1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
|
/*-
* Copyright (c) 2014-2015 MongoDB, Inc.
* Copyright (c) 2008-2014 WiredTiger, Inc.
* All rights reserved.
*
* See the file LICENSE for redistribution information.
*/
#include "wt_internal.h"
#define WT_MEM_TRANSFER(from_decr, to_incr, len) do { \
size_t __len = (len); \
from_decr += __len; \
to_incr += __len; \
} while (0)
/*
* A note on error handling: main split functions first allocate/initialize new
* structures; failures during that period are handled by discarding the memory
* and returning an error code, the caller knows the split didn't happen and
* proceeds accordingly. Second, split functions update the tree, and a failure
* in that period is catastrophic, any partial update to the tree requires a
* panic, we can't recover. Third, once the split is complete and the tree has
* been fully updated, we have to ignore most errors, the split is complete and
* correct, callers have to proceed accordingly.
*/
typedef enum {
WT_ERR_IGNORE, /* Ignore minor errors */
WT_ERR_PANIC, /* Panic on all errors */
WT_ERR_RETURN /* Clean up and return error */
} WT_SPLIT_ERROR_PHASE;
/*
* __split_oldest_gen --
* Calculate the oldest active split generation.
*/
static uint64_t
__split_oldest_gen(WT_SESSION_IMPL *session)
{
WT_CONNECTION_IMPL *conn;
WT_SESSION_IMPL *s;
uint64_t gen, oldest;
u_int i, session_cnt;
conn = S2C(session);
WT_ORDERED_READ(session_cnt, conn->session_cnt);
for (i = 0, s = conn->sessions, oldest = conn->split_gen + 1;
i < session_cnt;
i++, s++)
if (((gen = s->split_gen) != 0) && gen < oldest)
oldest = gen;
return (oldest);
}
/*
* __split_stash_add --
* Add a new entry into the session's split stash list.
*/
static int
__split_stash_add(
WT_SESSION_IMPL *session, uint64_t split_gen, void *p, size_t len)
{
WT_CONNECTION_IMPL *conn;
WT_SPLIT_STASH *stash;
WT_ASSERT(session, p != NULL);
conn = S2C(session);
/* Grow the list as necessary. */
WT_RET(__wt_realloc_def(session, &session->split_stash_alloc,
session->split_stash_cnt + 1, &session->split_stash));
stash = session->split_stash + session->split_stash_cnt++;
stash->split_gen = split_gen;
stash->p = p;
stash->len = len;
(void)__wt_atomic_add64(&conn->split_stashed_bytes, len);
(void)__wt_atomic_add64(&conn->split_stashed_objects, 1);
/* See if we can free any previous entries. */
if (session->split_stash_cnt > 1)
__wt_split_stash_discard(session);
return (0);
}
/*
* __wt_split_stash_discard --
* Discard any memory from a session's split stash that we can.
*/
void
__wt_split_stash_discard(WT_SESSION_IMPL *session)
{
WT_CONNECTION_IMPL *conn;
WT_SPLIT_STASH *stash;
uint64_t oldest;
size_t i;
conn = S2C(session);
/* Get the oldest split generation. */
oldest = __split_oldest_gen(session);
for (i = 0, stash = session->split_stash;
i < session->split_stash_cnt;
++i, ++stash) {
if (stash->p == NULL)
continue;
else if (stash->split_gen >= oldest)
break;
/*
* It's a bad thing if another thread is in this memory after
* we free it, make sure nothing good happens to that thread.
*/
(void)__wt_atomic_sub64(&conn->split_stashed_bytes, stash->len);
(void)__wt_atomic_sub64(&conn->split_stashed_objects, 1);
__wt_overwrite_and_free_len(session, stash->p, stash->len);
}
/*
* If there are enough free slots at the beginning of the list, shuffle
* everything down.
*/
if (i > 100 || i == session->split_stash_cnt)
if ((session->split_stash_cnt -= i) > 0)
memmove(session->split_stash, stash,
session->split_stash_cnt * sizeof(*stash));
}
/*
* __wt_split_stash_discard_all --
* Discard all memory from a session's split stash.
*/
void
__wt_split_stash_discard_all(
WT_SESSION_IMPL *session_safe, WT_SESSION_IMPL *session)
{
WT_SPLIT_STASH *stash;
size_t i;
/*
* This function is called during WT_CONNECTION.close to discard any
* memory that remains. For that reason, we take two WT_SESSION_IMPL
* arguments: session_safe is still linked to the WT_CONNECTION and
* can be safely used for calls to other WiredTiger functions, while
* session is the WT_SESSION_IMPL we're cleaning up.
*/
for (i = 0, stash = session->split_stash;
i < session->split_stash_cnt;
++i, ++stash)
if (stash->p != NULL)
__wt_free(session_safe, stash->p);
__wt_free(session_safe, session->split_stash);
session->split_stash_cnt = session->split_stash_alloc = 0;
}
/*
* __split_safe_free --
* Free a buffer if we can be sure no thread is accessing it, or schedule
* it to be freed otherwise.
*/
static int
__split_safe_free(WT_SESSION_IMPL *session,
uint64_t split_gen, bool exclusive, void *p, size_t s)
{
/* We should only call safe free if we aren't pinning the memory. */
WT_ASSERT(session, session->split_gen != split_gen);
/*
* We have swapped something in a page: if we don't have exclusive
* access, check whether there are other threads in the same tree.
*/
if (!exclusive && __split_oldest_gen(session) > split_gen)
exclusive = true;
if (exclusive) {
__wt_free(session, p);
return (0);
}
return (__split_stash_add(session, split_gen, p, s));
}
#ifdef HAVE_DIAGNOSTIC
/*
* __split_verify_intl_key_order --
* Verify the key order on an internal page after a split, diagnostic only.
*/
static void
__split_verify_intl_key_order(WT_SESSION_IMPL *session, WT_PAGE *page)
{
WT_BTREE *btree;
WT_ITEM *next, _next, *last, _last, *tmp;
WT_REF *ref;
uint64_t recno;
int cmp;
bool first;
btree = S2BT(session);
switch (page->type) {
case WT_PAGE_COL_INT:
recno = 0; /* Less than any valid record number. */
WT_INTL_FOREACH_BEGIN(session, page, ref) {
WT_ASSERT(session, ref->home == page);
WT_ASSERT(session, ref->key.recno > recno);
recno = ref->key.recno;
} WT_INTL_FOREACH_END;
break;
case WT_PAGE_ROW_INT:
next = &_next;
WT_CLEAR(_next);
last = &_last;
WT_CLEAR(_last);
first = true;
WT_INTL_FOREACH_BEGIN(session, page, ref) {
WT_ASSERT(session, ref->home == page);
__wt_ref_key(page, ref, &next->data, &next->size);
if (last->size == 0) {
if (first)
first = false;
else {
WT_ASSERT(session, __wt_compare(
session, btree->collator, last,
next, &cmp) == 0);
WT_ASSERT(session, cmp < 0);
}
}
tmp = last;
last = next;
next = tmp;
} WT_INTL_FOREACH_END;
break;
}
}
#endif
/*
* __split_ovfl_key_cleanup --
* Handle cleanup for on-page row-store overflow keys.
*/
static int
__split_ovfl_key_cleanup(WT_SESSION_IMPL *session, WT_PAGE *page, WT_REF *ref)
{
WT_CELL *cell;
WT_CELL_UNPACK kpack;
WT_IKEY *ikey;
uint32_t cell_offset;
/* There's a per-page flag if there are any overflow keys at all. */
if (!F_ISSET_ATOMIC(page, WT_PAGE_OVERFLOW_KEYS))
return (0);
/*
* A key being discarded (page split) or moved to a different page (page
* deepening) may be an on-page overflow key. Clear any reference to an
* underlying disk image, and, if the key hasn't been deleted, delete it
* along with any backing blocks.
*/
if ((ikey = __wt_ref_key_instantiated(ref)) == NULL)
return (0);
if ((cell_offset = ikey->cell_offset) == 0)
return (0);
/* Leak blocks rather than try this twice. */
ikey->cell_offset = 0;
cell = WT_PAGE_REF_OFFSET(page, cell_offset);
__wt_cell_unpack(cell, &kpack);
if (kpack.ovfl && kpack.raw != WT_CELL_KEY_OVFL_RM) {
/*
* Eviction cannot free overflow items once a checkpoint is
* running in a tree: that can corrupt the checkpoint's block
* management. Assert that checkpoints aren't running to make
* sure we're catching all paths and to avoid regressions.
*/
WT_ASSERT(session,
S2BT(session)->checkpointing != WT_CKPT_RUNNING);
WT_RET(__wt_ovfl_discard(session, cell));
}
return (0);
}
/*
* __split_ref_move --
* Move a WT_REF from one page to another, including updating accounting
* information.
*/
static int
__split_ref_move(WT_SESSION_IMPL *session, WT_PAGE *from_home,
WT_REF **from_refp, size_t *decrp, WT_REF **to_refp, size_t *incrp)
{
WT_ADDR *addr;
WT_CELL_UNPACK unpack;
WT_DECL_RET;
WT_IKEY *ikey;
WT_REF *ref;
size_t size;
void *key;
ref = *from_refp;
/*
* The from-home argument is the page into which the "from" WT_REF may
* point, for example, if there's an on-page key the "from" WT_REF
* references, it will be on the page "from-home".
*
* Instantiate row-store keys, and column- and row-store addresses in
* the WT_REF structures referenced by a page that's being split. The
* WT_REF structures aren't moving, but the index references are moving
* from the page we're splitting to a set of new pages, and so we can
* no longer reference the block image that remains with the page being
* split.
*
* No locking is required to update the WT_REF structure because we're
* the only thread splitting the page, and there's no way for readers
* to race with our updates of single pointers. The changes have to be
* written before the page goes away, of course, our caller owns that
* problem.
*/
if (from_home->type == WT_PAGE_ROW_INT) {
/*
* Row-store keys: if it's not yet instantiated, instantiate it.
* If already instantiated, check for overflow cleanup (overflow
* keys are always instantiated).
*/
if ((ikey = __wt_ref_key_instantiated(ref)) == NULL) {
__wt_ref_key(from_home, ref, &key, &size);
WT_RET(__wt_row_ikey(session, 0, key, size, ref));
ikey = ref->key.ikey;
} else {
WT_RET(
__split_ovfl_key_cleanup(session, from_home, ref));
*decrp += sizeof(WT_IKEY) + ikey->size;
}
*incrp += sizeof(WT_IKEY) + ikey->size;
}
/*
* If there's no address (the page has never been written), or the
* address has been instantiated, there's no work to do. Otherwise,
* instantiate the address in-memory, from the on-page cell.
*/
addr = ref->addr;
if (addr != NULL && !__wt_off_page(from_home, addr)) {
__wt_cell_unpack((WT_CELL *)ref->addr, &unpack);
WT_RET(__wt_calloc_one(session, &addr));
if ((ret = __wt_strndup(
session, unpack.data, unpack.size, &addr->addr)) != 0) {
__wt_free(session, addr);
return (ret);
}
addr->size = (uint8_t)unpack.size;
switch (unpack.raw) {
case WT_CELL_ADDR_INT:
addr->type = WT_ADDR_INT;
break;
case WT_CELL_ADDR_LEAF:
addr->type = WT_ADDR_LEAF;
break;
case WT_CELL_ADDR_LEAF_NO:
addr->type = WT_ADDR_LEAF_NO;
break;
WT_ILLEGAL_VALUE(session);
}
ref->addr = addr;
}
/* And finally, copy the WT_REF pointer itself. */
*to_refp = ref;
WT_MEM_TRANSFER(*decrp, *incrp, sizeof(WT_REF));
return (0);
}
/*
* __split_ref_step1 --
* Prepare a set of WT_REFs for a move.
*/
static void
__split_ref_step1(
WT_SESSION_IMPL *session, WT_PAGE_INDEX *pindex, bool skip_first)
{
WT_PAGE *child;
WT_REF *child_ref, *ref;
uint32_t i, j;
/* The newly created subtree is complete. */
WT_WRITE_BARRIER();
/*
* Update the moved WT_REFs so threads moving through them start looking
* at the created children's page index information. Because we've not
* yet updated the page index of the parent page into which we are going
* to split this subtree, a cursor moving through these WT_REFs will
* ascend into the created children, but eventually fail as that parent
* page won't yet know about the created children pages. That's OK, we
* spin there until the parent's page index is updated.
*/
for (i = skip_first ? 1 : 0; i < pindex->entries; ++i) {
ref = pindex->index[i];
child = ref->page;
/*
* Block eviction and splits in newly created pages.
*
* Once the split is live, newly created internal pages might be
* evicted and their WT_REF structures freed. If that happened
* before all threads exit the index of the page that previously
* "owned" the WT_REF, a thread might see a freed WT_REF. To
* ensure that doesn't happen, the newly created page's modify
* structure has a field with a transaction ID that's checked
* before any internal page is evicted. Unfortunately, we don't
* know the correct value until we update the original page's
* index (we need a transaction ID from after that update), but
* the act of updating the original page's index is what allows
* the eviction to happen.
*
* Split blocking was because historic versions of the split
* code didn't update the WT_REF.home field until after the
* split was live, so the WT_REF.home fields being updated could
* split again before the update, there's a race between splits
* as to which would update them first. The current code updates
* the WT_REF.home fields before going live (in this function),
* this shouldn't be an issue, but for now splits remain turned
* off.
*/
F_SET_ATOMIC(child, WT_PAGE_SPLIT_BLOCK);
/*
* We use a page flag to prevent the child from splitting from
* underneath us, but the split-generation error checks don't
* know about that flag; use the standard macros to ensure that
* reading the child's page index structure is safe.
*/
j = 0;
WT_ENTER_PAGE_INDEX(session);
WT_INTL_FOREACH_BEGIN(session, child, child_ref) {
child_ref->home = child;
child_ref->pindex_hint = j++;
} WT_INTL_FOREACH_END;
WT_LEAVE_PAGE_INDEX(session);
#ifdef HAVE_DIAGNOSTIC
WT_WITH_PAGE_INDEX(session,
__split_verify_intl_key_order(session, child));
#endif
}
}
/*
* __split_ref_step2 --
* Allow the newly created children to be evicted or split.
*/
static int
__split_ref_step2(
WT_SESSION_IMPL *session, WT_PAGE_INDEX *pindex, bool skip_first)
{
WT_DECL_RET;
WT_PAGE *child;
WT_REF *ref;
uint32_t i;
/*
* The split has gone live, enable eviction and splits on the newly
* created internal pages.
*/
WT_WRITE_BARRIER();
for (i = skip_first ? 1 : 0; i < pindex->entries; ++i) {
ref = pindex->index[i];
/*
* We don't hold hazard pointers on created pages, they cannot
* be evicted because the page-modify transaction value set as
* they were created prevents eviction. (See above, we reset
* that value as part of fixing up the page.) But, an eviction
* thread might be attempting to evict the page (the WT_REF may
* be WT_REF_LOCKED), or it may be a disk based page (the WT_REF
* may be WT_REF_READING), or it may be in some other state.
* Acquire a hazard pointer for any in-memory pages so we know
* the state of the page. Ignore pages not in-memory (deleted,
* on-disk, being read), there's no in-memory structure to fix.
*/
if ((ret = __wt_page_in(session,
ref, WT_READ_CACHE | WT_READ_NO_EVICT)) == WT_NOTFOUND)
continue;
WT_ERR(ret);
child = ref->page;
/* The child can now be evicted or split. */
F_CLR_ATOMIC(child, WT_PAGE_SPLIT_BLOCK);
#ifdef HAVE_DIAGNOSTIC
WT_WITH_PAGE_INDEX(session,
__split_verify_intl_key_order(session, child));
#endif
WT_ERR(__wt_hazard_clear(session, child));
}
return (0);
err: /* Something really bad just happened. */
WT_PANIC_RET(session, ret, "fatal error resolving a split");
}
/*
* __split_root --
* Split the root page in-memory, deepening the tree.
*/
static int
__split_root(WT_SESSION_IMPL *session, WT_PAGE *root)
{
WT_BTREE *btree;
WT_DECL_RET;
WT_PAGE *child;
WT_PAGE_INDEX *alloc_index, *child_pindex, *pindex;
WT_REF **alloc_refp;
WT_REF **child_refp, *ref, **root_refp;
WT_SPLIT_ERROR_PHASE complete;
size_t child_incr, root_decr, root_incr, size;
uint64_t split_gen;
uint32_t children, chunk, i, j, remain;
uint32_t slots;
void *p;
WT_STAT_FAST_CONN_INCR(session, cache_eviction_deepen);
WT_STAT_FAST_DATA_INCR(session, cache_eviction_deepen);
WT_STAT_FAST_CONN_INCR(session, cache_eviction_split_internal);
WT_STAT_FAST_DATA_INCR(session, cache_eviction_split_internal);
btree = S2BT(session);
alloc_index = NULL;
root_decr = root_incr = 0;
complete = WT_ERR_RETURN;
/* The root page will be marked dirty, make sure that will succeed. */
WT_RET(__wt_page_modify_init(session, root));
/*
* Our caller is holding the root page locked to single-thread splits,
* which means we can safely look at the page's index without setting a
* split generation.
*/
pindex = WT_INTL_INDEX_GET_SAFE(root);
/*
* Decide how many child pages to create, then calculate the standard
* chunk and whatever remains. Sanity check the number of children:
* the decision to split matched to the deepen-per-child configuration
* might get it wrong.
*/
children = pindex->entries / btree->split_deepen_per_child;
if (children < 10) {
if (pindex->entries < 100)
return (EBUSY);
children = 10;
}
chunk = pindex->entries / children;
remain = pindex->entries - chunk * (children - 1);
WT_ERR(__wt_verbose(session, WT_VERB_SPLIT,
"%p: %" PRIu32 " root page elements, splitting into %" PRIu32
" children",
root, pindex->entries, children));
/*
* Allocate a new WT_PAGE_INDEX and set of WT_REF objects to be inserted
* into the root page, replacing the root's page-index.
*/
size = sizeof(WT_PAGE_INDEX) + children * sizeof(WT_REF *);
WT_ERR(__wt_calloc(session, 1, size, &alloc_index));
root_incr += size;
alloc_index->index = (WT_REF **)(alloc_index + 1);
alloc_index->entries = children;
alloc_refp = alloc_index->index;
for (i = 0; i < children; alloc_refp++, ++i)
WT_ERR(__wt_calloc_one(session, alloc_refp));
root_incr += children * sizeof(WT_REF);
/* Allocate child pages, and connect them into the new page index. */
for (root_refp = pindex->index,
alloc_refp = alloc_index->index, i = 0; i < children; ++i) {
slots = i == children - 1 ? remain : chunk;
WT_ERR(__wt_page_alloc(
session, root->type, 0, slots, false, &child));
/*
* Initialize the page's child reference; we need a copy of the
* page's key.
*/
ref = *alloc_refp++;
ref->home = root;
ref->page = child;
ref->addr = NULL;
if (root->type == WT_PAGE_ROW_INT) {
__wt_ref_key(root, *root_refp, &p, &size);
WT_ERR(__wt_row_ikey(session, 0, p, size, ref));
root_incr += sizeof(WT_IKEY) + size;
} else
ref->key.recno = (*root_refp)->key.recno;
ref->state = WT_REF_MEM;
/* Initialize the child page. */
if (root->type == WT_PAGE_COL_INT)
child->pg_intl_recno = (*root_refp)->key.recno;
child->pg_intl_parent_ref = ref;
/* Mark it dirty. */
WT_ERR(__wt_page_modify_init(session, child));
__wt_page_modify_set(session, child);
/*
* The newly allocated child's page index references the same
* structures as the root. (We cannot move WT_REF structures,
* threads may be underneath us right now changing the structure
* state.) However, if the WT_REF structures reference on-page
* information, we have to fix that, because the disk image for
* the page that has a page index entry for the WT_REF is about
* to change.
*/
child_pindex = WT_INTL_INDEX_GET_SAFE(child);
child_incr = 0;
for (child_refp = child_pindex->index,
j = 0; j < slots; ++child_refp, ++root_refp, ++j)
WT_ERR(__split_ref_move(session, root,
root_refp, &root_decr, child_refp, &child_incr));
__wt_cache_page_inmem_incr(session, child, child_incr);
}
WT_ASSERT(session,
alloc_refp - alloc_index->index == (ptrdiff_t)alloc_index->entries);
WT_ASSERT(session,
root_refp - pindex->index == (ptrdiff_t)pindex->entries);
/* Start making real changes to the tree, errors are fatal. */
complete = WT_ERR_PANIC;
/* Prepare the WT_REFs for the move. */
__split_ref_step1(session, alloc_index, false);
/*
* Confirm the root page's index hasn't moved, then update it, which
* makes the split visible to threads descending the tree.
*/
WT_ASSERT(session, WT_INTL_INDEX_GET_SAFE(root) == pindex);
WT_INTL_INDEX_SET(root, alloc_index);
#ifdef HAVE_DIAGNOSTIC
WT_WITH_PAGE_INDEX(session,
__split_verify_intl_key_order(session, root));
#endif
/* Finalize the WT_REFs we moved. */
WT_ERR(__split_ref_step2(session, alloc_index, false));
/* The split is complete and correct, ignore benign errors. */
complete = WT_ERR_IGNORE;
/* We've installed the allocated page-index, ensure error handling. */
alloc_index = NULL;
/*
* We can't free the previous root's index, there may be threads using
* it. Add to the session's discard list, to be freed once we know no
* threads can still be using it.
*
* This change requires care with error handling: we have already
* updated the page with a new index. Even if stashing the old value
* fails, we don't roll back that change, because threads may already
* be using the new index.
*/
split_gen = __wt_atomic_addv64(&S2C(session)->split_gen, 1);
size = sizeof(WT_PAGE_INDEX) + pindex->entries * sizeof(WT_REF *);
WT_TRET(__split_safe_free(session, split_gen, false, pindex, size));
root_decr += size;
/* Adjust the root's memory footprint and mark it dirty. */
__wt_cache_page_inmem_incr(session, root, root_incr);
__wt_cache_page_inmem_decr(session, root, root_decr);
__wt_page_modify_set(session, root);
err: switch (complete) {
case WT_ERR_RETURN:
__wt_free_ref_index(session, root, alloc_index, true);
break;
case WT_ERR_PANIC:
__wt_err(session, ret,
"fatal error during root page split to deepen the tree");
ret = WT_PANIC;
break;
case WT_ERR_IGNORE:
if (ret != 0 && ret != WT_PANIC) {
__wt_err(session, ret,
"ignoring not-fatal error during root page split "
"to deepen the tree");
ret = 0;
}
break;
}
return (ret);
}
/*
* __split_parent --
* Resolve a multi-page split, inserting new information into the parent.
*/
static int
__split_parent(WT_SESSION_IMPL *session, WT_REF *ref, WT_REF **ref_new,
uint32_t new_entries, size_t parent_incr, bool exclusive, bool discard)
{
WT_DECL_ITEM(scr);
WT_DECL_RET;
WT_IKEY *ikey;
WT_PAGE *parent;
WT_PAGE_INDEX *alloc_index, *pindex;
WT_REF **alloc_refp, *next_ref;
WT_SPLIT_ERROR_PHASE complete;
size_t parent_decr, size;
uint64_t split_gen;
uint32_t hint, i, j;
uint32_t deleted_entries, parent_entries, result_entries;
uint32_t *deleted_refs;
bool empty_parent;
parent = ref->home;
alloc_index = pindex = NULL;
parent_decr = 0;
parent_entries = 0;
empty_parent = false;
complete = WT_ERR_RETURN;
/* The parent page will be marked dirty, make sure that will succeed. */
WT_RET(__wt_page_modify_init(session, parent));
/*
* We've locked the parent, which means it cannot split (which is the
* only reason to worry about split generation values).
*/
pindex = WT_INTL_INDEX_GET_SAFE(parent);
parent_entries = pindex->entries;
/*
* Remove any refs to deleted pages while we are splitting, we have
* the internal page locked down, and are copying the refs into a new
* array anyway. Switch them to the special split state, so that any
* reading thread will restart.
*/
WT_ERR(__wt_scr_alloc(session, 10 * sizeof(uint32_t), &scr));
for (deleted_entries = 0, i = 0; i < parent_entries; ++i) {
next_ref = pindex->index[i];
WT_ASSERT(session, next_ref->state != WT_REF_SPLIT);
if ((discard && next_ref == ref) ||
(next_ref->state == WT_REF_DELETED &&
__wt_delete_page_skip(session, next_ref, true) &&
__wt_atomic_casv32(
&next_ref->state, WT_REF_DELETED, WT_REF_SPLIT))) {
WT_ERR(__wt_buf_grow(session, scr,
(deleted_entries + 1) * sizeof(uint32_t)));
deleted_refs = scr->mem;
deleted_refs[deleted_entries++] = i;
}
}
/*
* The final entry count consists of the original count, plus any new
* pages, less any WT_REFs we're removing (deleted entries plus the
* entry we're replacing).
*/
result_entries = (parent_entries + new_entries) - deleted_entries;
if (!discard)
--result_entries;
/*
* If there are no remaining entries on the parent, give up, we can't
* leave an empty internal page. Mark it to be evicted soon and clean
* up any references that have changed state.
*/
if (result_entries == 0) {
empty_parent = true;
__wt_page_evict_soon(parent);
goto err;
}
/*
* Allocate and initialize a new page index array for the parent, then
* copy references from the original index array, plus references from
* the newly created split array, into place.
*
* Update the WT_REF's page-index hint as we go. This can race with a
* thread setting the hint based on an older page-index, and the change
* isn't backed out in the case of an error, so there ways for the hint
* to be wrong; OK because it's just a hint.
*/
size = sizeof(WT_PAGE_INDEX) + result_entries * sizeof(WT_REF *);
WT_ERR(__wt_calloc(session, 1, size, &alloc_index));
parent_incr += size;
alloc_index->index = (WT_REF **)(alloc_index + 1);
alloc_index->entries = result_entries;
for (alloc_refp = alloc_index->index,
hint = i = 0; i < parent_entries; ++i) {
next_ref = pindex->index[i];
if (next_ref == ref)
for (j = 0; j < new_entries; ++j) {
ref_new[j]->home = parent;
ref_new[j]->pindex_hint = hint++;
*alloc_refp++ = ref_new[j];
}
else if (next_ref->state != WT_REF_SPLIT) {
/* Skip refs we have marked for deletion. */
next_ref->pindex_hint = hint++;
*alloc_refp++ = next_ref;
}
}
/* Check that we filled in all the entries. */
WT_ASSERT(session,
alloc_refp - alloc_index->index == (ptrdiff_t)result_entries);
/* Start making real changes to the tree, errors are fatal. */
complete = WT_ERR_PANIC;
/*
* Confirm the parent page's index hasn't moved then update it, which
* makes the split visible to threads descending the tree.
*/
WT_ASSERT(session, WT_INTL_INDEX_GET_SAFE(parent) == pindex);
WT_INTL_INDEX_SET(parent, alloc_index);
alloc_index = NULL;
#ifdef HAVE_DIAGNOSTIC
WT_WITH_PAGE_INDEX(session,
__split_verify_intl_key_order(session, parent));
#endif
/*
* If discarding the page's original WT_REF field, reset it to split.
* Threads cursoring through the tree were blocked because that WT_REF
* state was set to locked. Changing the locked state to split unblocks
* those threads and causes them to re-calculate their position based
* on the just-updated parent page's index.
*/
if (discard) {
/*
* Page-delete information is only read when the WT_REF state is
* WT_REF_DELETED. The page-delete memory wasn't added to the
* parent's footprint, ignore it here.
*/
if (ref->page_del != NULL) {
__wt_free(session, ref->page_del->update_list);
__wt_free(session, ref->page_del);
}
WT_PUBLISH(ref->state, WT_REF_SPLIT);
}
/*
* Push out the changes: not required for correctness, but don't let
* threads spin on incorrect page references longer than necessary.
*/
WT_FULL_BARRIER();
/* The split is complete and correct, ignore benign errors. */
complete = WT_ERR_IGNORE;
WT_ERR(__wt_verbose(session, WT_VERB_SPLIT,
"%p: %s %s" "split into parent %p, %" PRIu32 " -> %" PRIu32
" (%s%" PRIu32 ")",
ref->page, ref->page == NULL ?
"unknown page type" : __wt_page_type_string(ref->page->type),
ref->page == NULL ? "reverse " : "", parent,
parent_entries, result_entries,
ref->page == NULL ? "-" : "+",
ref->page == NULL ?
parent_entries - result_entries : result_entries - parent_entries));
/*
* The new page index is in place, free the WT_REF we were splitting and
* any deleted WT_REFs we found, modulo the usual safe free semantics.
*
* Acquire a new split generation.
*/
split_gen = __wt_atomic_addv64(&S2C(session)->split_gen, 1);
for (i = 0, deleted_refs = scr->mem; i < deleted_entries; ++i) {
next_ref = pindex->index[deleted_refs[i]];
WT_ASSERT(session, next_ref->state == WT_REF_SPLIT);
/*
* We set the WT_REF to split, discard it, freeing any resources
* it holds.
*
* Row-store trees where the old version of the page is being
* discarded: the previous parent page's key for this child page
* may have been an on-page overflow key. In that case, if the
* key hasn't been deleted, delete it now, including its backing
* blocks. We are exchanging the WT_REF that referenced it for
* the split page WT_REFs and their keys, and there's no longer
* any reference to it. Done after completing the split (if we
* failed, we'd leak the underlying blocks, but the parent page
* would be unaffected).
*/
if (parent->type == WT_PAGE_ROW_INT) {
WT_TRET(__split_ovfl_key_cleanup(
session, parent, next_ref));
ikey = __wt_ref_key_instantiated(next_ref);
if (ikey != NULL) {
size = sizeof(WT_IKEY) + ikey->size;
WT_TRET(__split_safe_free(
session, split_gen, exclusive, ikey, size));
parent_decr += size;
}
}
/*
* If this page was fast-truncated, any attached structure
* should have been freed before now.
*/
WT_ASSERT(session, next_ref->page_del == NULL);
WT_TRET(__wt_ref_block_free(session, next_ref));
WT_TRET(__split_safe_free(
session, split_gen, exclusive, next_ref, sizeof(WT_REF)));
parent_decr += sizeof(WT_REF);
}
/* We freed the reference that was split in the loop above. */
ref = NULL;
/*
* We can't free the previous page index, there may be threads using it.
* Add it to the session discard list, to be freed when it's safe.
*/
size = sizeof(WT_PAGE_INDEX) + pindex->entries * sizeof(WT_REF *);
WT_TRET(__split_safe_free(session, split_gen, exclusive, pindex, size));
parent_decr += size;
/* Adjust the parent's memory footprint and mark it dirty. */
__wt_cache_page_inmem_incr(session, parent, parent_incr);
__wt_cache_page_inmem_decr(session, parent, parent_decr);
__wt_page_modify_set(session, parent);
err: __wt_scr_free(session, &scr);
/*
* A note on error handling: if we completed the split, return success,
* nothing really bad can have happened, and our caller has to proceed
* with the split.
*/
switch (complete) {
case WT_ERR_RETURN:
for (i = 0; i < parent_entries; ++i) {
next_ref = pindex->index[i];
if (next_ref->state == WT_REF_SPLIT)
next_ref->state = WT_REF_DELETED;
}
__wt_free_ref_index(session, NULL, alloc_index, false);
/*
* The split couldn't proceed because the parent would be empty,
* return EBUSY so our caller knows to unlock the WT_REF that's
* being deleted, but don't be noisy, there's nothing wrong.
*/
if (empty_parent)
ret = EBUSY;
break;
case WT_ERR_PANIC:
__wt_err(session, ret, "fatal error during parent page split");
ret = WT_PANIC;
break;
case WT_ERR_IGNORE:
if (ret != 0 && ret != WT_PANIC) {
__wt_err(session, ret,
"ignoring not-fatal error during parent page "
"split");
ret = 0;
}
break;
}
return (ret);
}
/*
* __split_internal --
* Split an internal page into its parent.
*/
static int
__split_internal(WT_SESSION_IMPL *session, WT_PAGE *parent, WT_PAGE *page)
{
WT_BTREE *btree;
WT_DECL_RET;
WT_PAGE *child;
WT_PAGE_INDEX *alloc_index, *child_pindex, *pindex, *replace_index;
WT_REF **alloc_refp;
WT_REF **child_refp, *page_ref, **page_refp, *ref;
WT_SPLIT_ERROR_PHASE complete;
size_t child_incr, page_decr, page_incr, parent_incr, size;
uint64_t split_gen;
uint32_t children, chunk, i, j, remain;
uint32_t slots;
void *p;
WT_STAT_FAST_CONN_INCR(session, cache_eviction_split_internal);
WT_STAT_FAST_DATA_INCR(session, cache_eviction_split_internal);
/* The page will be marked dirty, make sure that will succeed. */
WT_RET(__wt_page_modify_init(session, page));
btree = S2BT(session);
alloc_index = replace_index = NULL;
page_ref = page->pg_intl_parent_ref;
page_decr = page_incr = parent_incr = 0;
complete = WT_ERR_RETURN;
/*
* Our caller is holding the page locked to single-thread splits, which
* means we can safely look at the page's index without setting a split
* generation.
*/
pindex = WT_INTL_INDEX_GET_SAFE(page);
/*
* Decide how many child pages to create, then calculate the standard
* chunk and whatever remains. Sanity check the number of children:
* the decision to split matched to the deepen-per-child configuration
* might get it wrong.
*/
children = pindex->entries / btree->split_deepen_per_child;
if (children < 10) {
if (pindex->entries < 100)
return (EBUSY);
children = 10;
}
chunk = pindex->entries / children;
remain = pindex->entries - chunk * (children - 1);
WT_ERR(__wt_verbose(session, WT_VERB_SPLIT,
"%p: %" PRIu32 " internal page elements, splitting %" PRIu32
" children into parent %p",
page, pindex->entries, children, parent));
/*
* Ideally, we'd discard the original page, but that's hard since other
* threads of control are using it (for example, if eviction is walking
* the tree and looking at the page.) Instead, perform a right-split,
* moving all except the first chunk of the page's WT_REF objects to new
* pages.
*
* Create and initialize a replacement WT_PAGE_INDEX for the original
* page.
*/
size = sizeof(WT_PAGE_INDEX) + chunk * sizeof(WT_REF *);
WT_ERR(__wt_calloc(session, 1, size, &replace_index));
page_incr += size;
replace_index->index = (WT_REF **)(replace_index + 1);
replace_index->entries = chunk;
for (page_refp = pindex->index, i = 0; i < chunk; ++i)
replace_index->index[i] = *page_refp++;
/*
* Allocate a new WT_PAGE_INDEX and set of WT_REF objects to be inserted
* into the page's parent, replacing the page's page-index.
*
* The first slot of the new WT_PAGE_INDEX is the original page WT_REF.
* The remainder of the slots are allocated WT_REFs.
*/
size = sizeof(WT_PAGE_INDEX) + children * sizeof(WT_REF *);
WT_ERR(__wt_calloc(session, 1, size, &alloc_index));
parent_incr += size;
alloc_index->index = (WT_REF **)(alloc_index + 1);
alloc_index->entries = children;
alloc_refp = alloc_index->index;
*alloc_refp++ = page_ref;
for (i = 1; i < children; ++alloc_refp, ++i)
WT_ERR(__wt_calloc_one(session, alloc_refp));
parent_incr += children * sizeof(WT_REF);
/* Allocate child pages, and connect them into the new page index. */
WT_ASSERT(session, page_refp == pindex->index + chunk);
for (alloc_refp = alloc_index->index + 1, i = 1; i < children; ++i) {
slots = i == children - 1 ? remain : chunk;
WT_ERR(__wt_page_alloc(
session, page->type, 0, slots, false, &child));
/*
* Initialize the page's child reference; we need a copy of the
* page's key.
*/
ref = *alloc_refp++;
ref->home = parent;
ref->page = child;
ref->addr = NULL;
if (page->type == WT_PAGE_ROW_INT) {
__wt_ref_key(page, *page_refp, &p, &size);
WT_ERR(__wt_row_ikey(session, 0, p, size, ref));
parent_incr += sizeof(WT_IKEY) + size;
} else
ref->key.recno = (*page_refp)->key.recno;
ref->state = WT_REF_MEM;
/* Initialize the child page. */
if (page->type == WT_PAGE_COL_INT)
child->pg_intl_recno = (*page_refp)->key.recno;
child->pg_intl_parent_ref = ref;
/* Mark it dirty. */
WT_ERR(__wt_page_modify_init(session, child));
__wt_page_modify_set(session, child);
/*
* The newly allocated child's page index references the same
* structures as the parent. (We cannot move WT_REF structures,
* threads may be underneath us right now changing the structure
* state.) However, if the WT_REF structures reference on-page
* information, we have to fix that, because the disk image for
* the page that has an page index entry for the WT_REF is about
* to be discarded.
*/
child_pindex = WT_INTL_INDEX_GET_SAFE(child);
child_incr = 0;
for (child_refp = child_pindex->index,
j = 0; j < slots; ++child_refp, ++page_refp, ++j)
WT_ERR(__split_ref_move(session, page,
page_refp, &page_decr, child_refp, &child_incr));
__wt_cache_page_inmem_incr(session, child, child_incr);
}
WT_ASSERT(session, alloc_refp -
alloc_index->index == (ptrdiff_t)alloc_index->entries);
WT_ASSERT(session,
page_refp - pindex->index == (ptrdiff_t)pindex->entries);
/* Start making real changes to the tree, errors are fatal. */
complete = WT_ERR_PANIC;
/* Prepare the WT_REFs for the move. */
__split_ref_step1(session, alloc_index, true);
/* Split into the parent. */
WT_ERR(__split_parent(session, page_ref, alloc_index->index,
alloc_index->entries, parent_incr, false, false));
/* Confirm the page's index hasn't moved, then update it. */
WT_ASSERT(session, WT_INTL_INDEX_GET_SAFE(page) == pindex);
WT_INTL_INDEX_SET(page, replace_index);
#ifdef HAVE_DIAGNOSTIC
WT_WITH_PAGE_INDEX(session,
__split_verify_intl_key_order(session, parent));
WT_WITH_PAGE_INDEX(session,
__split_verify_intl_key_order(session, page));
#endif
/* Finalize the WT_REFs we moved. */
WT_ERR(__split_ref_step2(session, alloc_index, true));
/* The split is complete and correct, ignore benign errors. */
complete = WT_ERR_IGNORE;
/*
* Push out the changes: not required for correctness, but no reason
* to wait.
*/
WT_FULL_BARRIER();
/*
* We don't care about the page-index we allocated, all we needed was
* the array of WT_REF structures, which has now been split into the
* parent page.
*/
__wt_free(session, alloc_index);
/*
* We can't free the previous page's index, there may be threads using
* it. Add to the session's discard list, to be freed once we know no
* threads can still be using it.
*
* This change requires care with error handling, we've already updated
* the parent page. Even if stashing the old value fails, we don't roll
* back that change, because threads may already be using the new parent
* page.
*/
split_gen = __wt_atomic_addv64(&S2C(session)->split_gen, 1);
size = sizeof(WT_PAGE_INDEX) + pindex->entries * sizeof(WT_REF *);
WT_TRET(__split_safe_free(session, split_gen, false, pindex, size));
page_decr += size;
/* Adjust the page's memory footprint, and mark it dirty. */
__wt_cache_page_inmem_incr(session, page, page_incr);
__wt_cache_page_inmem_decr(session, page, page_decr);
__wt_page_modify_set(session, page);
err: switch (complete) {
case WT_ERR_RETURN:
__wt_free_ref_index(session, page, alloc_index, true);
__wt_free_ref_index(session, page, replace_index, false);
break;
case WT_ERR_PANIC:
__wt_err(session, ret,
"fatal error during internal page split");
ret = WT_PANIC;
break;
case WT_ERR_IGNORE:
if (ret != 0 && ret != WT_PANIC) {
__wt_err(session, ret,
"ignoring not-fatal error during internal page "
"split");
ret = 0;
}
break;
}
return (ret);
}
/*
* __split_internal_lock --
* Lock an internal page.
*/
static int
__split_internal_lock(WT_SESSION_IMPL *session, WT_REF *ref, bool trylock,
WT_PAGE **parentp, bool *hazardp)
{
WT_DECL_RET;
WT_PAGE *parent;
WT_REF *parent_ref;
*hazardp = false;
*parentp = NULL;
/*
* A checkpoint reconciling this parent page can deadlock with
* our split. We have an exclusive page lock on the child before
* we acquire the page's reconciliation lock, and reconciliation
* acquires the page's reconciliation lock before it encounters
* the child's exclusive lock (which causes reconciliation to
* loop until the exclusive lock is resolved). If we want to split
* the parent, give up to avoid that deadlock.
*/
if (!trylock && S2BT(session)->checkpointing != WT_CKPT_OFF)
return (EBUSY);
/*
* Get a page-level lock on the parent to single-thread splits into the
* page because we need to single-thread sizing/growing the page index.
* It's OK to queue up multiple splits as the child pages split, but the
* actual split into the parent has to be serialized. Note we allocate
* memory inside of the lock and may want to invest effort in making the
* locked period shorter.
*
* We use the reconciliation lock here because not only do we have to
* single-thread the split, we have to lock out reconciliation of the
* parent because reconciliation of the parent can't deal with finding
* a split child during internal page traversal. Basically, there's no
* reason to use a different lock if we have to block reconciliation
* anyway.
*/
for (;;) {
parent = ref->home;
/* Skip pages that aren't ready to split. */
if (F_ISSET_ATOMIC(parent, WT_PAGE_SPLIT_BLOCK))
return (EBUSY);
if (trylock)
WT_RET(__wt_fair_trylock(session, &parent->page_lock));
else
WT_RET(__wt_fair_lock(session, &parent->page_lock));
if (parent == ref->home)
break;
WT_RET(__wt_fair_unlock(session, &parent->page_lock));
}
/*
* We have exclusive access to split the parent, and at this point, the
* child prevents the parent from being evicted. However, once we
* update the parent's index, it may no longer refer to the child, and
* could conceivably be evicted. Get a hazard pointer on the parent
* now, so that we can safely access it after updating the index.
*
* Take care getting the page doesn't trigger eviction work: we could
* block trying to split a different child of our parent and deadlock
* or we could be the eviction server relied upon by other threads to
* populate the eviction queue.
*/
if (!__wt_ref_is_root(parent_ref = parent->pg_intl_parent_ref)) {
WT_ERR(__wt_page_in(session, parent_ref, WT_READ_NO_EVICT));
*hazardp = true;
}
*parentp = parent;
return (0);
err: WT_TRET(__wt_fair_unlock(session, &parent->page_lock));
return (ret);
}
/*
* __split_internal_unlock --
* Unlock the parent page.
*/
static int
__split_internal_unlock(WT_SESSION_IMPL *session, WT_PAGE *parent, bool hazard)
{
WT_DECL_RET;
if (hazard)
ret = __wt_hazard_clear(session, parent);
WT_TRET(__wt_fair_unlock(session, &parent->page_lock));
return (ret);
}
/*
* __split_internal_should_split --
* Return if we should split an internal page.
*/
static bool
__split_internal_should_split(WT_SESSION_IMPL *session, WT_REF *ref)
{
WT_BTREE *btree;
WT_PAGE *page;
WT_PAGE_INDEX *pindex;
btree = S2BT(session);
page = ref->page;
/*
* Our caller is holding the parent page locked to single-thread splits,
* which means we can safely look at the page's index without setting a
* split generation.
*/
pindex = WT_INTL_INDEX_GET_SAFE(page);
/* Sanity check for a reasonable number of on-page keys. */
if (pindex->entries < 100)
return (false);
/*
* Deepen the tree if the page's memory footprint is larger than the
* maximum size for a page in memory (presumably putting eviction
* pressure on the cache).
*/
if (page->memory_footprint > btree->maxmempage)
return (true);
/*
* Check if the page has enough keys to make it worth splitting. If
* the number of keys is allowed to grow too large, the cost of
* splitting into parent pages can become large enough to result
* in slow operations.
*/
if (pindex->entries > btree->split_deepen_min_child)
return (true);
return (false);
}
/*
* __split_parent_climb --
* Check if we should split up the tree.
*/
static int
__split_parent_climb(WT_SESSION_IMPL *session, WT_PAGE *page, bool page_hazard)
{
WT_DECL_RET;
WT_PAGE *parent;
WT_REF *ref;
bool parent_hazard;
/*
* Page splits trickle up the tree, that is, as leaf pages grow large
* enough and are evicted, they'll split into their parent. And, as
* that parent page grows large enough and is evicted, it splits into
* its parent and so on. When the page split wave reaches the root,
* the tree will permanently deepen as multiple root pages are written.
*
* However, this only helps if internal pages are evicted (and we resist
* evicting internal pages for obvious reasons), or if the tree were to
* be closed and re-opened from a disk image, which may be a rare event.
*
* To avoid internal pages becoming too large absent eviction, check
* parent pages each time pages are split into them. If the page is big
* enough, either split the page into its parent or, in the case of the
* root, deepen the tree.
*
* Split up the tree.
*/
for (;;) {
parent = NULL;
parent_hazard = false;
ref = page->pg_intl_parent_ref;
/* If we don't need to split the page, we're done. */
if (!__split_internal_should_split(session, ref))
break;
/*
* If we've reached the root page, there are no subsequent pages
* to review, deepen the tree and quit.
*/
if (__wt_ref_is_root(ref)) {
ret = __split_root(session, page);
break;
}
/*
* Lock the parent and split into it, then swap the parent/page
* locks, lock-coupling up the tree.
*/
WT_ERR(__split_internal_lock(
session, ref, true, &parent, &parent_hazard));
ret = __split_internal(session, parent, page);
WT_TRET(__split_internal_unlock(session, page, page_hazard));
page = parent;
page_hazard = parent_hazard;
parent = NULL;
parent_hazard = false;
WT_ERR(ret);
}
err: if (parent != NULL)
WT_TRET(
__split_internal_unlock(session, parent, parent_hazard));
WT_TRET(__split_internal_unlock(session, page, page_hazard));
/* A page may have been busy, in which case return without error. */
WT_RET_BUSY_OK(ret);
return (0);
}
/*
* __split_multi_inmem --
* Instantiate a page in a multi-block set.
*/
static int
__split_multi_inmem(
WT_SESSION_IMPL *session, WT_PAGE *orig, WT_REF *ref, WT_MULTI *multi)
{
WT_CURSOR_BTREE cbt;
WT_DECL_ITEM(key);
WT_DECL_RET;
WT_PAGE *page;
WT_UPDATE *upd;
WT_SAVE_UPD *supd;
uint64_t recno;
uint32_t i, slot;
/*
* This code re-creates an in-memory page that is part of a set created
* while evicting a large page, and adds references to any unresolved
* update chains to the new page. We get here due to choosing to keep
* the results of a split in memory or because and update could not be
* written when attempting to evict a page.
*
* Clear the disk image and link the page into the passed-in WT_REF to
* simplify error handling: our caller will not discard the disk image
* when discarding the original page, and our caller will discard the
* allocated page on error, when discarding the allocated WT_REF.
*/
WT_RET(__wt_page_inmem(session, ref,
multi->disk_image, ((WT_PAGE_HEADER *)multi->disk_image)->mem_size,
WT_PAGE_DISK_ALLOC, &page));
multi->disk_image = NULL;
if (orig->type == WT_PAGE_ROW_LEAF)
WT_RET(__wt_scr_alloc(session, 0, &key));
__wt_btcur_init(session, &cbt);
__wt_btcur_open(&cbt);
/* Re-create each modification we couldn't write. */
for (i = 0, supd = multi->supd; i < multi->supd_entries; ++i, ++supd)
switch (orig->type) {
case WT_PAGE_COL_FIX:
case WT_PAGE_COL_VAR:
/* Build a key. */
upd = supd->ins->upd;
recno = WT_INSERT_RECNO(supd->ins);
/* Search the page. */
WT_ERR(__wt_col_search(session, recno, ref, &cbt));
/* Apply the modification. */
WT_ERR(__wt_col_modify(
session, &cbt, recno, NULL, upd, false));
break;
case WT_PAGE_ROW_LEAF:
/* Build a key. */
if (supd->ins == NULL) {
slot = WT_ROW_SLOT(orig, supd->rip);
upd = orig->pg_row_upd[slot];
WT_ERR(__wt_row_leaf_key(
session, orig, supd->rip, key, false));
} else {
upd = supd->ins->upd;
key->data = WT_INSERT_KEY(supd->ins);
key->size = WT_INSERT_KEY_SIZE(supd->ins);
}
/* Search the page. */
WT_ERR(__wt_row_search(session, key, ref, &cbt, true));
/* Apply the modification. */
WT_ERR(__wt_row_modify(
session, &cbt, key, NULL, upd, false));
break;
WT_ILLEGAL_VALUE_ERR(session);
}
/*
* If we modified the page above, it will have set the first dirty
* transaction to the last transaction currently running. However, the
* updates we installed may be older than that. Set the first dirty
* transaction to an impossibly old value so this page is never skipped
* in a checkpoint.
*/
if (page->modify != NULL)
page->modify->first_dirty_txn = WT_TXN_FIRST;
err: /* Free any resources that may have been cached in the cursor. */
WT_TRET(__wt_btcur_close(&cbt, true));
__wt_scr_free(session, &key);
return (ret);
}
/*
* __split_multi_inmem_final --
* Discard moved update lists from the original page.
*/
static void
__split_multi_inmem_final(WT_PAGE *orig, WT_MULTI *multi)
{
WT_SAVE_UPD *supd;
uint32_t i, slot;
/*
* We successfully created new in-memory pages. For error-handling
* reasons, we've left the update chains referenced by both the original
* and new pages. We're ready to discard the original page, terminate
* the original page's reference to any update list we moved.
*/
for (i = 0, supd = multi->supd; i < multi->supd_entries; ++i, ++supd)
switch (orig->type) {
case WT_PAGE_COL_FIX:
case WT_PAGE_COL_VAR:
supd->ins->upd = NULL;
break;
case WT_PAGE_ROW_LEAF:
if (supd->ins == NULL) {
slot = WT_ROW_SLOT(orig, supd->rip);
orig->pg_row_upd[slot] = NULL;
} else
supd->ins->upd = NULL;
break;
}
}
/*
* __split_multi_inmem_fail --
* Discard allocated pages after failure.
*/
static void
__split_multi_inmem_fail(WT_SESSION_IMPL *session, WT_PAGE *orig, WT_REF *ref)
{
/*
* We failed creating new in-memory pages. For error-handling reasons,
* we've left the update chains referenced by both the original and
* new pages. Discard the new pages, setting a flag so the discard code
* doesn't discard the updates on the page.
*/
if (ref->page != NULL) {
F_SET_ATOMIC(ref->page, WT_PAGE_UPDATE_IGNORE);
__wt_free_ref(session, ref, orig->type, true);
}
}
/*
* __wt_multi_to_ref --
* Move a multi-block list into an array of WT_REF structures.
*/
int
__wt_multi_to_ref(WT_SESSION_IMPL *session,
WT_PAGE *page, WT_MULTI *multi, WT_REF **refp, size_t *incrp)
{
WT_ADDR *addr;
WT_IKEY *ikey;
WT_REF *ref;
size_t incr;
addr = NULL;
incr = 0;
/* Allocate an underlying WT_REF. */
WT_RET(__wt_calloc_one(session, refp));
ref = *refp;
incr += sizeof(WT_REF);
/* Any parent reference is filled in by our caller. */
ref->home = NULL;
if (multi->disk_image == NULL) {
/*
* Copy the address: we could simply take the buffer, but that
* would complicate error handling, freeing the reference array
* would have to avoid freeing the memory, and it's not worth
* the confusion.
*/
WT_RET(__wt_calloc_one(session, &addr));
ref->addr = addr;
addr->size = multi->addr.size;
addr->type = multi->addr.type;
WT_RET(__wt_strndup(session,
multi->addr.addr, addr->size, &addr->addr));
} else
WT_RET(__split_multi_inmem(session, page, ref, multi));
switch (page->type) {
case WT_PAGE_ROW_INT:
case WT_PAGE_ROW_LEAF:
ikey = multi->key.ikey;
WT_RET(__wt_row_ikey(
session, 0, WT_IKEY_DATA(ikey), ikey->size, ref));
incr += sizeof(WT_IKEY) + ikey->size;
break;
default:
ref->key.recno = multi->key.recno;
break;
}
ref->state = addr != NULL ? WT_REF_DISK : WT_REF_MEM;
/*
* If our caller wants to track the memory allocations, we have a return
* reference.
*/
if (incrp != NULL)
*incrp += incr;
return (0);
}
/*
* __split_insert --
* Split a page's last insert list entries into a separate page.
*/
static int
__split_insert(WT_SESSION_IMPL *session, WT_REF *ref)
{
WT_DECL_RET;
WT_DECL_ITEM(key);
WT_INSERT *ins, **insp, *moved_ins, *prev_ins;
WT_INSERT_HEAD *ins_head;
WT_PAGE *page, *right;
WT_REF *child, *split_ref[2] = { NULL, NULL };
size_t page_decr, parent_incr, right_incr;
int i;
WT_STAT_FAST_CONN_INCR(session, cache_inmem_split);
WT_STAT_FAST_DATA_INCR(session, cache_inmem_split);
page = ref->page;
right = NULL;
page_decr = parent_incr = right_incr = 0;
/*
* Assert splitting makes sense; specifically assert the page is dirty,
* we depend on that, otherwise the page might be evicted based on its
* last reconciliation which no longer matches reality after the split.
*
* Note this page has already been through an in-memory split.
*/
WT_ASSERT(session, __wt_leaf_page_can_split(session, page));
WT_ASSERT(session, __wt_page_is_modified(page));
F_SET_ATOMIC(page, WT_PAGE_SPLIT_INSERT);
/* Find the last item on the page. */
ins_head = page->pg_row_entries == 0 ?
WT_ROW_INSERT_SMALLEST(page) :
WT_ROW_INSERT_SLOT(page, page->pg_row_entries - 1);
moved_ins = WT_SKIP_LAST(ins_head);
/*
* The first page in the split is the current page, but we still have
* to create a replacement WT_REF, the original WT_REF will be set to
* split status and eventually freed.
*
* The new WT_REF is not quite identical: we have to instantiate a key,
* and the new reference is visible to readers once the split completes.
*
* The key-instantiation code checks for races, leave the key fields
* zeroed we don't trigger them.
*
* Don't copy any deleted page state: we may be splitting a page that
* was instantiated after a truncate and that history should not be
* carried onto these new child pages.
*/
WT_ERR(__wt_calloc_one(session, &split_ref[0]));
child = split_ref[0];
child->page = ref->page;
child->home = ref->home;
child->pindex_hint = ref->pindex_hint;
child->state = WT_REF_MEM;
child->addr = ref->addr;
/*
* The address has moved to the replacement WT_REF. Make sure it isn't
* freed when the original ref is discarded.
*/
ref->addr = NULL;
/*
* Copy the first key from the original page into first ref in the new
* parent. Pages created in memory always have a "smallest" insert
* list, so look there first. If we don't find one, get the first key
* from the disk image.
*
* We can't just use the key from the original ref: it may have been
* suffix-compressed, and after the split the truncated key may not be
* valid.
*/
WT_ERR(__wt_scr_alloc(session, 0, &key));
if ((ins = WT_SKIP_FIRST(WT_ROW_INSERT_SMALLEST(page))) != NULL) {
key->data = WT_INSERT_KEY(ins);
key->size = WT_INSERT_KEY_SIZE(ins);
} else
WT_ERR(__wt_row_leaf_key(
session, page, &page->pg_row_d[0], key, true));
WT_ERR(__wt_row_ikey(session, 0, key->data, key->size, child));
parent_incr += sizeof(WT_REF) + sizeof(WT_IKEY) + key->size;
__wt_scr_free(session, &key);
/*
* The second page in the split is a new WT_REF/page pair.
*/
WT_ERR(__wt_page_alloc(session, WT_PAGE_ROW_LEAF, 0, 0, false, &right));
WT_ERR(__wt_calloc_one(session, &right->pg_row_ins));
WT_ERR(__wt_calloc_one(session, &right->pg_row_ins[0]));
right_incr += sizeof(WT_INSERT_HEAD);
right_incr += sizeof(WT_INSERT_HEAD *);
WT_ERR(__wt_calloc_one(session, &split_ref[1]));
child = split_ref[1];
child->page = right;
child->state = WT_REF_MEM;
WT_ERR(__wt_row_ikey(session, 0,
WT_INSERT_KEY(moved_ins), WT_INSERT_KEY_SIZE(moved_ins),
child));
parent_incr +=
sizeof(WT_REF) + sizeof(WT_IKEY) + WT_INSERT_KEY_SIZE(moved_ins);
/* The new page is dirty by definition. */
WT_ERR(__wt_page_modify_init(session, right));
__wt_page_modify_set(session, right);
/*
* We modified the page above, which will have set the first dirty
* transaction to the last transaction current running. However, the
* updates we installed may be older than that. Set the first dirty
* transaction to an impossibly old value so this page is never skipped
* in a checkpoint.
*/
right->modify->first_dirty_txn = WT_TXN_FIRST;
/*
* Calculate how much memory we're moving: figure out how deep the skip
* list stack is for the element we are moving, and the memory used by
* the item's list of updates.
*/
for (i = 0; i < WT_SKIP_MAXDEPTH && ins_head->tail[i] == moved_ins; ++i)
;
WT_MEM_TRANSFER(page_decr, right_incr, sizeof(WT_INSERT) +
(size_t)i * sizeof(WT_INSERT *) + WT_INSERT_KEY_SIZE(moved_ins));
WT_MEM_TRANSFER(
page_decr, right_incr, __wt_update_list_memsize(moved_ins->upd));
/*
* Allocation operations completed, move the last insert list item from
* the original page to the new page.
*
* First, update the item to the new child page. (Just append the entry
* for simplicity, the previous skip list pointers originally allocated
* can be ignored.)
*/
right->pg_row_ins[0]->head[0] =
right->pg_row_ins[0]->tail[0] = moved_ins;
/*
* Remove the entry from the orig page (i.e truncate the skip list).
* Following is an example skip list that might help.
*
* __
* |c3|
* |
* __ __ __
* |a2|--------|c2|--|d2|
* | | |
* __ __ __ __
* |a1|--------|c1|--|d1|--------|f1|
* | | | |
* __ __ __ __ __ __
* |a0|--|b0|--|c0|--|d0|--|e0|--|f0|
*
* From the above picture.
* The head array will be: a0, a1, a2, c3, NULL
* The tail array will be: f0, f1, d2, c3, NULL
* We are looking for: e1, d2, NULL
* If there were no f1, we'd be looking for: e0, NULL
* If there were an f2, we'd be looking for: e0, d1, d2, NULL
*
* The algorithm does:
* 1) Start at the top of the head list.
* 2) Step down until we find a level that contains more than one
* element.
* 3) Step across until we reach the tail of the level.
* 4) If the tail is the item being moved, remove it.
* 5) Drop down a level, and go to step 3 until at level 0.
*/
prev_ins = NULL; /* -Wconditional-uninitialized */
for (i = WT_SKIP_MAXDEPTH - 1, insp = &ins_head->head[i];
i >= 0;
i--, insp--) {
/* Level empty, or a single element. */
if (ins_head->head[i] == NULL ||
ins_head->head[i] == ins_head->tail[i]) {
/* Remove if it is the element being moved. */
if (ins_head->head[i] == moved_ins)
ins_head->head[i] = ins_head->tail[i] = NULL;
continue;
}
for (ins = *insp; ins != ins_head->tail[i]; ins = ins->next[i])
prev_ins = ins;
/*
* Update the stack head so that we step down as far to the
* right as possible. We know that prev_ins is valid since
* levels must contain at least two items to be here.
*/
insp = &prev_ins->next[i];
if (ins == moved_ins) {
/* Remove the item being moved. */
WT_ASSERT(session, ins_head->head[i] != moved_ins);
WT_ASSERT(session, prev_ins->next[i] == moved_ins);
*insp = NULL;
ins_head->tail[i] = prev_ins;
}
}
#ifdef HAVE_DIAGNOSTIC
/*
* Verify the moved insert item appears nowhere on the skip list.
*/
for (i = WT_SKIP_MAXDEPTH - 1, insp = &ins_head->head[i];
i >= 0;
i--, insp--)
for (ins = *insp; ins != NULL; ins = ins->next[i])
WT_ASSERT(session, ins != moved_ins);
#endif
/*
* Update the page accounting.
*
* XXX
* If we fail to split the parent, the page's accounting will be wrong.
*/
__wt_cache_page_inmem_decr(session, page, page_decr);
__wt_cache_page_inmem_incr(session, right, right_incr);
/*
* Split into the parent. After this, the original page is no
* longer locked, so we cannot safely look at it.
*/
page = NULL;
if ((ret = __split_parent(
session, ref, split_ref, 2, parent_incr, false, true)) != 0) {
/*
* Move the insert list element back to the original page list.
* For simplicity, the previous skip list pointers originally
* allocated can be ignored, just append the entry to the end of
* the level 0 list. As before, we depend on the list having
* multiple elements and ignore the edge cases small lists have.
*/
right->pg_row_ins[0]->head[0] =
right->pg_row_ins[0]->tail[0] = NULL;
ins_head->tail[0]->next[0] = moved_ins;
ins_head->tail[0] = moved_ins;
/*
* We marked the new page dirty; we're going to discard it, but
* first mark it clean and fix up the cache statistics.
*/
__wt_page_modify_clear(session, right);
WT_ERR(ret);
}
return (0);
err: if (split_ref[0] != NULL) {
/*
* The address was moved to the replacement WT_REF, restore it.
*/
ref->addr = split_ref[0]->addr;
__wt_free(session, split_ref[0]->key.ikey);
__wt_free(session, split_ref[0]);
}
if (split_ref[1] != NULL) {
__wt_free(session, split_ref[1]->key.ikey);
__wt_free(session, split_ref[1]);
}
if (right != NULL)
__wt_page_out(session, &right);
__wt_scr_free(session, &key);
return (ret);
}
/*
* __wt_split_insert --
* Lock, then split.
*/
int
__wt_split_insert(WT_SESSION_IMPL *session, WT_REF *ref)
{
WT_DECL_RET;
WT_PAGE *parent;
bool hazard;
WT_RET(__wt_verbose(
session, WT_VERB_SPLIT, "%p: split-insert", ref->page));
WT_RET(__split_internal_lock(session, ref, true, &parent, &hazard));
if ((ret = __split_insert(session, ref)) != 0) {
WT_TRET(__split_internal_unlock(session, parent, hazard));
return (ret);
}
/*
* Split up through the tree as necessary; we're holding the original
* parent page locked, note the functions we call are responsible for
* releasing that lock.
*/
return (__split_parent_climb(session, parent, hazard));
}
/*
* __split_multi --
* Split a page into multiple pages.
*/
static int
__split_multi(WT_SESSION_IMPL *session, WT_REF *ref, bool closing)
{
WT_DECL_RET;
WT_PAGE *page;
WT_PAGE_MODIFY *mod;
WT_REF **ref_new;
size_t parent_incr;
uint32_t i, new_entries;
WT_STAT_FAST_CONN_INCR(session, cache_eviction_split_leaf);
WT_STAT_FAST_DATA_INCR(session, cache_eviction_split_leaf);
page = ref->page;
mod = page->modify;
new_entries = mod->mod_multi_entries;
parent_incr = 0;
/*
* Convert the split page's multiblock reconciliation information into
* an array of page reference structures.
*/
WT_RET(__wt_calloc_def(session, new_entries, &ref_new));
for (i = 0; i < new_entries; ++i)
WT_ERR(__wt_multi_to_ref(session,
page, &mod->mod_multi[i], &ref_new[i], &parent_incr));
/*
* Split into the parent; if we're closing the file, we hold it
* exclusively.
*/
WT_ERR(__split_parent(
session, ref, ref_new, new_entries, parent_incr, closing, true));
/*
* The split succeeded, we can no longer fail.
*
* Finalize the move, discarding moved update lists from the original
* page.
*/
for (i = 0; i < new_entries; ++i)
__split_multi_inmem_final(page, &mod->mod_multi[i]);
/*
* Pages with unresolved changes are not marked clean in reconciliation,
* do it now, then discard the page.
*/
__wt_page_modify_clear(session, page);
__wt_page_out(session, &page);
if (0) {
err: for (i = 0; i < new_entries; ++i)
__split_multi_inmem_fail(session, page, ref_new[i]);
}
__wt_free(session, ref_new);
return (ret);
}
/*
* __wt_split_multi --
* Lock, then split.
*/
int
__wt_split_multi(WT_SESSION_IMPL *session, WT_REF *ref, int closing)
{
WT_DECL_RET;
WT_PAGE *parent;
bool hazard;
WT_RET(__wt_verbose(
session, WT_VERB_SPLIT, "%p: split-multi", ref->page));
WT_RET(__split_internal_lock(session, ref, false, &parent, &hazard));
if ((ret = __split_multi(session, ref, closing)) != 0 || closing) {
WT_TRET(__split_internal_unlock(session, parent, hazard));
return (ret);
}
/*
* Split up through the tree as necessary; we're holding the original
* parent page locked, note the functions we call are responsible for
* releasing that lock.
*/
return (__split_parent_climb(session, parent, hazard));
}
/*
* __wt_split_reverse --
* We have a locked ref that is empty and we want to rewrite the index in
* its parent.
*/
int
__wt_split_reverse(WT_SESSION_IMPL *session, WT_REF *ref)
{
WT_DECL_RET;
WT_PAGE *parent;
bool hazard;
WT_RET(__wt_verbose(
session, WT_VERB_SPLIT, "%p: reverse-split", ref->page));
WT_RET(__split_internal_lock(session, ref, false, &parent, &hazard));
ret = __split_parent(session, ref, NULL, 0, 0, false, true);
WT_TRET(__split_internal_unlock(session, parent, hazard));
return (ret);
}
/*
* __wt_split_rewrite --
* Rewrite an in-memory page with a new version.
*/
int
__wt_split_rewrite(WT_SESSION_IMPL *session, WT_REF *ref)
{
WT_DECL_RET;
WT_PAGE *page;
WT_PAGE_MODIFY *mod;
WT_REF new;
page = ref->page;
mod = page->modify;
WT_RET(__wt_verbose(
session, WT_VERB_SPLIT, "%p: split-rewrite", ref->page));
/*
* This isn't a split: a reconciliation failed because we couldn't write
* something, and in the case of forced eviction, we need to stop this
* page from being such a problem. We have exclusive access, rewrite the
* page in memory. The code lives here because the split code knows how
* to re-create a page in memory after it's been reconciled, and that's
* exactly what we want to do.
*
* Build the new page.
*/
memset(&new, 0, sizeof(new));
WT_ERR(__split_multi_inmem(session, page, &new, &mod->mod_multi[0]));
/*
* The rewrite succeeded, we can no longer fail.
*
* Finalize the move, discarding moved update lists from the original
* page.
*/
__split_multi_inmem_final(page, &mod->mod_multi[0]);
/*
* Discard the original page.
*
* Pages with unresolved changes are not marked clean during
* reconciliation, do it now.
*/
__wt_page_modify_clear(session, page);
__wt_ref_out(session, ref);
/* Swap the new page into place. */
ref->page = new.page;
WT_PUBLISH(ref->state, WT_REF_MEM);
return (0);
err: __split_multi_inmem_fail(session, page, &new);
return (ret);
}
|