1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
/**
* This test will attempt to create a scenario where the plan cache entry for a given query shape
* oscillates. It achieves this by creating two indexes, A and B, on a collection, and interleaving
* queries which are "ideal" for index A with queries that are "ideal" for index B.
*/
(function() {
"use strict";
load('jstests/libs/analyze_plan.js'); // For getPlanStage().
load("jstests/libs/collection_drop_recreate.js"); // For assert[Drop|Create]Collection.
const coll = assertDropAndRecreateCollection(db, "plan_cache_replanning");
function getPlansForCacheEntry(query) {
let key = {query: query, sort: {}, projection: {}};
let res = coll.runCommand("planCacheListPlans", key);
assert.commandWorked(res, `planCacheListPlans(${tojson(key)}) failed`);
assert(res.hasOwnProperty("plans"),
`plans missing from planCacheListPlans(${tojson(key)}) failed`);
return res;
}
function planHasIxScanStageForKey(planStats, keyPattern) {
const stage = getPlanStage(planStats, "IXSCAN");
if (stage === null) {
return false;
}
return bsonWoCompare(keyPattern, stage.keyPattern) == 0;
}
const queryShape = {
a: 1,
b: 1
};
// Carefully construct a collection so that some queries will do well with an {a: 1} index
// and others with a {b: 1} index.
for (let i = 1000; i < 1100; i++) {
assert.commandWorked(coll.insert({a: 1, b: i}));
}
for (let i = 1000; i < 1100; i++) {
assert.commandWorked(coll.insert({a: i, b: 2}));
}
// This query will be quick with {a: 1} index, and far slower {b: 1} index. With the {a: 1}
// index, the server should only need to examine one document. Using {b: 1}, it will have to
// scan through each document which has 2 as the value of the 'b' field.
const aIndexQuery = {
a: 1099,
b: 2
};
// Opposite of 'aIndexQuery'. Should be quick if the {b: 1} index is used, and slower if the
// {a: 1} index is used.
const bIndexQuery = {
a: 1,
b: 1099
};
assert.commandWorked(coll.createIndex({a: 1}));
assert.commandWorked(coll.createIndex({b: 1}));
// Run a query where the {b: 1} index will easily win.
assert.eq(1, coll.find(bIndexQuery).itcount());
// The plan cache should now hold an inactive entry.
let entry = getPlansForCacheEntry(queryShape);
let entryWorks = entry.works;
assert.eq(entry.isActive, false);
assert.eq(planHasIxScanStageForKey(entry.plans[0].reason.stats, {b: 1}), true);
// Re-run the query. The inactive cache entry should be promoted to an active entry.
assert.eq(1, coll.find(bIndexQuery).itcount());
entry = getPlansForCacheEntry(queryShape);
assert.eq(entry.isActive, true);
assert.eq(entry.works, entryWorks);
assert.eq(planHasIxScanStageForKey(entry.plans[0].reason.stats, {b: 1}), true);
// Now we will attempt to oscillate the cache entry by interleaving queries which should use
// the {a:1} and {b:1} index. When the plan using the {b: 1} index is in the cache, running a
// query which should use the {a: 1} index will perform very poorly, and trigger
// replanning (and vice versa).
// The {b: 1} plan is currently in the cache. Run the query which should use the {a: 1}
// index. The current cache entry will be deactivated, and then the cache entry for the {a: 1}
// will overwrite it (as active).
assert.eq(1, coll.find(aIndexQuery).itcount());
entry = getPlansForCacheEntry(queryShape);
assert.eq(entry.isActive, true);
assert.eq(planHasIxScanStageForKey(entry.plans[0].reason.stats, {a: 1}), true);
// Run the query which should use the {b: 1} index.
assert.eq(1, coll.find(bIndexQuery).itcount());
entry = getPlansForCacheEntry(queryShape);
assert.eq(entry.isActive, true);
assert.eq(planHasIxScanStageForKey(entry.plans[0].reason.stats, {b: 1}), true);
// The {b: 1} plan is again in the cache. Run the query which should use the {a: 1}
// index.
assert.eq(1, coll.find(aIndexQuery).itcount());
entry = getPlansForCacheEntry(queryShape);
assert.eq(entry.isActive, true);
assert.eq(planHasIxScanStageForKey(entry.plans[0].reason.stats, {a: 1}), true);
// The {a: 1} plan is back in the cache. Run the query which would perform better on the plan
// using the {b: 1} index, and ensure that plan gets written to the cache.
assert.eq(1, coll.find(bIndexQuery).itcount());
entry = getPlansForCacheEntry(queryShape);
entryWorks = entry.works;
assert.eq(entry.isActive, true);
assert.eq(planHasIxScanStageForKey(entry.plans[0].reason.stats, {b: 1}), true);
// Now run a plan that will perform poorly with both indices (it will be required to scan 500
// documents). This will result in replanning (and the cache entry being deactivated). However,
// the new plan will have a very high works value, and will not replace the existing cache
// entry. It will only bump the existing cache entry's works value.
for (let i = 0; i < 500; i++) {
assert.commandWorked(coll.insert({a: 3, b: 3}));
}
assert.eq(500, coll.find({a: 3, b: 3}).itcount());
// The cache entry should have been deactivated.
entry = getPlansForCacheEntry(queryShape);
assert.eq(entry.isActive, false);
assert.eq(planHasIxScanStageForKey(entry.plans[0].reason.stats, {b: 1}), true);
// The works value should have doubled.
assert.eq(entry.works, entryWorks * 2);
})();
|