summaryrefslogtreecommitdiff
path: root/src/btree/bt_page.c
blob: ad8f029310835b1efd0faec8e867a8443b1a366a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
/*-
 * Copyright (c) 2014-2015 MongoDB, Inc.
 * Copyright (c) 2008-2014 WiredTiger, Inc.
 *	All rights reserved.
 *
 * See the file LICENSE for redistribution information.
 */

#include "wt_internal.h"

static void __inmem_col_fix(WT_SESSION_IMPL *, WT_PAGE *);
static void __inmem_col_int(WT_SESSION_IMPL *, WT_PAGE *);
static int  __inmem_col_var(WT_SESSION_IMPL *, WT_PAGE *, size_t *);
static int  __inmem_row_int(WT_SESSION_IMPL *, WT_PAGE *, size_t *);
static int  __inmem_row_leaf(WT_SESSION_IMPL *, WT_PAGE *);
static int  __inmem_row_leaf_entries(
	WT_SESSION_IMPL *, const WT_PAGE_HEADER *, uint32_t *);

/*
 * __evict_force_check --
 *	Check if a page matches the criteria for forced eviction.
 */
static int
__evict_force_check(WT_SESSION_IMPL *session, WT_PAGE *page, uint32_t flags)
{
	WT_BTREE *btree;

	btree = S2BT(session);

	/* Pages are usually small enough, check that first. */
	if (page->memory_footprint < btree->maxmempage)
		return (0);

	/* Leaf pages only. */
	if (WT_PAGE_IS_INTERNAL(page))
		return (0);

	/* Eviction may be turned off. */
	if (LF_ISSET(WT_READ_NO_EVICT) || F_ISSET(btree, WT_BTREE_NO_EVICTION))
		return (0);

	/*
	 * It's hard to imagine a page with a huge memory footprint that has
	 * never been modified, but check to be sure.
	 */
	if (page->modify == NULL)
		return (0);

	/* Trigger eviction on the next page release. */
	__wt_page_evict_soon(page);

	/* Bump the oldest ID, we're about to do some visibility checks. */
	__wt_txn_update_oldest(session, 0);

	/* If eviction cannot succeed, don't try. */
	return (__wt_page_can_evict(session, page, 1, NULL));
}

/*
 * __wt_page_in_func --
 *	Acquire a hazard pointer to a page; if the page is not in-memory,
 *	read it from the disk and build an in-memory version.
 */
int
__wt_page_in_func(WT_SESSION_IMPL *session, WT_REF *ref, uint32_t flags
#ifdef HAVE_DIAGNOSTIC
    , const char *file, int line
#endif
    )
{
	WT_DECL_RET;
	WT_PAGE *page;
	u_int sleep_cnt, wait_cnt;
	int force_attempts;
	bool busy, oldgen;

	for (force_attempts = 0, oldgen = false, wait_cnt = 0;;) {
		switch (ref->state) {
		case WT_REF_DELETED:
			if (LF_ISSET(WT_READ_NO_EMPTY) &&
			    __wt_delete_page_skip(session, ref, false))
				return (WT_NOTFOUND);
			/* FALLTHROUGH */
		case WT_REF_DISK:
			if (LF_ISSET(WT_READ_CACHE))
				return (WT_NOTFOUND);

			/*
			 * The page isn't in memory, read it. If this thread is
			 * allowed to do eviction work, check for space in the
			 * cache.
			 */
			if (!LF_ISSET(WT_READ_NO_EVICT))
				WT_RET(__wt_cache_full_check(session));
			WT_RET(__wt_cache_read(session, ref));
			oldgen = LF_ISSET(WT_READ_WONT_NEED) ||
			    F_ISSET(session, WT_SESSION_NO_CACHE);
			continue;
		case WT_REF_READING:
			if (LF_ISSET(WT_READ_CACHE))
				return (WT_NOTFOUND);
			if (LF_ISSET(WT_READ_NO_WAIT))
				return (WT_NOTFOUND);
			WT_STAT_FAST_CONN_INCR(session, page_read_blocked);
			break;
		case WT_REF_LOCKED:
			if (LF_ISSET(WT_READ_NO_WAIT))
				return (WT_NOTFOUND);
			WT_STAT_FAST_CONN_INCR(session, page_locked_blocked);
			break;
		case WT_REF_SPLIT:
			return (WT_RESTART);
		case WT_REF_MEM:
			/*
			 * The page is in memory: get a hazard pointer, update
			 * the page's LRU and return.  The expected reason we
			 * can't get a hazard pointer is because the page is
			 * being evicted; yield and try again.
			 */
#ifdef HAVE_DIAGNOSTIC
			WT_RET(
			    __wt_hazard_set(session, ref, &busy, file, line));
#else
			WT_RET(__wt_hazard_set(session, ref, &busy));
#endif
			if (busy) {
				WT_STAT_FAST_CONN_INCR(
				    session, page_busy_blocked);
				break;
			}

			page = ref->page;
			WT_ASSERT(session, page != NULL);

			/*
			 * Forcibly evict pages that are too big.
			 */
			if (force_attempts < 10 &&
			    __evict_force_check(session, page, flags)) {
				++force_attempts;
				ret = __wt_page_release_evict(session, ref);
				/* If forced eviction fails, stall. */
				if (ret == EBUSY) {
					ret = 0;
					wait_cnt += 1000;
					WT_STAT_FAST_CONN_INCR(session,
					    page_forcible_evict_blocked);
					break;
				} else
					WT_RET(ret);

				/*
				 * The result of a successful forced eviction
				 * is a page-state transition (potentially to
				 * an in-memory page we can use, or a restart
				 * return for our caller), continue the outer
				 * page-acquisition loop.
				 */
				continue;
			}

			/* Check if we need an autocommit transaction. */
			if ((ret = __wt_txn_autocommit_check(session)) != 0) {
				WT_TRET(__wt_hazard_clear(session, page));
				return (ret);
			}

			/*
			 * If we read the page and we are configured to not
			 * trash the cache, set the oldest read generation so
			 * the page is forcibly evicted as soon as possible.
			 *
			 * Otherwise, update the page's read generation.
			 */
			if (oldgen && page->read_gen == WT_READGEN_NOTSET)
				__wt_page_evict_soon(page);
			else if (!LF_ISSET(WT_READ_NO_GEN) &&
			    page->read_gen != WT_READGEN_OLDEST &&
			    page->read_gen < __wt_cache_read_gen(session))
				page->read_gen =
				    __wt_cache_read_gen_bump(session);

			return (0);
		WT_ILLEGAL_VALUE(session);
		}

		/*
		 * We failed to get the page -- yield before retrying, and if
		 * we've yielded enough times, start sleeping so we don't burn
		 * CPU to no purpose.
		 */
		if (++wait_cnt < 1000)
			__wt_yield();
		else {
			/*
			 * If stalling and this thread is allowed to do eviction
			 * work, check if the cache needs help.
			 */
			if (!LF_ISSET(WT_READ_NO_EVICT))
				WT_RET(__wt_cache_full_check(session));

			sleep_cnt = WT_MIN(wait_cnt, 10000);
			wait_cnt *= 2;
			WT_STAT_FAST_CONN_INCRV(session, page_sleep, sleep_cnt);
			__wt_sleep(0, sleep_cnt);
		}
	}
}

/*
 * __wt_page_alloc --
 *	Create or read a page into the cache.
 */
int
__wt_page_alloc(WT_SESSION_IMPL *session, uint8_t type,
    uint64_t recno, uint32_t alloc_entries, bool alloc_refs, WT_PAGE **pagep)
{
	WT_CACHE *cache;
	WT_DECL_RET;
	WT_PAGE *page;
	WT_PAGE_INDEX *pindex;
	size_t size;
	uint32_t i;
	void *p;

	*pagep = NULL;

	cache = S2C(session)->cache;
	page = NULL;

	size = sizeof(WT_PAGE);
	switch (type) {
	case WT_PAGE_COL_FIX:
	case WT_PAGE_COL_INT:
	case WT_PAGE_ROW_INT:
		break;
	case WT_PAGE_COL_VAR:
		/*
		 * Variable-length column-store leaf page: allocate memory to
		 * describe the page's contents with the initial allocation.
		 */
		size += alloc_entries * sizeof(WT_COL);
		break;
	case WT_PAGE_ROW_LEAF:
		/*
		 * Row-store leaf page: allocate memory to describe the page's
		 * contents with the initial allocation.
		 */
		size += alloc_entries * sizeof(WT_ROW);
		break;
	WT_ILLEGAL_VALUE(session);
	}

	WT_RET(__wt_calloc(session, 1, size, &page));

	page->type = type;
	page->read_gen = WT_READGEN_NOTSET;

	switch (type) {
	case WT_PAGE_COL_FIX:
		page->pg_fix_recno = recno;
		page->pg_fix_entries = alloc_entries;
		break;
	case WT_PAGE_COL_INT:
	case WT_PAGE_ROW_INT:
		page->pg_intl_recno = recno;

		/*
		 * Internal pages have an array of references to objects so they
		 * can split.  Allocate the array of references and optionally,
		 * the objects to which they point.
		 */
		WT_ERR(__wt_calloc(session, 1,
		    sizeof(WT_PAGE_INDEX) + alloc_entries * sizeof(WT_REF *),
		    &p));
		size +=
		    sizeof(WT_PAGE_INDEX) + alloc_entries * sizeof(WT_REF *);
		pindex = p;
		pindex->index = (WT_REF **)((WT_PAGE_INDEX *)p + 1);
		pindex->entries = alloc_entries;
		WT_INTL_INDEX_SET(page, pindex);
		if (alloc_refs)
			for (i = 0; i < pindex->entries; ++i) {
				WT_ERR(__wt_calloc_one(
				    session, &pindex->index[i]));
				size += sizeof(WT_REF);
			}
		if (0) {
err:			if ((pindex = WT_INTL_INDEX_GET_SAFE(page)) != NULL) {
				for (i = 0; i < pindex->entries; ++i)
					__wt_free(session, pindex->index[i]);
				__wt_free(session, pindex);
			}
			__wt_free(session, page);
			return (ret);
		}
		break;
	case WT_PAGE_COL_VAR:
		page->pg_var_recno = recno;
		page->pg_var_d = (WT_COL *)((uint8_t *)page + sizeof(WT_PAGE));
		page->pg_var_entries = alloc_entries;
		break;
	case WT_PAGE_ROW_LEAF:
		page->pg_row_d = (WT_ROW *)((uint8_t *)page + sizeof(WT_PAGE));
		page->pg_row_entries = alloc_entries;
		break;
	WT_ILLEGAL_VALUE(session);
	}

	/* Increment the cache statistics. */
	__wt_cache_page_inmem_incr(session, page, size);
	(void)__wt_atomic_add64(&cache->bytes_read, size);
	(void)__wt_atomic_add64(&cache->pages_inmem, 1);

	*pagep = page;
	return (0);
}

/*
 * __wt_page_inmem --
 *	Build in-memory page information.
 */
int
__wt_page_inmem(WT_SESSION_IMPL *session, WT_REF *ref,
    const void *image, size_t memsize, uint32_t flags, WT_PAGE **pagep)
{
	WT_DECL_RET;
	WT_PAGE *page;
	const WT_PAGE_HEADER *dsk;
	uint32_t alloc_entries;
	size_t size;

	*pagep = NULL;

	dsk = image;
	alloc_entries = 0;

	/*
	 * Figure out how many underlying objects the page references so we can
	 * allocate them along with the page.
	 */
	switch (dsk->type) {
	case WT_PAGE_COL_FIX:
	case WT_PAGE_COL_INT:
	case WT_PAGE_COL_VAR:
		/*
		 * Column-store leaf page entries map one-to-one to the number
		 * of physical entries on the page (each physical entry is a
		 * value item).
		 *
		 * Column-store internal page entries map one-to-one to the
		 * number of physical entries on the page (each entry is a
		 * location cookie).
		 */
		alloc_entries = dsk->u.entries;
		break;
	case WT_PAGE_ROW_INT:
		/*
		 * Row-store internal page entries map one-to-two to the number
		 * of physical entries on the page (each entry is a key and
		 * location cookie pair).
		 */
		alloc_entries = dsk->u.entries / 2;
		break;
	case WT_PAGE_ROW_LEAF:
		/*
		 * If the "no empty values" flag is set, row-store leaf page
		 * entries map one-to-one to the number of physical entries
		 * on the page (each physical entry is a key or value item).
		 * If that flag is not set, there are more keys than values,
		 * we have to walk the page to figure it out.
		 */
		if (F_ISSET(dsk, WT_PAGE_EMPTY_V_ALL))
			alloc_entries = dsk->u.entries;
		else if (F_ISSET(dsk, WT_PAGE_EMPTY_V_NONE))
			alloc_entries = dsk->u.entries / 2;
		else
			WT_RET(__inmem_row_leaf_entries(
			    session, dsk, &alloc_entries));
		break;
	WT_ILLEGAL_VALUE(session);
	}

	/* Allocate and initialize a new WT_PAGE. */
	WT_RET(__wt_page_alloc(
	    session, dsk->type, dsk->recno, alloc_entries, true, &page));
	page->dsk = dsk;
	F_SET_ATOMIC(page, flags);

	/*
	 * Track the memory allocated to build this page so we can update the
	 * cache statistics in a single call. If the disk image is in allocated
	 * memory, start with that.
	 */
	size = LF_ISSET(WT_PAGE_DISK_ALLOC) ? memsize : 0;

	switch (page->type) {
	case WT_PAGE_COL_FIX:
		__inmem_col_fix(session, page);
		break;
	case WT_PAGE_COL_INT:
		__inmem_col_int(session, page);
		break;
	case WT_PAGE_COL_VAR:
		WT_ERR(__inmem_col_var(session, page, &size));
		break;
	case WT_PAGE_ROW_INT:
		WT_ERR(__inmem_row_int(session, page, &size));
		break;
	case WT_PAGE_ROW_LEAF:
		WT_ERR(__inmem_row_leaf(session, page));
		break;
	WT_ILLEGAL_VALUE_ERR(session);
	}

	/* Update the page's in-memory size and the cache statistics. */
	__wt_cache_page_inmem_incr(session, page, size);

	/* Link the new internal page to the parent. */
	if (ref != NULL) {
		switch (page->type) {
		case WT_PAGE_COL_INT:
		case WT_PAGE_ROW_INT:
			page->pg_intl_parent_ref = ref;
			break;
		}
		ref->page = page;
	}

	*pagep = page;
	return (0);

err:	__wt_page_out(session, &page);
	return (ret);
}

/*
 * __inmem_col_fix --
 *	Build in-memory index for fixed-length column-store leaf pages.
 */
static void
__inmem_col_fix(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_BTREE *btree;
	const WT_PAGE_HEADER *dsk;

	btree = S2BT(session);
	dsk = page->dsk;

	page->pg_fix_bitf = WT_PAGE_HEADER_BYTE(btree, dsk);
}

/*
 * __inmem_col_int --
 *	Build in-memory index for column-store internal pages.
 */
static void
__inmem_col_int(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_BTREE *btree;
	WT_CELL *cell;
	WT_CELL_UNPACK *unpack, _unpack;
	const WT_PAGE_HEADER *dsk;
	WT_PAGE_INDEX *pindex;
	WT_REF **refp, *ref;
	uint32_t i;

	btree = S2BT(session);
	dsk = page->dsk;
	unpack = &_unpack;

	/*
	 * Walk the page, building references: the page contains value items.
	 * The value items are on-page items (WT_CELL_VALUE).
	 */
	pindex = WT_INTL_INDEX_GET_SAFE(page);
	refp = pindex->index;
	WT_CELL_FOREACH(btree, dsk, cell, unpack, i) {
		ref = *refp++;
		ref->home = page;

		__wt_cell_unpack(cell, unpack);
		ref->addr = cell;
		ref->key.recno = unpack->v;
	}
}

/*
 * __inmem_col_var_repeats --
 *	Count the number of repeat entries on the page.
 */
static int
__inmem_col_var_repeats(WT_SESSION_IMPL *session, WT_PAGE *page, uint32_t *np)
{
	WT_BTREE *btree;
	WT_CELL *cell;
	WT_CELL_UNPACK *unpack, _unpack;
	const WT_PAGE_HEADER *dsk;
	uint32_t i;

	btree = S2BT(session);
	dsk = page->dsk;
	unpack = &_unpack;

	/* Walk the page, counting entries for the repeats array. */
	*np = 0;
	WT_CELL_FOREACH(btree, dsk, cell, unpack, i) {
		__wt_cell_unpack(cell, unpack);
		if (__wt_cell_rle(unpack) > 1)
			++*np;
	}
	return (0);
}

/*
 * __inmem_col_var --
 *	Build in-memory index for variable-length, data-only leaf pages in
 *	column-store trees.
 */
static int
__inmem_col_var(WT_SESSION_IMPL *session, WT_PAGE *page, size_t *sizep)
{
	WT_BTREE *btree;
	WT_COL *cip;
	WT_COL_RLE *repeats;
	WT_CELL *cell;
	WT_CELL_UNPACK *unpack, _unpack;
	const WT_PAGE_HEADER *dsk;
	uint64_t recno, rle;
	size_t bytes_allocated;
	uint32_t i, indx, n, repeat_off;

	btree = S2BT(session);
	dsk = page->dsk;
	recno = page->pg_var_recno;

	repeats = NULL;
	repeat_off = 0;
	unpack = &_unpack;
	bytes_allocated = 0;

	/*
	 * Walk the page, building references: the page contains unsorted value
	 * items.  The value items are on-page (WT_CELL_VALUE), overflow items
	 * (WT_CELL_VALUE_OVFL) or deleted items (WT_CELL_DEL).
	 */
	indx = 0;
	cip = page->pg_var_d;
	WT_CELL_FOREACH(btree, dsk, cell, unpack, i) {
		__wt_cell_unpack(cell, unpack);
		WT_COL_PTR_SET(cip, WT_PAGE_DISK_OFFSET(page, cell));
		cip++;

		/*
		 * Add records with repeat counts greater than 1 to an array we
		 * use for fast lookups.  The first entry we find needing the
		 * repeats array triggers a re-walk from the start of the page
		 * to determine the size of the array.
		 */
		rle = __wt_cell_rle(unpack);
		if (rle > 1) {
			if (repeats == NULL) {
				WT_RET(
				    __inmem_col_var_repeats(session, page, &n));
				WT_RET(__wt_realloc_def(session,
				    &bytes_allocated, n + 1, &repeats));

				page->pg_var_repeats = repeats;
				page->pg_var_nrepeats = n;
				*sizep += bytes_allocated;
			}
			repeats[repeat_off].indx = indx;
			repeats[repeat_off].recno = recno;
			repeats[repeat_off++].rle = rle;
		}
		indx++;
		recno += rle;
	}

	return (0);
}

/*
 * __inmem_row_int --
 *	Build in-memory index for row-store internal pages.
 */
static int
__inmem_row_int(WT_SESSION_IMPL *session, WT_PAGE *page, size_t *sizep)
{
	WT_BTREE *btree;
	WT_CELL *cell;
	WT_CELL_UNPACK *unpack, _unpack;
	WT_DECL_ITEM(current);
	WT_DECL_RET;
	const WT_PAGE_HEADER *dsk;
	WT_PAGE_INDEX *pindex;
	WT_REF *ref, **refp;
	uint32_t i;

	btree = S2BT(session);
	unpack = &_unpack;
	dsk = page->dsk;

	WT_RET(__wt_scr_alloc(session, 0, &current));

	/*
	 * Walk the page, instantiating keys: the page contains sorted key and
	 * location cookie pairs.  Keys are on-page/overflow items and location
	 * cookies are WT_CELL_ADDR_XXX items.
	 */
	pindex = WT_INTL_INDEX_GET_SAFE(page);
	refp = pindex->index;
	WT_CELL_FOREACH(btree, dsk, cell, unpack, i) {
		ref = *refp;
		ref->home = page;

		__wt_cell_unpack(cell, unpack);
		switch (unpack->type) {
		case WT_CELL_KEY:
			/*
			 * Note: we don't Huffman encode internal page keys,
			 * there's no decoding work to do.
			 */
			__wt_ref_key_onpage_set(page, ref, unpack);
			break;
		case WT_CELL_KEY_OVFL:
			/* Instantiate any overflow records. */
			WT_ERR(__wt_dsk_cell_data_ref(
			    session, page->type, unpack, current));

			WT_ERR(__wt_row_ikey_incr(session, page,
			    WT_PAGE_DISK_OFFSET(page, cell),
			    current->data, current->size, ref));

			*sizep += sizeof(WT_IKEY) + current->size;
			break;
		case WT_CELL_ADDR_DEL:
			/*
			 * A cell may reference a deleted leaf page: if a leaf
			 * page was deleted without being read (fast truncate),
			 * and the deletion committed, but older transactions
			 * in the system required the previous version of the
			 * page to remain available, a special deleted-address
			 * type cell is written.  The only reason we'd ever see
			 * that cell on a page we're reading is if we crashed
			 * and recovered (otherwise a version of the page w/o
			 * that cell would have eventually been written).  If we
			 * crash and recover to a page with a deleted-address
			 * cell, we want to discard the page from the backing
			 * store (it was never discarded), and, of course, by
			 * definition no earlier transaction will ever need it.
			 *
			 * Re-create the state of a deleted page.
			 */
			ref->addr = cell;
			ref->state = WT_REF_DELETED;
			++refp;

			/*
			 * If the tree is already dirty and so will be written,
			 * mark the page dirty.  (We want to free the deleted
			 * pages, but if the handle is read-only or if the
			 * application never modifies the tree, we're not able
			 * to do so.)
			 */
			if (btree->modified) {
				WT_ERR(__wt_page_modify_init(session, page));
				__wt_page_modify_set(session, page);
			}
			break;
		case WT_CELL_ADDR_INT:
		case WT_CELL_ADDR_LEAF:
		case WT_CELL_ADDR_LEAF_NO:
			ref->addr = cell;
			++refp;
			break;
		WT_ILLEGAL_VALUE_ERR(session);
		}
	}

err:	__wt_scr_free(session, &current);
	return (ret);
}

/*
 * __inmem_row_leaf_entries --
 *	Return the number of entries for row-store leaf pages.
 */
static int
__inmem_row_leaf_entries(
    WT_SESSION_IMPL *session, const WT_PAGE_HEADER *dsk, uint32_t *nindxp)
{
	WT_BTREE *btree;
	WT_CELL *cell;
	WT_CELL_UNPACK *unpack, _unpack;
	uint32_t i, nindx;

	btree = S2BT(session);
	unpack = &_unpack;

	/*
	 * Leaf row-store page entries map to a maximum of one-to-one to the
	 * number of physical entries on the page (each physical entry might be
	 * a key without a subsequent data item).  To avoid over-allocation in
	 * workloads without empty data items, first walk the page counting the
	 * number of keys, then allocate the indices.
	 *
	 * The page contains key/data pairs.  Keys are on-page (WT_CELL_KEY) or
	 * overflow (WT_CELL_KEY_OVFL) items, data are either non-existent or a
	 * single on-page (WT_CELL_VALUE) or overflow (WT_CELL_VALUE_OVFL) item.
	 */
	nindx = 0;
	WT_CELL_FOREACH(btree, dsk, cell, unpack, i) {
		__wt_cell_unpack(cell, unpack);
		switch (unpack->type) {
		case WT_CELL_KEY:
		case WT_CELL_KEY_OVFL:
			++nindx;
			break;
		case WT_CELL_VALUE:
		case WT_CELL_VALUE_OVFL:
			break;
		WT_ILLEGAL_VALUE(session);
		}
	}

	*nindxp = nindx;
	return (0);
}

/*
 * __inmem_row_leaf --
 *	Build in-memory index for row-store leaf pages.
 */
static int
__inmem_row_leaf(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_BTREE *btree;
	WT_CELL *cell;
	WT_CELL_UNPACK *unpack, _unpack;
	const WT_PAGE_HEADER *dsk;
	WT_ROW *rip;
	uint32_t i;

	btree = S2BT(session);
	dsk = page->dsk;
	unpack = &_unpack;

	/* Walk the page, building indices. */
	rip = page->pg_row_d;
	WT_CELL_FOREACH(btree, dsk, cell, unpack, i) {
		__wt_cell_unpack(cell, unpack);
		switch (unpack->type) {
		case WT_CELL_KEY_OVFL:
			__wt_row_leaf_key_set_cell(page, rip, cell);
			++rip;
			break;
		case WT_CELL_KEY:
			/*
			 * Simple keys without compression (not Huffman encoded
			 * or prefix compressed), can be directly referenced on
			 * the page to avoid repeatedly unpacking their cells.
			 */
			if (!btree->huffman_key && unpack->prefix == 0)
				__wt_row_leaf_key_set(page, rip, unpack);
			else
				__wt_row_leaf_key_set_cell(page, rip, cell);
			++rip;
			break;
		case WT_CELL_VALUE:
			/*
			 * Simple values without compression can be directly
			 * referenced on the page to avoid repeatedly unpacking
			 * their cells.
			 */
			if (!btree->huffman_value)
				__wt_row_leaf_value_set(page, rip - 1, unpack);
			break;
		case WT_CELL_VALUE_OVFL:
			break;
		WT_ILLEGAL_VALUE(session);
		}
	}

	/*
	 * We do not currently instantiate keys on leaf pages when the page is
	 * loaded, they're instantiated on demand.
	 */
	return (0);
}