1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
|
/**
* A class representing a directed graph.
*/
function Graph() {
'use strict';
if (!(this instanceof Graph)) {
return new Graph();
}
const nodes = new Set();
const adjList = new Map();
this.addEdge = function addEdge(fromNode, toNode) {
nodes.add(fromNode);
nodes.add(toNode);
let neighbors = adjList.get(fromNode);
if (!(neighbors instanceof Set)) {
neighbors = new Set();
adjList.put(fromNode, neighbors);
}
neighbors.add(toNode);
};
const State = {
kNotYetVisited: Symbol('not yet visited'),
kVisitingInProgress: Symbol('visiting in progress'),
kAlreadyVisited: Symbol('already visited'),
};
/**
* If a cycle exists in this graph, then this function returns an array of the nodes comprising
* the cycle. The returned array is guaranteed to contain at least two elements, where the first
* and last elements refer to the same node.
*
* If a cycle doesn't exist in this graph, then this function returns an empty array.
*
* The algorithm implemented here for detecting whether a cycle exists in the graph is adapted
* from the algorithm for using a depth-first search to determine whether the graph permits a
* topological sort. Note that a topological ordering is possible if and only if the graph is
* acyclic.
*
* References:
* - https://en.wikipedia.org/wiki/Topological_sorting#Depth-first_search
* - http://www.cs.cornell.edu/courses/cs2112/2012sp/lectures/lec24/lec24-12sp.html
*/
this.findCycle = function findCycle() {
const state = new Map();
for (let node of nodes) {
state.put(node, State.kNotYetVisited);
}
function doDepthFirstSearch(node) {
{
const nodeState = state.get(node);
if (nodeState !== State.kNotYetVisited) {
throw new Error('Found node ' + tojsononeline(node) +
' unexpectedly in state ' + nodeState.toString());
}
}
state.put(node, State.kVisitingInProgress);
const neighbors = adjList.get(node) || [];
for (let otherNode of neighbors) {
const otherNodeState = state.get(otherNode);
if (otherNodeState === State.kAlreadyVisited) {
// We've already explored all neighbors of 'otherNode'. Since we are currently
// in the process of visiting 'node', it must be the case there doesn't exist a
// path from 'otherNode' to 'node'. There is therefore no cycle containing both
// 'node' and 'otherNode'.
continue;
}
if (otherNodeState === State.kVisitingInProgress) {
// We're currently in the process of exploring all neighbors of 'otherNode'.
// Since we are currently in the process of visiting 'node', it must be the case
// that there exists a path from 'otherNode' to 'node'. There is therefore a
// cycle containing both 'node' and 'otherNode'.
return [node, otherNode];
}
const result = doDepthFirstSearch(otherNode);
if (result.length > 1) {
// A cycle has been detected during the recursive call to doDepthFirstSearch().
// Unless we've already closed the loop, the (node, otherNode) edge must be part
// of it. Note that we use friendlyEqual() to match the definition of sameness
// as the mongo shell's Map type.
if (!friendlyEqual(result[0], result[result.length - 1])) {
result.unshift(node);
}
return result;
}
}
state.put(node, State.kAlreadyVisited);
return [];
}
for (let node of nodes) {
if (state.get(node) === State.kAlreadyVisited) {
// We've already explored all paths from 'node' by starting from one of its
// ancestors and didn't find a cycle. There is therefore no cycle involving 'node'
// so we move onto another node.
continue;
}
const result = doDepthFirstSearch(node);
if (result.length > 0) {
return result;
}
}
return [];
};
}
|