self.b ) ] |
number |
object[ subobjectEnd( self.b ) ] |
array[ arrayEnd( self.b ) ] |
lexeme_d[ str_p( "true" ) ][ trueValue( self.b ) ] |
lexeme_d[ str_p( "false" ) ][ falseValue( self.b ) ] |
lexeme_d[ str_p( "null" ) ][ nullValue( self.b ) ];
// lexeme_d and rules don't mix well, so we have this mess
str = lexeme_d[ ch_p( '"' )[ chClear( self.b ) ] >>
*( ( ch_p( "\\" ) >>
( ch_p( "\"" )[ chE( self.b ) ] |
ch_p( "\\" )[ chE( self.b ) ] |
ch_p( "/" )[ chE( self.b ) ] |
ch_p( "b" )[ chE( self.b ) ] |
ch_p( "f" )[ chE( self.b ) ] |
ch_p( "n" )[ chE( self.b ) ] |
ch_p( "r" )[ chE( self.b ) ] |
ch_p( "t" )[ chE( self.b ) ] |
( ch_p( "u" ) >> ( repeat_p( 4 )[ xdigit_p ][ chU( self.b ) ] ) ) ) ) |
ch_p( '\x7f' )[ ch( self.b ) ] |
( ~cntrl_p & ~ch_p( '\"' ) & ( ~ch_p( '\\' ) )[ ch( self.b ) ] ) ) >> '"' ];
// real_p accepts numbers with nonsignificant zero prefixes, which
// aren't allowed in JSON. Oh well.
number = real_p[ numberValue( self.b ) ];
dbref = dbrefS | dbrefT;
dbrefS = ch_p( '{' ) >> "\"$ns\"" >> ':' >>
str[ dbrefNS( self.b ) ] >> ',' >> "\"$id\"" >> ':' >> quotedOid >> '}';
dbrefT = str_p( "Dbref" ) >> '(' >> str[ dbrefNS( self.b ) ] >> ',' >>
quotedOid >> ')';
// FIXME Only object id if top level field?
oid = oidS | oidT;
oidS = str_p( "\"_id\"" ) >> ':' >> quotedOid;
oidT = str_p( "\"_id\"" ) >> ':' >> "ObjectId" >> '(' >> quotedOid >> ')';
quotedOid = lexeme_d[ '"' >> ( repeat_p( 24 )[ xdigit_p ] )[ oidValue( self.b ) ] >> '"' ];
bindata = ch_p( '{' ) >> "\"$binary\"" >> ':' >>
lexeme_d[ '"' >> ( *( range_p( 'A', 'Z' ) | range_p( 'a', 'z' ) | range_p( '0', '9' ) | ch_p( '+' ) | ch_p( '/' ) ) >> *ch_p( '=' ) )[ binDataBinary( self.b ) ] >> '"' ] >> ',' >> "\"$type\"" >> ':' >>
lexeme_d[ '"' >> ( repeat_p( 2 )[ xdigit_p ] )[ binDataType( self.b ) ] >> '"' ] >> '}';
date = dateS | dateT;
dateS = ch_p( '{' ) >> "\"$date\"" >> ':' >> uint_parser< unsigned long long >()[ dateValue( self.b ) ] >> '}';
dateT = str_p( "Date" ) >> '(' >> uint_parser< unsigned long long >()[ dateValue( self.b ) ] >> ')';
regex = regexS | regexT;
regexS = ch_p( '{' ) >> "\"$regex\"" >> ':' >> str[ regexValue( self.b ) ] >> ',' >> "\"$options\"" >> ':' >> str[ regexOptions( self.b ) ] >> '}';
// FIXME Obviously it would be nice to unify this with str.
regexT = lexeme_d[ ch_p( '/' )[ chClear( self.b ) ] >>
*( ( ch_p( "\\" ) >>
( ch_p( "\"" )[ chE( self.b ) ] |
ch_p( "\\" )[ chE( self.b ) ] |
ch_p( "/" )[ chE( self.b ) ] |
ch_p( "b" )[ chE( self.b ) ] |
ch_p( "f" )[ chE( self.b ) ] |
ch_p( "n" )[ chE( self.b ) ] |
ch_p( "r" )[ chE( self.b ) ] |
ch_p( "t" )[ chE( self.b ) ] |
( ch_p( "u" ) >> ( repeat_p( 4 )[ xdigit_p ][ chU( self.b ) ] ) ) ) ) |
ch_p( '\x7f' )[ ch( self.b ) ] |
( ~cntrl_p & ~ch_p( '/' ) & ( ~ch_p( '\\' ) )[ ch( self.b ) ] ) ) >> str_p( "/" )[ regexValue( self.b ) ]
>> ( *( alpha_p[ ch( self.b ) ] ) )[ regexOptions( self.b ) ] ];
}
rule< ScannerT > object, members, pair, array, elements, value, str, number,
dbref, dbrefS, dbrefT, oid, oidS, oidT, bindata, date, dateS, dateT,
regex, regexS, regexT, quotedOid;
const rule< ScannerT > &start() const { return object; }
};
ObjectBuilder &b;
};
BSONObj fromjson( const char *str ) {
ObjectBuilder b;
JsonGrammar parser( b );
massert( "Unable to parse JSON string", parse( str, parser, space_p ).full );
return b.pop();
}
BSONObj fromjson( const string &str ) {
return fromjson( str.c_str() );
}
|