1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
|
var t = db.get_s2nearcomplex
t.drop()
t.ensureIndex({geo: "2dsphere"})
/* Short names for math operations */
Random.setRandomSeed();
var random = Random.rand;
var PI = Math.PI;
var asin = Math.asin;
var sin = Math.sin;
var cos = Math.cos;
var atan2 = Math.atan2
var originGeo = {type: "Point", coordinates: [20.0, 20.0]};
// Center point for all tests.
var origin = {
name: "origin",
geo: originGeo
}
/*
* Convenience function for checking that coordinates match. threshold let's you
* specify how accurate equals should be.
*/
function coordinateEqual(first, second, threshold){
threshold = threshold || 0.001
first = first['geo']['coordinates']
second = second['geo']['coordinates']
if(Math.abs(first[0] - second[0]) <= threshold){
if(Math.abs(first[1] - second[1]) <= threshold){
return true;
}
}
return false;
}
/*
* Creates `count` random and uniformly distributed points centered around `origin`
* no points will be closer to origin than minDist, and no points will be further
* than maxDist. Points will be inserted into the global `t` collection, and will
* be returned.
* based on this algorithm: http://williams.best.vwh.net/avform.htm#LL
*/
function uniformPoints(origin, count, minDist, maxDist){
var i;
var lng = origin['geo']['coordinates'][0];
var lat = origin['geo']['coordinates'][1];
var distances = [];
var points = [];
for(i=0; i < count; i++){
distances.push((random() * (maxDist - minDist)) + minDist);
}
distances.sort();
while(points.length < count){
var angle = random() * 2 * PI;
var distance = distances[points.length];
var pointLat = asin((sin(lat) * cos(distance)) + (cos(lat) * sin(distance) * cos(angle)));
var pointDLng = atan2(sin(angle) * sin(distance) * cos(lat), cos(distance) - sin(lat) * sin(pointLat));
var pointLng = ((lng - pointDLng + PI) % 2*PI) - PI;
// Latitude must be [-90, 90]
var newLat = lat + pointLat;
if (newLat > 90) newLat -= 180;
if (newLat < -90) newLat += 180;
// Longitude must be [-180, 180]
var newLng = lng + pointLng;
if (newLng > 180) newLng -= 360;
if (newLng < -180) newLng += 360;
var newPoint = {
geo: {
type: "Point",
//coordinates: [lng + pointLng, lat + pointLat]
coordinates: [newLng, newLat]
}
};
points.push(newPoint);
}
for(i=0; i < points.length; i++){
t.insert(points[i]);
assert(!db.getLastError());
}
return points;
}
/*
* Creates a random uniform field as above, excepting for `numberOfHoles` gaps that
* have `sizeOfHoles` points missing centered around a random point.
*/
function uniformPointsWithGaps(origin, count, minDist, maxDist, numberOfHoles, sizeOfHoles){
var points = uniformPoints(origin, count, minDist, maxDist);
var i;
for(i=0; i<numberOfHoles; i++){
var randomPoint = points[Math.floor(random() * points.length)];
removeNearest(randomPoint, sizeOfHoles);
}
}
/*
* Creates a random uniform field as above, expcepting for `numberOfClusters` clusters,
* which will consist of N points where `minClusterSize` <= N <= `maxClusterSize.
* you may specify an optional `distRatio` parameter which will specify the area that the cluster
* covers as a fraction of the full area that points are created on. Defaults to 10.
*/
function uniformPointsWithClusters(origin, count, minDist, maxDist, numberOfClusters, minClusterSize, maxClusterSize, distRatio){
distRatio = distRatio || 10
var points = uniformPoints(origin, count, minDist, maxDist);
for(j=0; j<numberOfClusters; j++){
var randomPoint = points[Math.floor(random() * points.length)];
var clusterSize = (random() * (maxClusterSize - minClusterSize)) + minClusterSize;
uniformPoints(randomPoint, clusterSize, minDist / distRatio, maxDist / distRatio);
}
}
/*
* Function used to create gaps in existing point field. Will remove the `number` nearest
* geo objects to the specified `point`.
*/
function removeNearest(point, number){
var pointsToRemove = t.find({geo: {$geoNear: {$geometry: point['geo']}}}).limit(number);
var idsToRemove = [];
while(pointsToRemove.hasNext()){
point = pointsToRemove.next();
idsToRemove.push(point['_id']);
}
t.remove({_id: {$in: idsToRemove}});
}
/*
* Validates the ordering of the nearest results is the same no matter how many
* geo objects are requested. This could fail if two points have the same dist
* from origin, because they may not be well-ordered. If we see strange failures,
* we should consider that.
*/
function validateOrdering(query){
var near10 = t.find(query).limit(10);
var near20 = t.find(query).limit(20);
var near30 = t.find(query).limit(30);
var near40 = t.find(query).limit(40);
for(i=0;i<10;i++){
assert(coordinateEqual(near10[i], near20[i]));
assert(coordinateEqual(near10[i], near30[i]));
assert(coordinateEqual(near10[i], near40[i]));
}
for(i=0;i<20;i++){
assert(coordinateEqual(near20[i], near30[i]));
assert(coordinateEqual(near20[i], near40[i]));
}
for(i=0;i<30;i++){
assert(coordinateEqual(near30[i], near40[i]));
}
}
var query = {geo: {$geoNear: {$geometry: originGeo}}};
// Test a uniform distribution of 10000 points.
uniformPoints(origin, 10000, 0.5, 1.5);
validateOrdering({geo: {$geoNear: {$geometry: originGeo}}})
print("Millis for uniform:")
print(t.find(query).explain().millis)
print("Total points:");
print(t.find(query).count());
t.drop()
t.ensureIndex({geo: "2dsphere"})
// Test a uniform distribution with 5 gaps each with 10 points missing.
uniformPointsWithGaps(origin, 10000, 1, 10.0, 5, 10);
validateOrdering({geo: {$geoNear: {$geometry: originGeo}}})
print("Millis for uniform with gaps:")
print(t.find(query).explain().millis)
print("Total points:");
print(t.find(query).count());
t.drop()
t.ensureIndex({geo: "2dsphere"})
// Test a uniform distribution with 5 clusters each with between 10 and 100 points.
uniformPointsWithClusters(origin, 10000, 1, 10.0, 5, 10, 100);
validateOrdering({geo: {$geoNear: {$geometry: originGeo}}})
print("Millis for uniform with clusters:");
print(t.find(query).explain().millis);
print("Total points:");
print(t.find(query).count());
t.drop()
t.ensureIndex({geo: "2dsphere"})
// Test a uniform near search with origin around the pole.
// Center point near pole.
originGeo = {type: "Point", coordinates: [0.0, 89.0]};
origin = {
name: "origin",
geo: originGeo
}
uniformPoints(origin, 50, 0.5, 1.5);
validateOrdering({geo: {$geoNear: {$geometry: originGeo}}})
print("Millis for uniform near pole:")
print(t.find({geo: {$geoNear: {$geometry: originGeo}}}).explain().millis)
assert.eq(t.find({geo: {$geoNear: {$geometry: originGeo}}}).count(), 50);
t.drop()
t.ensureIndex({geo: "2dsphere"})
// Center point near the meridian
originGeo = {type: "Point", coordinates: [179.0, 0.0]};
origin = {
name: "origin",
geo: originGeo
}
uniformPoints(origin, 50, 0.5, 1.5);
validateOrdering({geo: {$geoNear: {$geometry: originGeo}}})
print("Millis for uniform on meridian:")
print(t.find({geo: {$near: {$geometry: originGeo}}}).explain().millis)
assert.eq(t.find({geo: {$geoNear: {$geometry: originGeo}}}).count(), 50);
t.drop()
t.ensureIndex({geo: "2dsphere"})
// Center point near the negative meridian
originGeo = {type: "Point", coordinates: [-179.0, 0.0]};
origin = {
name: "origin",
geo: originGeo
}
uniformPoints(origin, 50, 0.5, 1.5);
validateOrdering({geo: {$near: {$geometry: originGeo}}})
print("Millis for uniform on negative meridian:");
print(t.find({geo: {$near: {$geometry: originGeo}}}).explain().millis);
assert.eq(t.find({geo: {$near: {$geometry: originGeo}}}).count(), 50);
// Near search with points that are really far away.
t.drop()
t.ensureIndex({geo: "2dsphere"})
originGeo = {type: "Point", coordinates: [0.0, 0.0]};
origin = {
name: "origin",
geo: originGeo
}
uniformPoints(origin, 10, 89, 90);
cur = t.find({geo: {$near: {$geometry: originGeo}}})
assert.eq(cur.count(), 10);
print("Near search on very distant points:");
print(t.find({geo: {$near: {$geometry: originGeo}}}).explain().millis);
pt = cur.next();
assert(pt)
|