1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
|
/*-
* Copyright (c) 2014-2015 MongoDB, Inc.
* Copyright (c) 2008-2014 WiredTiger, Inc.
* All rights reserved.
*
* See the file LICENSE for redistribution information.
*/
#include "wt_internal.h"
#define WT_MEM_TRANSFER(from_decr, to_incr, len) do { \
size_t __len = (len); \
from_decr += __len; \
to_incr += __len; \
} while (0)
/*
* __split_oldest_gen --
* Calculate the oldest active split generation.
*/
static uint64_t
__split_oldest_gen(WT_SESSION_IMPL *session)
{
WT_CONNECTION_IMPL *conn;
WT_SESSION_IMPL *s;
uint64_t gen, oldest;
u_int i, session_cnt;
conn = S2C(session);
WT_ORDERED_READ(session_cnt, conn->session_cnt);
for (i = 0, s = conn->sessions, oldest = conn->split_gen + 1;
i < session_cnt;
i++, s++)
if (((gen = s->split_gen) != 0) && gen < oldest)
oldest = gen;
return (oldest);
}
/*
* __split_stash_add --
* Add a new entry into the session's split stash list.
*/
static int
__split_stash_add(
WT_SESSION_IMPL *session, uint64_t split_gen, void *p, size_t len)
{
WT_SPLIT_STASH *stash;
WT_ASSERT(session, p != NULL);
/* Grow the list as necessary. */
WT_RET(__wt_realloc_def(session, &session->split_stash_alloc,
session->split_stash_cnt + 1, &session->split_stash));
stash = session->split_stash + session->split_stash_cnt++;
stash->split_gen = split_gen;
stash->p = p;
stash->len = len;
WT_STAT_FAST_CONN_ATOMIC_INCRV(session, rec_split_stashed_bytes, len);
WT_STAT_FAST_CONN_ATOMIC_INCR(session, rec_split_stashed_objects);
/* See if we can free any previous entries. */
if (session->split_stash_cnt > 1)
__wt_split_stash_discard(session);
return (0);
}
/*
* __wt_split_stash_discard --
* Discard any memory from a session's split stash that we can.
*/
void
__wt_split_stash_discard(WT_SESSION_IMPL *session)
{
WT_SPLIT_STASH *stash;
uint64_t oldest;
size_t i;
/* Get the oldest split generation. */
oldest = __split_oldest_gen(session);
for (i = 0, stash = session->split_stash;
i < session->split_stash_cnt;
++i, ++stash) {
if (stash->p == NULL)
continue;
else if (stash->split_gen >= oldest)
break;
/*
* It's a bad thing if another thread is in this memory after
* we free it, make sure nothing good happens to that thread.
*/
WT_STAT_FAST_CONN_ATOMIC_DECRV(
session, rec_split_stashed_bytes, stash->len);
WT_STAT_FAST_CONN_ATOMIC_DECR(
session, rec_split_stashed_objects);
__wt_overwrite_and_free_len(session, stash->p, stash->len);
}
/*
* If there are enough free slots at the beginning of the list, shuffle
* everything down.
*/
if (i > 100 || i == session->split_stash_cnt)
if ((session->split_stash_cnt -= i) > 0)
memmove(session->split_stash, stash,
session->split_stash_cnt * sizeof(*stash));
}
/*
* __wt_split_stash_discard_all --
* Discard all memory from a session's split stash.
*/
void
__wt_split_stash_discard_all(
WT_SESSION_IMPL *session_safe, WT_SESSION_IMPL *session)
{
WT_SPLIT_STASH *stash;
size_t i;
/*
* This function is called during WT_CONNECTION.close to discard any
* memory that remains. For that reason, we take two WT_SESSION_IMPL
* arguments: session_safe is still linked to the WT_CONNECTION and
* can be safely used for calls to other WiredTiger functions, while
* session is the WT_SESSION_IMPL we're cleaning up.
*/
for (i = 0, stash = session->split_stash;
i < session->split_stash_cnt;
++i, ++stash)
if (stash->p != NULL)
__wt_free(session_safe, stash->p);
__wt_free(session_safe, session->split_stash);
session->split_stash_cnt = session->split_stash_alloc = 0;
}
/*
* __split_safe_free --
* Free a buffer if we can be sure no thread is accessing it, or schedule
* it to be freed otherwise.
*/
static int
__split_safe_free(WT_SESSION_IMPL *session,
uint64_t split_gen, int exclusive, void *p, size_t s)
{
/*
* We have swapped something in a page: if we don't have exclusive
* access, check whether there are other threads in the same tree.
*/
if (!exclusive && __split_oldest_gen(session) > split_gen)
exclusive = 1;
if (exclusive) {
__wt_free(session, p);
return (0);
}
return (__split_stash_add(session, split_gen, p, s));
}
/*
* __split_should_deepen --
* Return if we should deepen the tree.
*/
static int
__split_should_deepen(
WT_SESSION_IMPL *session, WT_REF *ref, uint32_t *childrenp)
{
WT_BTREE *btree;
WT_PAGE *page;
WT_PAGE_INDEX *pindex;
*childrenp = 0;
btree = S2BT(session);
page = ref->page;
pindex = WT_INTL_INDEX_COPY(page);
/*
* Deepen the tree if the page's memory footprint is larger than the
* maximum size for a page in memory (presumably putting eviction
* pressure on the cache).
*/
if (page->memory_footprint < S2BT(session)->maxmempage)
return (0);
/*
* Ensure the page has enough entries to make it worth splitting and
* we get a significant payback (in the case of a set of large keys,
* splitting won't help).
*/
if (pindex->entries > btree->split_deepen_min_child) {
*childrenp = pindex->entries / btree->split_deepen_per_child;
return (1);
}
/*
* The root is a special-case: if it's putting cache pressure on the
* system, split it even if there are only a few entries, we can't
* push it out of memory. Sanity check: if the root page is too big
* with less than 100 keys, there are huge keys and/or a too-small
* cache, there's not much to do.
*/
if (__wt_ref_is_root(ref) && pindex->entries > 100) {
*childrenp = pindex->entries / 10;
return (1);
}
return (0);
}
/*
* __split_ovfl_key_cleanup --
* Handle cleanup for on-page row-store overflow keys.
*/
static int
__split_ovfl_key_cleanup(WT_SESSION_IMPL *session, WT_PAGE *page, WT_REF *ref)
{
WT_CELL *cell;
WT_CELL_UNPACK kpack;
WT_IKEY *ikey;
uint32_t cell_offset;
/*
* A key being discarded (page split) or moved to a different page (page
* deepening) may be an on-page overflow key. Clear any reference to an
* underlying disk image, and, if the key hasn't been deleted, delete it
* along with any backing blocks.
*/
if ((ikey = __wt_ref_key_instantiated(ref)) == NULL)
return (0);
if ((cell_offset = ikey->cell_offset) == 0)
return (0);
/* Leak blocks rather than try this twice. */
ikey->cell_offset = 0;
cell = WT_PAGE_REF_OFFSET(page, cell_offset);
__wt_cell_unpack(cell, &kpack);
if (kpack.ovfl && kpack.raw != WT_CELL_KEY_OVFL_RM)
WT_RET(__wt_ovfl_discard(session, cell));
return (0);
}
/*
* __split_ref_deepen_move --
* Move a WT_REF from a parent to a child in service of a split to deepen
* the tree, including updating the accounting information.
*/
static int
__split_ref_deepen_move(WT_SESSION_IMPL *session,
WT_PAGE *parent, WT_REF *ref, size_t *parent_decrp, size_t *child_incrp)
{
WT_ADDR *addr;
WT_CELL_UNPACK unpack;
WT_DECL_RET;
WT_IKEY *ikey;
size_t size;
void *key;
/*
* Instantiate row-store keys, and column- and row-store addresses in
* the WT_REF structures referenced by a page that's being split (and
* deepening the tree). The WT_REF structures aren't moving, but the
* index references are moving from the page we're splitting to a set
* of child pages, and so we can no longer reference the block image
* that remains with the page being split.
*
* No locking is required to update the WT_REF structure because we're
* the only thread splitting the parent page, and there's no way for
* readers to race with our updates of single pointers. The changes
* have to be written before the page goes away, of course, our caller
* owns that problem.
*
* Row-store keys, first.
*/
if (parent->type == WT_PAGE_ROW_INT) {
if ((ikey = __wt_ref_key_instantiated(ref)) == NULL) {
__wt_ref_key(parent, ref, &key, &size);
WT_RET(__wt_row_ikey(session, 0, key, size, &ikey));
ref->key.ikey = ikey;
} else {
WT_RET(__split_ovfl_key_cleanup(session, parent, ref));
*parent_decrp += sizeof(WT_IKEY) + ikey->size;
}
*child_incrp += sizeof(WT_IKEY) + ikey->size;
}
/*
* If there's no address (the page has never been written), or the
* address has been instantiated, there's no work to do. Otherwise,
* get the address from the on-page cell.
*/
addr = ref->addr;
if (addr != NULL && !__wt_off_page(parent, addr)) {
__wt_cell_unpack((WT_CELL *)ref->addr, &unpack);
WT_RET(__wt_calloc_one(session, &addr));
if ((ret = __wt_strndup(
session, unpack.data, unpack.size, &addr->addr)) != 0) {
__wt_free(session, addr);
return (ret);
}
addr->size = (uint8_t)unpack.size;
addr->type =
unpack.raw == WT_CELL_ADDR_INT ? WT_ADDR_INT : WT_ADDR_LEAF;
ref->addr = addr;
}
/* And finally, the WT_REF itself. */
WT_MEM_TRANSFER(*parent_decrp, *child_incrp, sizeof(WT_REF));
return (0);
}
#ifdef HAVE_DIAGNOSTIC
/*
* __split_verify_intl_key_order --
* Verify the key order on an internal page after a split, diagnostic only.
*/
static void
__split_verify_intl_key_order(WT_SESSION_IMPL *session, WT_PAGE *page)
{
WT_BTREE *btree;
WT_ITEM *next, _next, *last, _last, *tmp;
WT_REF *ref;
uint64_t recno;
int cmp, first;
btree = S2BT(session);
switch (page->type) {
case WT_PAGE_COL_INT:
recno = 0;
WT_INTL_FOREACH_BEGIN_SAFE(session, page, ref) {
WT_ASSERT(session, ref->key.recno > recno);
recno = ref->key.recno;
} WT_INTL_FOREACH_END;
break;
case WT_PAGE_ROW_INT:
next = &_next;
WT_CLEAR(_next);
last = &_last;
WT_CLEAR(_last);
first = 1;
WT_INTL_FOREACH_BEGIN_SAFE(session, page, ref) {
__wt_ref_key(page, ref, &next->data, &next->size);
if (last->size == 0) {
if (first)
first = 0;
else {
WT_ASSERT(session, __wt_compare(
session, btree->collator, last,
next, &cmp) == 0);
WT_ASSERT(session, cmp < 0);
}
}
tmp = last;
last = next;
next = tmp;
} WT_INTL_FOREACH_END;
break;
}
}
#endif
/*
* __split_deepen --
* Split an internal page in-memory, deepening the tree.
*/
static int
__split_deepen(WT_SESSION_IMPL *session, WT_PAGE *parent, uint32_t children)
{
WT_DECL_RET;
WT_PAGE *child;
WT_PAGE_INDEX *alloc_index, *child_pindex, *pindex;
WT_REF **alloc_refp;
WT_REF *child_ref, **child_refp, *parent_ref, **parent_refp, *ref;
size_t child_incr, parent_decr, parent_incr, size;
uint64_t split_gen;
uint32_t chunk, i, j, remain, slots;
int panic;
void *p;
alloc_index = NULL;
parent_incr = parent_decr = 0;
panic = 0;
pindex = WT_INTL_INDEX_COPY(parent);
WT_STAT_FAST_CONN_INCR(session, cache_eviction_deepen);
WT_STAT_FAST_DATA_INCR(session, cache_eviction_deepen);
WT_ERR(__wt_verbose(session, WT_VERB_SPLIT,
"%p: %" PRIu32 " elements, splitting into %" PRIu32 " children",
parent, pindex->entries, children));
/*
* If the workload is prepending/appending to the tree, we could deepen
* without bound. Don't let that happen, keep the first/last pages of
* the tree at their current level.
*
* XXX
* To improve this, we could track which pages were last merged into
* this page by eviction, and leave those pages alone, to prevent any
* sustained insert into the tree from deepening a single location.
*/
#undef SPLIT_CORRECT_1
#define SPLIT_CORRECT_1 1 /* First page correction */
#undef SPLIT_CORRECT_2
#define SPLIT_CORRECT_2 2 /* First/last page correction */
/*
* Allocate a new WT_PAGE_INDEX and set of WT_REF objects. Initialize
* the first/last slots of the allocated WT_PAGE_INDEX to point to the
* first/last pages we're keeping at the current level, and the rest of
* the slots to point to new WT_REF objects.
*/
size = sizeof(WT_PAGE_INDEX) +
(children + SPLIT_CORRECT_2) * sizeof(WT_REF *);
WT_ERR(__wt_calloc(session, 1, size, &alloc_index));
parent_incr += size;
alloc_index->index = (WT_REF **)(alloc_index + 1);
alloc_index->entries = children + SPLIT_CORRECT_2;
alloc_index->index[0] = pindex->index[0];
alloc_index->index[alloc_index->entries - 1] =
pindex->index[pindex->entries - 1];
for (alloc_refp = alloc_index->index + SPLIT_CORRECT_1,
i = 0; i < children; ++alloc_refp, ++i) {
WT_ERR(__wt_calloc_one(session, alloc_refp));
parent_incr += sizeof(WT_REF);
}
/* Allocate child pages, and connect them into the new page index. */
chunk = (pindex->entries - SPLIT_CORRECT_2) / children;
remain = (pindex->entries - SPLIT_CORRECT_2) - chunk * (children - 1);
for (parent_refp = pindex->index + SPLIT_CORRECT_1,
alloc_refp = alloc_index->index + SPLIT_CORRECT_1,
i = 0; i < children; ++i) {
slots = i == children - 1 ? remain : chunk;
WT_ERR(__wt_page_alloc(
session, parent->type, 0, slots, 0, &child));
/*
* Initialize the parent page's child reference; we need a copy
* of the page's key.
*/
ref = *alloc_refp++;
ref->home = parent;
ref->page = child;
ref->addr = NULL;
if (parent->type == WT_PAGE_ROW_INT) {
__wt_ref_key(parent, *parent_refp, &p, &size);
WT_ERR(
__wt_row_ikey(session, 0, p, size, &ref->key.ikey));
parent_incr += sizeof(WT_IKEY) + size;
} else
ref->key.recno = (*parent_refp)->key.recno;
ref->state = WT_REF_MEM;
/* Initialize the child page. */
if (parent->type == WT_PAGE_COL_INT)
child->pg_intl_recno = (*parent_refp)->key.recno;
child->pg_intl_parent_ref = ref;
/* Mark it dirty. */
WT_ERR(__wt_page_modify_init(session, child));
__wt_page_only_modify_set(session, child);
/*
* Once the split goes live, the newly created internal pages
* might be evicted and their WT_REF structures freed. If those
* pages are evicted before threads exit the previous page index
* array, a thread might see a freed WT_REF. Set the eviction
* transaction requirement for the newly created internal pages.
*/
child->modify->mod_split_txn = __wt_txn_new_id(session);
/*
* The newly allocated child's page index references the same
* structures as the parent. (We cannot move WT_REF structures,
* threads may be underneath us right now changing the structure
* state.) However, if the WT_REF structures reference on-page
* information, we have to fix that, because the disk image for
* the page that has an page index entry for the WT_REF is about
* to change.
*/
child_incr = 0;
child_pindex = WT_INTL_INDEX_COPY(child);
for (child_refp = child_pindex->index, j = 0; j < slots; ++j) {
WT_ERR(__split_ref_deepen_move(session,
parent, *parent_refp, &parent_decr, &child_incr));
*child_refp++ = *parent_refp++;
}
__wt_cache_page_inmem_incr(session, child, child_incr);
}
WT_ASSERT(session, alloc_refp -
alloc_index->index == alloc_index->entries - SPLIT_CORRECT_1);
WT_ASSERT(session,
parent_refp - pindex->index == pindex->entries - SPLIT_CORRECT_1);
/*
* Update the parent's index; this is the update which splits the page,
* making the change visible to threads descending the tree. From now
* on, we're committed to the split. If any subsequent work fails, we
* have to panic because we potentially have threads of control using
* the new page index we just swapped in.
*
* A note on error handling: until this point, there's no problem with
* unwinding on error. We allocated a new page index, a new set of
* WT_REFs and a new set of child pages -- if an error occurred, the
* parent remained unchanged, although it may have an incorrect memory
* footprint. From now on we've modified the parent page, attention
* needs to be paid.
*/
WT_INTL_INDEX_SET(parent, alloc_index);
split_gen = WT_ATOMIC_ADD8(S2C(session)->split_gen, 1);
panic = 1;
#ifdef HAVE_DIAGNOSTIC
__split_verify_intl_key_order(session, parent);
#endif
/*
* The moved reference structures now reference the wrong parent page,
* and we have to fix that up. The problem is revealed when a thread
* of control searches for a page's reference structure slot, and fails
* to find it because the page it's searching no longer references it.
* When that failure happens, the thread waits for the reference's home
* page to be updated, which we do here: walk the children and fix them
* up.
*
* We're not acquiring hazard pointers on these pages, they cannot be
* evicted because of the eviction transaction value set above.
*/
for (parent_refp = alloc_index->index,
i = alloc_index->entries; i > 0; ++parent_refp, --i) {
parent_ref = *parent_refp;
WT_ASSERT(session, parent_ref->home == parent);
if (parent_ref->state != WT_REF_MEM)
continue;
/*
* We left the first/last children of the parent at the current
* level to avoid bad split patterns, they might be leaf pages;
* check the page type before we continue.
*/
child = parent_ref->page;
if (!WT_PAGE_IS_INTERNAL(child))
continue;
#ifdef HAVE_DIAGNOSTIC
__split_verify_intl_key_order(session, child);
#endif
WT_INTL_FOREACH_BEGIN_SAFE(session, child, child_ref) {
/*
* The page's parent reference may not be wrong, as we
* opened up access from the top of the tree already,
* pages may have been read in since then. Check and
* only update pages that reference the original page,
* they must be wrong.
*/
if (child_ref->home == parent) {
child_ref->home = child;
child_ref->ref_hint = 0;
}
} WT_INTL_FOREACH_END;
}
/*
* Push out the changes: not required for correctness, but don't let
* threads spin on incorrect page references longer than necessary.
*/
WT_FULL_BARRIER();
alloc_index = NULL;
/*
* We can't free the previous parent's index, there may be threads using
* it. Add to the session's discard list, to be freed once we know no
* threads can still be using it.
*
* This change requires care with error handling: we have already
* updated the page with a new index. Even if stashing the old value
* fails, we don't roll back that change, because threads may already
* be using the new index.
*/
size = sizeof(WT_PAGE_INDEX) + pindex->entries * sizeof(WT_REF *);
WT_ERR(__split_safe_free(session, split_gen, 0, pindex, size));
parent_decr += size;
/*
* Adjust the parent's memory footprint.
*/
__wt_cache_page_inmem_incr(session, parent, parent_incr);
__wt_cache_page_inmem_decr(session, parent, parent_decr);
if (0) {
err: __wt_free_ref_index(session, parent, alloc_index, 1);
/*
* If panic is set, we saw an error after opening up the tree
* to descent through the parent page's new index. There is
* nothing we can do, the tree is inconsistent and there are
* threads potentially active in both versions of the tree.
*/
if (panic)
ret = __wt_panic(session);
}
return (ret);
}
/*
* __split_multi_inmem --
* Instantiate a page in a multi-block set, when an update couldn't be
* written.
*/
static int
__split_multi_inmem(
WT_SESSION_IMPL *session, WT_PAGE *orig, WT_REF *ref, WT_MULTI *multi)
{
WT_CURSOR_BTREE cbt;
WT_DECL_ITEM(key);
WT_DECL_RET;
WT_PAGE *page;
WT_UPDATE *upd;
WT_UPD_SKIPPED *skip;
uint64_t recno;
uint32_t i, slot;
WT_CLEAR(cbt);
cbt.iface.session = &session->iface;
cbt.btree = S2BT(session);
/*
* We can find unresolved updates when attempting to evict a page, which
* can't be written. This code re-creates the in-memory page and applies
* the unresolved updates to that page.
*
* Clear the disk image and link the page into the passed-in WT_REF to
* simplify error handling: our caller will not discard the disk image
* when discarding the original page, and our caller will discard the
* allocated page on error, when discarding the allocated WT_REF.
*/
WT_RET(__wt_page_inmem(
session, ref, multi->skip_dsk, WT_PAGE_DISK_ALLOC, &page));
multi->skip_dsk = NULL;
if (orig->type == WT_PAGE_ROW_LEAF)
WT_RET(__wt_scr_alloc(session, 0, &key));
/* Re-create each modification we couldn't write. */
for (i = 0, skip = multi->skip; i < multi->skip_entries; ++i, ++skip)
switch (orig->type) {
case WT_PAGE_COL_FIX:
case WT_PAGE_COL_VAR:
/* Build a key. */
upd = skip->ins->upd;
skip->ins->upd = NULL;
recno = WT_INSERT_RECNO(skip->ins);
/* Search the page. */
WT_ERR(__wt_col_search(session, recno, ref, &cbt));
/* Apply the modification. */
WT_ERR(__wt_col_modify(
session, &cbt, recno, NULL, upd, 0));
break;
case WT_PAGE_ROW_LEAF:
/* Build a key. */
if (skip->ins == NULL) {
slot = WT_ROW_SLOT(orig, skip->rip);
upd = orig->pg_row_upd[slot];
orig->pg_row_upd[slot] = NULL;
WT_ERR(__wt_row_leaf_key(
session, orig, skip->rip, key, 0));
} else {
upd = skip->ins->upd;
skip->ins->upd = NULL;
key->data = WT_INSERT_KEY(skip->ins);
key->size = WT_INSERT_KEY_SIZE(skip->ins);
}
/* Search the page. */
WT_ERR(__wt_row_search(session, key, ref, &cbt, 1));
/* Apply the modification. */
WT_ERR(
__wt_row_modify(session, &cbt, key, NULL, upd, 0));
break;
WT_ILLEGAL_VALUE_ERR(session);
}
/*
* We modified the page above, which will have set the first dirty
* transaction to the last transaction current running. However, the
* updates we installed may be older than that. Set the first dirty
* transaction to an impossibly old value so this page is never skipped
* in a checkpoint.
*/
page->modify->first_dirty_txn = WT_TXN_FIRST;
err: /* Free any resources that may have been cached in the cursor. */
WT_TRET(__wt_btcur_close(&cbt));
__wt_scr_free(session, &key);
return (ret);
}
/*
* __wt_multi_to_ref --
* Move a multi-block list into an array of WT_REF structures.
*/
int
__wt_multi_to_ref(WT_SESSION_IMPL *session,
WT_PAGE *page, WT_MULTI *multi, WT_REF **refp, size_t *incrp)
{
WT_ADDR *addr;
WT_IKEY *ikey;
WT_REF *ref;
size_t incr;
addr = NULL;
incr = 0;
/* In some cases, the underlying WT_REF has not yet been allocated. */
if (*refp == NULL)
WT_RET(__wt_calloc_one(session, refp));
ref = *refp;
incr += sizeof(WT_REF);
/*
* Any parent reference must be filled in by our caller; the primary
* use of this function is when splitting into a parent page, and we
* aren't holding any locks here that would allow us to know which
* parent we'll eventually split into, if the tree is simultaneously
* being deepened.
*/
ref->home = NULL;
if (multi->skip == NULL) {
/*
* Copy the address: we could simply take the buffer, but that
* would complicate error handling, freeing the reference array
* would have to avoid freeing the memory, and it's not worth
* the confusion.
*/
WT_RET(__wt_calloc_one(session, &addr));
ref->addr = addr;
addr->size = multi->addr.size;
addr->type = multi->addr.type;
WT_RET(__wt_strndup(session,
multi->addr.addr, addr->size, &addr->addr));
} else
WT_RET(__split_multi_inmem(session, page, ref, multi));
switch (page->type) {
case WT_PAGE_ROW_INT:
case WT_PAGE_ROW_LEAF:
ikey = multi->key.ikey;
WT_RET(__wt_row_ikey(session, 0,
WT_IKEY_DATA(ikey), ikey->size, &ref->key.ikey));
incr += sizeof(WT_IKEY) + ikey->size;
break;
default:
ref->key.recno = multi->key.recno;
break;
}
ref->state = multi->skip == NULL ? WT_REF_DISK : WT_REF_MEM;
/*
* If our caller wants to track the memory allocations, we have a return
* reference.
*/
if (incrp != NULL)
*incrp += incr;
return (0);
}
/*
* __split_parent --
* Resolve a multi-page split, inserting new information into the parent.
*/
static int
__split_parent(WT_SESSION_IMPL *session, WT_REF *ref, WT_REF **ref_new,
uint32_t new_entries, size_t parent_decr, size_t parent_incr,
int exclusive, int ref_discard, uint64_t *split_genp)
{
WT_DECL_RET;
WT_IKEY *ikey;
WT_PAGE *parent;
WT_PAGE_INDEX *alloc_index, *pindex;
WT_REF **alloc_refp, *next_ref, *parent_ref;
size_t size;
uint64_t split_gen;
uint32_t children, i, j;
uint32_t deleted_entries, parent_entries, result_entries;
int complete, hazard;
parent = NULL; /* -Wconditional-uninitialized */
alloc_index = pindex = NULL;
parent_ref = NULL;
complete = hazard = 0;
parent_entries = 0;
/*
* Get a page-level lock on the parent to single-thread splits into the
* page because we need to single-thread sizing/growing the page index.
* It's OK to queue up multiple splits as the child pages split, but the
* actual split into the parent has to be serialized. Note we allocate
* memory inside of the lock and may want to invest effort in making the
* locked period shorter.
*
* We could race with another thread deepening our parent. To deal
* with that, read the parent pointer each time we try to lock it, and
* check that it's still correct after it is locked.
*/
for (;;) {
parent = ref->home;
F_CAS_ATOMIC(parent, WT_PAGE_SPLITTING, ret);
if (ret == 0) {
if (parent == ref->home)
break;
F_CLR_ATOMIC(parent, WT_PAGE_SPLITTING);
continue;
}
__wt_yield();
}
/*
* We have exclusive access to split the parent, and at this point, the
* child prevents the parent from being evicted. However, once we
* update the parent's index, it will no longer refer to the child, and
* could conceivably be evicted. Get a hazard pointer on the parent
* now, so that we can safely access it after updating the index.
*/
if (!__wt_ref_is_root(parent_ref = parent->pg_intl_parent_ref)) {
WT_ERR(__wt_page_in(session, parent_ref, WT_READ_NO_EVICT));
hazard = 1;
}
pindex = WT_INTL_INDEX_COPY(parent);
parent_entries = pindex->entries;
/*
* Remove any refs to deleted pages while we are splitting, we have
* the internal page locked down, and are copying the refs into a new
* array anyway. Switch them to the special split state, so that any
* reading thread will restart.
*/
for (i = 0, deleted_entries = 0; i < parent_entries; ++i) {
next_ref = pindex->index[i];
WT_ASSERT(session, next_ref->state != WT_REF_SPLIT);
if (__wt_delete_page_skip(session, next_ref) &&
WT_ATOMIC_CAS4(next_ref->state,
WT_REF_DELETED, WT_REF_SPLIT))
deleted_entries++;
}
/*
* The final entry count consists of: The original count, plus any
* new pages, less any refs we are removing because they only
* contained deleted items, less 1 for the page being replaced.
*/
result_entries = (parent_entries + new_entries) - (deleted_entries + 1);
/*
* Allocate and initialize a new page index array for the parent, then
* copy references from the original index array, plus references from
* the newly created split array, into place.
*/
size = sizeof(WT_PAGE_INDEX) + result_entries * sizeof(WT_REF *);
WT_ERR(__wt_calloc(session, 1, size, &alloc_index));
parent_incr += size;
alloc_index->index = (WT_REF **)(alloc_index + 1);
alloc_index->entries = result_entries;
for (alloc_refp = alloc_index->index, i = 0; i < parent_entries; ++i) {
next_ref = pindex->index[i];
if (next_ref == ref)
for (j = 0; j < new_entries; ++j) {
ref_new[j]->home = parent;
*alloc_refp++ = ref_new[j];
/*
* Clear the split reference as it moves to the
* allocated page index, so it never appears on
* both after an error.
*/
ref_new[j] = NULL;
}
else if (next_ref->state != WT_REF_SPLIT)
/* Skip refs we have marked for deletion. */
*alloc_refp++ = next_ref;
}
/*
* Update the parent page's index: this update makes the split visible
* to threads descending the tree.
*/
WT_INTL_INDEX_SET(parent, alloc_index);
split_gen = *split_genp = WT_ATOMIC_ADD8(S2C(session)->split_gen, 1);
alloc_index = NULL;
#ifdef HAVE_DIAGNOSTIC
__split_verify_intl_key_order(session, parent);
#endif
/*
* Reset the page's original WT_REF field to split. Threads cursoring
* through the tree were blocked because that WT_REF state was set to
* locked. This update changes the locked state to split, unblocking
* those threads and causing them to re-calculate their position based
* on the updated parent page's index.
*/
WT_PUBLISH(ref->state, WT_REF_SPLIT);
/*
* A note on error handling: failures before we swapped the new page
* index into the parent can be resolved by freeing allocated memory
* because the original page is unchanged, we can continue to use it
* and we have not yet modified the parent. Failures after we swap
* the new page index into the parent are also relatively benign, the
* split is OK and complete. For those reasons, we ignore errors past
* this point unless there's a panic.
*/
complete = 1;
/*
* The new page index is in place, free any deleted WT_REFs we found,
* modulo the usual safe free semantics. Ignore the WT_REF we're
* replacing, our caller is responsible for freeing it.
*/
for (i = 0; deleted_entries > 0 && i < parent_entries; ++i) {
next_ref = pindex->index[i];
if (next_ref == ref || next_ref->state != WT_REF_SPLIT)
continue;
--deleted_entries;
/*
* We set the WT_REF to split, discard it, freeing any resources
* it holds.
*/
if (parent->type == WT_PAGE_ROW_INT) {
WT_TRET(__split_ovfl_key_cleanup(
session, parent, next_ref));
ikey = __wt_ref_key_instantiated(next_ref);
if (ikey != NULL) {
size = sizeof(WT_IKEY) + ikey->size;
WT_TRET(__split_safe_free(
session, split_gen, 0, ikey, size));
parent_decr += size;
}
/*
* The page_del structure can be freed immediately: it
* is only read when the ref state is WT_REF_DELETED.
* The size of the structure wasn't added to the parent,
* don't decrement.
*/
if (next_ref->page_del != NULL) {
__wt_free(session,
next_ref->page_del->update_list);
__wt_free(session, next_ref->page_del);
}
}
WT_TRET(__split_safe_free(
session, split_gen, 0, next_ref, sizeof(WT_REF)));
parent_decr += sizeof(WT_REF);
}
/*
* We can't free the previous page index, there may be threads using it.
* Add it to the session discard list, to be freed when it's safe.
*/
size = sizeof(WT_PAGE_INDEX) + pindex->entries * sizeof(WT_REF *);
WT_TRET(__split_safe_free(session, split_gen, exclusive, pindex, size));
parent_decr += size;
/*
* Row-store trees where the old version of the page is being discarded:
* the previous parent page's key for this child page may have been an
* on-page overflow key. In that case, if the key hasn't been deleted,
* delete it now, including its backing blocks. We are exchanging the
* WT_REF that referenced it for the split page WT_REFs and their keys,
* and there's no longer any reference to it. Done after completing the
* split (if we failed, we'd leak the underlying blocks, but the parent
* page would be unaffected).
*/
if (ref_discard && parent->type == WT_PAGE_ROW_INT)
WT_TRET(__split_ovfl_key_cleanup(session, parent, ref));
/*
* Adjust the parent's memory footprint.
*/
__wt_cache_page_inmem_incr(session, parent, parent_incr);
__wt_cache_page_inmem_decr(session, parent, parent_decr);
WT_ERR(__wt_verbose(session, WT_VERB_SPLIT,
"%s split into parent %" PRIu32 " -> %" PRIu32
" (%" PRIu32 ")",
__wt_page_type_string(ref->page->type), parent_entries,
result_entries, result_entries - parent_entries));
/*
* Simple page splits trickle up the tree, that is, as leaf pages grow
* large enough and are evicted, they'll split into their parent. And,
* as that parent grows large enough and is evicted, it will split into
* its parent and so on. When the page split wave reaches the root,
* the tree will permanently deepen as multiple root pages are written.
* However, this only helps if first, the pages are evicted (and
* we resist evicting internal pages for obvious reasons), and second,
* if the tree is closed and re-opened from a disk image, which may be
* a rare event.
* To avoid the case of internal pages becoming too large when they
* aren't being evicted, check internal pages each time a leaf page is
* split into them. If it's big enough, deepen the tree at that point.
* Do the check here because we've just grown the parent page and
* are holding it locked.
*/
if (ret == 0 && !exclusive &&
!F_ISSET_ATOMIC(parent, WT_PAGE_REFUSE_DEEPEN) &&
__split_should_deepen(session, parent_ref, &children)) {
/*
* XXX
* Temporary hack to avoid a bug where the root page is split
* even when it's no longer doing any good.
*/
uint64_t __a, __b;
__a = parent->memory_footprint;
ret = __split_deepen(session, parent, children);
__b = parent->memory_footprint;
if (__b * 2 >= __a)
F_SET_ATOMIC(parent, WT_PAGE_REFUSE_DEEPEN);
}
err: if (!complete)
for (i = 0; i < parent_entries; ++i) {
next_ref = pindex->index[i];
if (next_ref->state == WT_REF_SPLIT)
next_ref->state = WT_REF_DELETED;
}
F_CLR_ATOMIC(parent, WT_PAGE_SPLITTING);
if (hazard)
WT_TRET(__wt_hazard_clear(session, parent));
__wt_free_ref_index(session, NULL, alloc_index, 0);
/*
* A note on error handling: if we completed the split, return success,
* nothing really bad can have happened, and our caller has to proceed
* with the split.
*/
if (ret != 0 && ret != WT_PANIC)
__wt_err(session, ret,
"ignoring not-fatal error during parent page split");
return (ret == WT_PANIC || !complete ? ret : 0);
}
/*
* __wt_split_insert --
* Check for pages with append-only workloads and split their last insert
* list into a separate page.
*/
int
__wt_split_insert(WT_SESSION_IMPL *session, WT_REF *ref, int *splitp)
{
WT_BTREE *btree;
WT_DECL_RET;
WT_IKEY *ikey;
WT_DECL_ITEM(key);
WT_INSERT *ins, **insp, *moved_ins, *prev_ins;
WT_INSERT_HEAD *ins_head;
WT_PAGE *page, *right;
WT_REF *child, *split_ref[2] = { NULL, NULL };
size_t page_decr, parent_decr, parent_incr, right_incr;
uint64_t split_gen;
int i;
*splitp = 0;
btree = S2BT(session);
page = ref->page;
ikey = NULL;
right = NULL;
page_decr = parent_decr = parent_incr = right_incr = 0;
/*
* Check for pages with append-only workloads. A common application
* pattern is to have multiple threads frantically appending to the
* tree. We want to reconcile and evict this page, but we'd like to
* do it without making the appending threads wait. If we're not
* discarding the tree, check and see if it's worth doing a split to
* let the threads continue before doing eviction.
*
* Ignore anything other than large, dirty row-store leaf pages.
*
* XXX KEITH
* Need a better test for append-only workloads.
*/
if (page->type != WT_PAGE_ROW_LEAF ||
page->memory_footprint < btree->maxmempage ||
!__wt_page_is_modified(page))
return (0);
/*
* There is no point splitting if the list is small, no deep items is
* our heuristic for that. (A 1/4 probability of adding a new skiplist
* level means there will be a new 6th level for roughly each 4KB of
* entries in the list. If we have at least two 6th level entries, the
* list is at least large enough to work with.)
*
* The following code requires at least two items on the insert list,
* this test serves the additional purpose of confirming that.
*/
#define WT_MIN_SPLIT_SKIPLIST_DEPTH WT_MIN(6, WT_SKIP_MAXDEPTH - 1)
ins_head = page->pg_row_entries == 0 ?
WT_ROW_INSERT_SMALLEST(page) :
WT_ROW_INSERT_SLOT(page, page->pg_row_entries - 1);
if (ins_head == NULL ||
ins_head->head[WT_MIN_SPLIT_SKIPLIST_DEPTH] == NULL ||
ins_head->head[WT_MIN_SPLIT_SKIPLIST_DEPTH] ==
ins_head->tail[WT_MIN_SPLIT_SKIPLIST_DEPTH])
return (0);
/* Find the last item in the insert list. */
moved_ins = WT_SKIP_LAST(ins_head);
/*
* Only split a page once, otherwise workloads that update in the middle
* of the page could continually split without benefit.
*/
if (F_ISSET_ATOMIC(page, WT_PAGE_SPLIT_INSERT))
return (0);
F_SET_ATOMIC(page, WT_PAGE_SPLIT_INSERT);
/*
* The first page in the split is the current page, but we still need to
* create a replacement WT_REF and make a copy of the key (the original
* WT_REF is set to split-status and eventually freed).
*
* The new reference is visible to readers once the split completes.
*/
WT_ERR(__wt_calloc_one(session, &split_ref[0]));
child = split_ref[0];
*child = *ref;
child->state = WT_REF_MEM;
/*
* Copy the first key from the original page into first ref in the new
* parent. Pages created in memory always have a "smallest" insert
* list, so look there first. If we don't find one, get the first key
* from the disk image.
*
* We can't just use the key from the original ref: it may have been
* suffix-compressed, and after the split the truncated key may not be
* valid.
*/
WT_ERR(__wt_scr_alloc(session, 0, &key));
if ((ins = WT_SKIP_FIRST(WT_ROW_INSERT_SMALLEST(page))) != NULL) {
key->data = WT_INSERT_KEY(ins);
key->size = WT_INSERT_KEY_SIZE(ins);
} else
WT_ERR(__wt_row_leaf_key(
session, page, &page->pg_row_d[0], key, 1));
WT_ERR(__wt_row_ikey(
session, 0, key->data, key->size, &child->key.ikey));
parent_incr += sizeof(WT_REF) + sizeof(WT_IKEY) + key->size;
__wt_scr_free(session, &key);
/*
* The second page in the split is a new WT_REF/page pair.
*/
WT_ERR(__wt_page_alloc(session, WT_PAGE_ROW_LEAF, 0, 0, 0, &right));
WT_ERR(__wt_calloc_one(session, &right->pg_row_ins));
WT_ERR(__wt_calloc_one(session, &right->pg_row_ins[0]));
right_incr += sizeof(WT_INSERT_HEAD);
right_incr += sizeof(WT_INSERT_HEAD *);
WT_ERR(__wt_calloc_one(session, &split_ref[1]));
child = split_ref[1];
child->page = right;
child->state = WT_REF_MEM;
WT_ERR(__wt_row_ikey(session, 0,
WT_INSERT_KEY(moved_ins), WT_INSERT_KEY_SIZE(moved_ins),
&child->key.ikey));
parent_incr +=
sizeof(WT_REF) + sizeof(WT_IKEY) + WT_INSERT_KEY_SIZE(moved_ins);
/*
* After the split, we're going to discard the WT_REF, account for the
* change in memory footprint. Row store pages have keys that may be
* instantiated, check for that.
*/
parent_decr += sizeof(WT_REF);
if (page->type == WT_PAGE_ROW_LEAF || page->type == WT_PAGE_ROW_INT)
if ((ikey = __wt_ref_key_instantiated(ref)) != NULL)
parent_decr += sizeof(WT_IKEY) + ikey->size;
/* The new page is dirty by definition. */
WT_ERR(__wt_page_modify_init(session, right));
__wt_page_only_modify_set(session, right);
/*
* We modified the page above, which will have set the first dirty
* transaction to the last transaction current running. However, the
* updates we installed may be older than that. Set the first dirty
* transaction to an impossibly old value so this page is never skipped
* in a checkpoint.
*/
right->modify->first_dirty_txn = WT_TXN_FIRST;
/*
* Calculate how much memory we're moving: figure out how deep the skip
* list stack is for the element we are moving, and the memory used by
* the item's list of updates.
*/
for (i = 0; i < WT_SKIP_MAXDEPTH && ins_head->tail[i] == moved_ins; ++i)
;
WT_MEM_TRANSFER(page_decr, right_incr, sizeof(WT_INSERT) +
(size_t)i * sizeof(WT_INSERT *) + WT_INSERT_KEY_SIZE(moved_ins));
WT_MEM_TRANSFER(
page_decr, right_incr, __wt_update_list_memsize(moved_ins->upd));
/*
* Allocation operations completed, move the last insert list item from
* the original page to the new page.
*
* First, update the item to the new child page. (Just append the entry
* for simplicity, the previous skip list pointers originally allocated
* can be ignored.)
*/
right->pg_row_ins[0]->head[0] =
right->pg_row_ins[0]->tail[0] = moved_ins;
/*
* Remove the entry from the orig page (i.e truncate the skip list).
* Following is an example skip list that might help.
*
* __
* |c3|
* |
* __ __ __
* |a2|--------|c2|--|d2|
* | | |
* __ __ __ __
* |a1|--------|c1|--|d1|--------|f1|
* | | | |
* __ __ __ __ __ __
* |a0|--|b0|--|c0|--|d0|--|e0|--|f0|
*
* From the above picture.
* The head array will be: a0, a1, a2, c3, NULL
* The tail array will be: f0, f1, d2, c3, NULL
* We are looking for: e1, d2, NULL
* If there were no f1, we'd be looking for: e0, NULL
* If there were an f2, we'd be looking for: e0, d1, d2, NULL
*
* The algorithm does:
* 1) Start at the top of the head list.
* 2) Step down until we find a level that contains more than one
* element.
* 3) Step across until we reach the tail of the level.
* 4) If the tail is the item being moved, remove it.
* 5) Drop down a level, and go to step 3 until at level 0.
*/
prev_ins = NULL; /* -Wconditional-uninitialized */
for (i = WT_SKIP_MAXDEPTH - 1, insp = &ins_head->head[i];
i >= 0;
i--, insp--) {
/* Level empty, or a single element. */
if (ins_head->head[i] == NULL ||
ins_head->head[i] == ins_head->tail[i]) {
/* Remove if it is the element being moved. */
if (ins_head->head[i] == moved_ins)
ins_head->head[i] = ins_head->tail[i] = NULL;
continue;
}
for (ins = *insp; ins != ins_head->tail[i]; ins = ins->next[i])
prev_ins = ins;
/*
* Update the stack head so that we step down as far to the
* right as possible. We know that prev_ins is valid since
* levels must contain at least two items to be here.
*/
insp = &prev_ins->next[i];
if (ins == moved_ins) {
/* Remove the item being moved. */
WT_ASSERT(session, ins_head->head[i] != moved_ins);
WT_ASSERT(session, prev_ins->next[i] == moved_ins);
*insp = NULL;
ins_head->tail[i] = prev_ins;
}
}
#ifdef HAVE_DIAGNOSTIC
/*
* Verify the moved insert item appears nowhere on the skip list.
*/
for (i = WT_SKIP_MAXDEPTH - 1, insp = &ins_head->head[i];
i >= 0;
i--, insp--)
for (ins = *insp; ins != NULL; ins = ins->next[i])
WT_ASSERT(session, ins != moved_ins);
#endif
/*
* Save the transaction ID when the split happened. Application
* threads will not try to forcibly evict the page again until
* all concurrent transactions commit.
*/
page->modify->inmem_split_txn = __wt_txn_new_id(session);
/*
* Update the page accounting.
*
* XXX
* If we fail to split the parent, the page's accounting will be wrong.
*/
__wt_cache_page_inmem_decr(session, page, page_decr);
__wt_cache_page_inmem_incr(session, right, right_incr);
/*
* Split into the parent. After this, the original page is no
* longer locked, so we cannot safely look at it.
*/
page = NULL;
if ((ret = __split_parent(session, ref, split_ref, 2,
parent_decr, parent_incr, 0, 0, &split_gen)) != 0) {
/*
* Move the insert list element back to the original page list.
* For simplicity, the previous skip list pointers originally
* allocated can be ignored, just append the entry to the end of
* the level 0 list. As before, we depend on the list having
* multiple elements and ignore the edge cases small lists have.
*/
right->pg_row_ins[0]->head[0] =
right->pg_row_ins[0]->tail[0] = NULL;
ins_head->tail[0]->next[0] = moved_ins;
ins_head->tail[0] = moved_ins;
/*
* We marked the new page dirty; we're going to discard it, but
* first mark it clean and fix up the cache statistics.
*/
right->modify->write_gen = 0;
__wt_cache_dirty_decr(session, right);
WT_ERR(ret);
}
/* Let our caller know that we split. */
*splitp = 1;
WT_STAT_FAST_CONN_INCR(session, cache_inmem_split);
WT_STAT_FAST_DATA_INCR(session, cache_inmem_split);
/*
* We may not be able to immediately free the page's original WT_REF
* structure and instantiated key, there may be threads using them.
* Add them to the session discard list, to be freed once we know it's
* safe.
*/
if (ikey != NULL)
WT_TRET(__split_safe_free(
session, split_gen, 0, ikey, sizeof(WT_IKEY) + ikey->size));
WT_TRET(__split_safe_free(session, split_gen, 0, ref, sizeof(WT_REF)));
/*
* A note on error handling: if we completed the split, return success,
* nothing really bad can have happened, and our caller has to proceed
* with the split.
*/
if (ret != 0 && ret != WT_PANIC)
__wt_err(session, ret,
"ignoring not-fatal error during insert page split");
return (ret == WT_PANIC ? WT_PANIC : 0);
err: if (split_ref[0] != NULL) {
__wt_free(session, split_ref[0]->key.ikey);
__wt_free(session, split_ref[0]);
}
if (split_ref[1] != NULL) {
__wt_free(session, split_ref[1]->key.ikey);
__wt_free(session, split_ref[1]);
}
if (right != NULL)
__wt_page_out(session, &right);
__wt_scr_free(session, &key);
return (ret);
}
/*
* __wt_split_rewrite --
* Resolve a failed reconciliation by replacing a page with a new version.
*/
int
__wt_split_rewrite(WT_SESSION_IMPL *session, WT_REF *ref)
{
WT_PAGE *page;
WT_PAGE_MODIFY *mod;
WT_REF new;
page = ref->page;
mod = page->modify;
/*
* This isn't a split: a reconciliation failed because we couldn't write
* something, and in the case of forced eviction, we need to stop this
* page from being such a problem. We have exclusive access, rewrite the
* page in memory. The code lives here because the split code knows how
* to re-create a page in memory after it's been reconciled, and that's
* exactly what we want to do.
*
* Build the new page.
*/
memset(&new, 0, sizeof(new));
WT_RET(__split_multi_inmem(session, page, &new, &mod->mod_multi[0]));
/*
* Discard the original page.
*
* Pages with unresolved changes are not marked clean during
* reconciliation, do it now.
*/
mod->write_gen = 0;
__wt_cache_dirty_decr(session, page);
__wt_ref_out(session, ref);
/* Swap the new page into place. */
ref->page = new.page;
WT_PUBLISH(ref->state, WT_REF_MEM);
return (0);
}
/*
* __wt_split_multi --
* Resolve a page split.
*/
int
__wt_split_multi(WT_SESSION_IMPL *session, WT_REF *ref, int exclusive)
{
WT_IKEY *ikey;
WT_DECL_RET;
WT_PAGE *page;
WT_PAGE_MODIFY *mod;
WT_REF **ref_new;
size_t parent_decr, parent_incr;
uint64_t split_gen;
uint32_t i, new_entries;
page = ref->page;
mod = page->modify;
new_entries = mod->mod_multi_entries;
ikey = NULL;
parent_decr = parent_incr = 0;
/*
* Convert the split page's multiblock reconciliation information into
* an array of page reference structures.
*/
WT_RET(__wt_calloc_def(session, new_entries, &ref_new));
for (i = 0; i < new_entries; ++i)
WT_ERR(__wt_multi_to_ref(session,
page, &mod->mod_multi[i], &ref_new[i], &parent_incr));
/*
* After the split, we're going to discard the WT_REF, account for the
* change in memory footprint. Row store pages have keys that may be
* instantiated, check for that.
*/
parent_decr += sizeof(WT_REF);
if (page->type == WT_PAGE_ROW_LEAF || page->type == WT_PAGE_ROW_INT)
if ((ikey = __wt_ref_key_instantiated(ref)) != NULL)
parent_decr += sizeof(WT_IKEY) + ikey->size;
/* Split into the parent. */
WT_ERR(__split_parent(session, ref, ref_new, new_entries,
parent_decr, parent_incr, exclusive, 1, &split_gen));
WT_STAT_FAST_CONN_INCR(session, cache_eviction_split);
WT_STAT_FAST_DATA_INCR(session, cache_eviction_split);
__wt_free(session, ref_new);
/*
* The split succeeded, discard the page.
*
* Pages with unresolved changes are not marked clean during
* reconciliation, do it now.
*/
if (__wt_page_is_modified(page)) {
mod->write_gen = 0;
__wt_cache_dirty_decr(session, page);
}
__wt_ref_out(session, ref);
/*
* We may not be able to immediately free the page's original WT_REF
* structure and instantiated key, there may be threads using them.
* Add them to the session discard list, to be freed once we know it's
* safe.
*/
if (ikey != NULL)
WT_TRET(__split_safe_free(session, split_gen, exclusive,
ikey, sizeof(WT_IKEY) + ikey->size));
WT_TRET(__split_safe_free(session, split_gen, exclusive,
ref, sizeof(WT_REF)));
/*
* A note on error handling: if we completed the split, return success,
* nothing really bad can have happened, and our caller has to proceed
* with the split.
*/
if (ret != 0 && ret != WT_PANIC)
__wt_err(session, ret,
"ignoring not-fatal error during multi-page split");
return (ret == WT_PANIC ? WT_PANIC : 0);
err: /*
* A note on error handling: in the case of evicting a page that has
* unresolved changes, we just instantiated some in-memory pages that
* reflect those unresolved changes. The problem is those pages
* reference the same WT_UPDATE chains as the page we're splitting,
* that is, we simply copied references into the new pages. If the
* split fails, the original page is fine, but discarding the created
* page would free those update chains, and that's wrong. There isn't
* an easy solution, there's a lot of small memory allocations in some
* common code paths, and unwinding those changes will be difficult.
* For now, leak the memory by not discarding the instantiated pages.
*/
for (i = 0; i < new_entries; ++i)
__wt_free_ref(session, page, ref_new[i], 0);
__wt_free(session, ref_new);
return (ret);
}
|