1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
/*-
* Copyright (c) 2008-2014 WiredTiger, Inc.
* All rights reserved.
*
* See the file LICENSE for redistribution information.
*/
#include "wt_internal.h"
/*
* __async_op_dequeue --
* Wait for work to be available. Then atomically take it off
* the work queue.
*/
static int
__async_op_dequeue(WT_CONNECTION_IMPL *conn, WT_SESSION_IMPL *session,
WT_ASYNC_OP_IMPL **op)
{
WT_ASYNC *async;
long sleep_usec;
uint64_t cur_tail, last_consume, my_consume, my_slot, prev_slot;
uint32_t tries;
async = conn->async;
*op = NULL;
/*
* Wait for work to do. Work is available when async->head moves.
* Then grab the slot containing the work. If we lose, try again.
*/
retry:
tries = 0;
sleep_usec = 100;
WT_ORDERED_READ(last_consume, async->alloc_tail);
/*
* We stay in this loop until there is work to do.
*/
while (last_consume == async->head &&
async->flush_state != WT_ASYNC_FLUSHING) {
WT_STAT_FAST_CONN_INCR(session, async_nowork);
if (++tries < MAX_ASYNC_YIELD)
/*
* Initially when we find no work, allow other
* threads to run.
*/
__wt_yield();
else {
/*
* If we haven't found work in a while, start sleeping
* to wait for work to arrive instead of spinning.
*/
__wt_sleep(0, sleep_usec);
sleep_usec = WT_MIN(sleep_usec * 2,
MAX_ASYNC_SLEEP_USECS);
}
if (!F_ISSET(session, WT_SESSION_SERVER_ASYNC))
return (0);
if (!F_ISSET(conn, WT_CONN_SERVER_ASYNC))
return (0);
if (F_ISSET(conn, WT_CONN_PANIC))
return (__wt_panic(session));
WT_ORDERED_READ(last_consume, async->alloc_tail);
}
if (async->flush_state == WT_ASYNC_FLUSHING)
return (0);
/*
* Try to increment the tail to claim this slot. If we lose
* a race, try again.
*/
my_consume = last_consume + 1;
if (!WT_ATOMIC_CAS8(async->alloc_tail, last_consume, my_consume))
goto retry;
/*
* This item of work is ours to process. Clear it out of the
* queue and return.
*/
my_slot = my_consume % async->async_qsize;
prev_slot = last_consume % async->async_qsize;
*op = WT_ATOMIC_STORE8(async->async_queue[my_slot], NULL);
WT_ASSERT(session, async->cur_queue > 0);
WT_ASSERT(session, *op != NULL);
WT_ASSERT(session, (*op)->state == WT_ASYNCOP_ENQUEUED);
(void)WT_ATOMIC_SUB4(async->cur_queue, 1);
(*op)->state = WT_ASYNCOP_WORKING;
if (*op == &async->flush_op)
/*
* We're the worker to take the flush op off the queue.
*/
WT_PUBLISH(async->flush_state, WT_ASYNC_FLUSHING);
WT_ORDERED_READ(cur_tail, async->tail_slot);
while (cur_tail != prev_slot) {
__wt_yield();
WT_ORDERED_READ(cur_tail, async->tail_slot);
}
WT_PUBLISH(async->tail_slot, my_slot);
return (0);
}
/*
* __async_flush_wait --
* Wait for the final worker to finish flushing.
*/
static int
__async_flush_wait(WT_SESSION_IMPL *session, WT_ASYNC *async, uint64_t my_gen)
{
WT_DECL_RET;
while (async->flush_state == WT_ASYNC_FLUSHING &&
async->flush_gen == my_gen)
WT_ERR(__wt_cond_wait(session, async->flush_cond, 10000));
err: return (ret);
}
/*
* __async_worker_cursor --
* Return a cursor for the worker thread to use for its op.
* The worker thread caches cursors. So first search for one
* with the same config/uri signature. Otherwise open a new
* cursor and cache it.
*/
static int
__async_worker_cursor(WT_SESSION_IMPL *session, WT_ASYNC_OP_IMPL *op,
WT_ASYNC_WORKER_STATE *worker, WT_CURSOR **cursorp)
{
WT_ASYNC_CURSOR *ac;
WT_CURSOR *c;
WT_DECL_RET;
WT_SESSION *wt_session;
wt_session = (WT_SESSION *)session;
*cursorp = NULL;
/*
* Compact doesn't need a cursor.
*/
if (op->optype == WT_AOP_COMPACT)
return (0);
WT_ASSERT(session, op->format != NULL);
STAILQ_FOREACH(ac, &worker->cursorqh, q) {
if (op->format->cfg_hash == ac->cfg_hash &&
op->format->uri_hash == ac->uri_hash) {
/*
* If one of our cached cursors has a matching
* signature, use it and we're done.
*/
*cursorp = ac->c;
return (0);
}
}
/*
* We didn't find one in our cache. Open one and cache it.
* Insert it at the head expecting LRU usage.
*/
WT_RET(__wt_calloc_def(session, 1, &ac));
WT_ERR(wt_session->open_cursor(
wt_session, op->format->uri, NULL, op->format->config, &c));
ac->cfg_hash = op->format->cfg_hash;
ac->uri_hash = op->format->uri_hash;
ac->c = c;
STAILQ_INSERT_HEAD(&worker->cursorqh, ac, q);
worker->num_cursors++;
*cursorp = c;
return (0);
err: __wt_free(session, ac);
return (ret);
}
/*
* __async_worker_execop --
* A worker thread executes an individual op with a cursor.
*/
static int
__async_worker_execop(WT_SESSION_IMPL *session, WT_ASYNC_OP_IMPL *op,
WT_CURSOR *cursor)
{
WT_ASYNC_OP *asyncop;
WT_ITEM val;
WT_SESSION *wt_session;
asyncop = (WT_ASYNC_OP *)op;
/*
* Set the key of our local cursor from the async op handle.
* If needed, also set the value.
*/
if (op->optype != WT_AOP_COMPACT) {
WT_RET(__wt_cursor_get_raw_key(&asyncop->c, &val));
__wt_cursor_set_raw_key(cursor, &val);
if (op->optype == WT_AOP_INSERT ||
op->optype == WT_AOP_UPDATE) {
WT_RET(__wt_cursor_get_raw_value(&asyncop->c, &val));
__wt_cursor_set_raw_value(cursor, &val);
}
}
switch (op->optype) {
case WT_AOP_COMPACT:
wt_session = &session->iface;
WT_RET(wt_session->compact(wt_session,
op->format->uri, op->format->config));
break;
case WT_AOP_INSERT:
WT_RET(cursor->insert(cursor));
break;
case WT_AOP_UPDATE:
WT_RET(cursor->update(cursor));
break;
case WT_AOP_REMOVE:
WT_RET(cursor->remove(cursor));
break;
case WT_AOP_SEARCH:
WT_RET(cursor->search(cursor));
/*
* Get the value from the cursor and put it into
* the op for op->get_value.
*/
WT_RET(__wt_cursor_get_raw_value(cursor, &val));
__wt_cursor_set_raw_value(&asyncop->c, &val);
break;
case WT_AOP_NONE:
default:
WT_RET_MSG(session, EINVAL, "Unknown async optype %d\n",
op->optype);
}
return (0);
}
/*
* __async_worker_op --
* A worker thread handles an individual op.
*/
static int
__async_worker_op(WT_SESSION_IMPL *session, WT_ASYNC_OP_IMPL *op,
WT_ASYNC_WORKER_STATE *worker)
{
WT_ASYNC_OP *asyncop;
WT_CURSOR *cursor;
WT_DECL_RET;
WT_SESSION *wt_session;
int cb_ret;
asyncop = (WT_ASYNC_OP *)op;
cb_ret = 0;
wt_session = &session->iface;
if (op->optype != WT_AOP_COMPACT)
WT_RET(wt_session->begin_transaction(wt_session, NULL));
WT_ASSERT(session, op->state == WT_ASYNCOP_WORKING);
WT_RET(__async_worker_cursor(session, op, worker, &cursor));
/*
* Perform op and invoke the callback.
*/
ret = __async_worker_execop(session, op, cursor);
if (op->cb != NULL && op->cb->notify != NULL)
cb_ret = op->cb->notify(op->cb, asyncop, ret, 0);
/*
* If the operation succeeded and the user callback returned
* zero then commit. Otherwise rollback.
*/
if (op->optype != WT_AOP_COMPACT) {
if ((ret == 0 || ret == WT_NOTFOUND) && cb_ret == 0)
WT_TRET(wt_session->commit_transaction(
wt_session, NULL));
else
WT_TRET(wt_session->rollback_transaction(
wt_session, NULL));
F_CLR(&asyncop->c, WT_CURSTD_KEY_SET | WT_CURSTD_VALUE_SET);
WT_TRET(cursor->reset(cursor));
}
/*
* After the callback returns, and the transaction resolved release
* the op back to the free pool. We do this regardless of
* success or failure.
*/
WT_PUBLISH(op->state, WT_ASYNCOP_FREE);
return (ret);
}
/*
* __async_worker --
* The async worker threads.
*/
void *
__wt_async_worker(void *arg)
{
WT_ASYNC *async;
WT_ASYNC_CURSOR *ac, *acnext;
WT_ASYNC_OP_IMPL *op;
WT_ASYNC_WORKER_STATE worker;
WT_CONNECTION_IMPL *conn;
WT_DECL_RET;
WT_SESSION_IMPL *session;
uint64_t flush_gen;
session = arg;
conn = S2C(session);
async = conn->async;
worker.num_cursors = 0;
STAILQ_INIT(&worker.cursorqh);
while (F_ISSET(conn, WT_CONN_SERVER_ASYNC) &&
F_ISSET(session, WT_SESSION_SERVER_ASYNC)) {
WT_ERR(__async_op_dequeue(conn, session, &op));
if (op != NULL && op != &async->flush_op) {
/*
* If an operation fails, we want the worker thread to
* keep running, unless there is a panic.
*/
(void)__async_worker_op(session, op, &worker);
if (F_ISSET(conn, WT_CONN_PANIC))
WT_ERR(__wt_panic(session));
} else if (async->flush_state == WT_ASYNC_FLUSHING) {
/*
* Worker flushing going on. Last worker to the party
* needs to clear the FLUSHING flag and signal the cond.
* If FLUSHING is going on, we do not take anything off
* the queue.
*/
WT_ORDERED_READ(flush_gen, async->flush_gen);
if (WT_ATOMIC_ADD4(async->flush_count, 1) ==
conn->async_workers) {
/*
* We're last. All workers accounted for so
* signal the condition and clear the FLUSHING
* flag to release the other worker threads.
* Set the FLUSH_COMPLETE flag so that the
* caller can return to the application.
*/
WT_PUBLISH(async->flush_state,
WT_ASYNC_FLUSH_COMPLETE);
WT_ERR(__wt_cond_signal(session,
async->flush_cond));
} else
/*
* We need to wait for the last worker to
* signal the condition.
*/
WT_ERR(__async_flush_wait(
session, async, flush_gen));
}
}
if (0) {
err: __wt_err(session, ret, "async worker error");
}
/*
* Worker thread cleanup, close our cached cursors and
* free all the WT_ASYNC_CURSOR structures.
*/
ac = STAILQ_FIRST(&worker.cursorqh);
while (ac != NULL) {
acnext = STAILQ_NEXT(ac, q);
WT_TRET(ac->c->close(ac->c));
__wt_free(session, ac);
ac = acnext;
}
return (NULL);
}
|