1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
|
/*-
* Copyright (c) 2008-2014 WiredTiger, Inc.
* All rights reserved.
*
* See the file LICENSE for redistribution information.
*/
#include "wt_internal.h"
/*
* __sync_file --
* Flush pages for a specific file.
*/
static int
__sync_file(WT_SESSION_IMPL *session, int syncop)
{
struct timespec end, start;
WT_BTREE *btree;
WT_DECL_RET;
WT_PAGE *page;
WT_PAGE_MODIFY *mod;
WT_REF *walk;
WT_TXN *txn;
uint64_t internal_bytes, leaf_bytes;
uint64_t internal_pages, leaf_pages;
uint32_t flags;
btree = S2BT(session);
walk = NULL;
txn = &session->txn;
internal_bytes = leaf_bytes = 0;
internal_pages = leaf_pages = 0;
if (WT_VERBOSE_ISSET(session, WT_VERB_CHECKPOINT))
WT_ERR(__wt_epoch(session, &start));
switch (syncop) {
case WT_SYNC_WRITE_LEAVES:
/*
* Write all immediately available, dirty in-cache leaf pages.
*/
flags = WT_READ_CACHE |
WT_READ_NO_GEN | WT_READ_NO_WAIT | WT_READ_SKIP_INTL;
for (walk = NULL;;) {
WT_ERR(__wt_tree_walk(session, &walk, flags));
if (walk == NULL)
break;
/* Write dirty pages if nobody beat us to it. */
page = walk->page;
if (__wt_page_is_modified(page)) {
if (txn->isolation == TXN_ISO_READ_COMMITTED)
__wt_txn_refresh(
session, WT_TXN_NONE, 1);
leaf_bytes += page->memory_footprint;
++leaf_pages;
WT_ERR(__wt_rec_write(session, walk, NULL, 0));
}
}
break;
case WT_SYNC_CHECKPOINT:
/*
* When internal pages are being reconciled by checkpoint their
* child pages cannot disappear from underneath them or be split
* into them, nor can underlying blocks be freed until the block
* lists for the checkpoint are stable. Set the checkpointing
* flag to block eviction of dirty pages until the checkpoint's
* internal page pass is complete, then wait for any existing
* eviction to complete.
*/
btree->checkpointing = 1;
if (!F_ISSET(btree, WT_BTREE_NO_EVICTION)) {
WT_ERR(__wt_evict_file_exclusive_on(session));
__wt_evict_file_exclusive_off(session);
}
/* Write all dirty in-cache pages. */
flags = WT_READ_CACHE | WT_READ_NO_GEN;
for (walk = NULL;;) {
WT_ERR(__wt_tree_walk(session, &walk, flags));
if (walk == NULL)
break;
/*
* Write dirty pages, unless we can be sure they only
* became dirty after the checkpoint started.
*
* We can skip dirty pages if:
* (1) they are leaf pages;
* (2) there is a snapshot transaction active (which
* is the case in ordinary application checkpoints
* but not all internal cases); and
* (3) the first dirty update on the page is
* sufficiently recent that the checkpoint
* transaction would skip them.
*/
page = walk->page;
mod = page->modify;
if (__wt_page_is_modified(page) &&
(WT_PAGE_IS_INTERNAL(page) ||
!F_ISSET(txn, TXN_HAS_SNAPSHOT) ||
TXNID_LE(mod->first_dirty_txn, txn->snap_max))) {
if (WT_PAGE_IS_INTERNAL(page)) {
internal_bytes +=
page->memory_footprint;
++internal_pages;
} else {
leaf_bytes += page->memory_footprint;
++leaf_pages;
}
WT_ERR(__wt_rec_write(session, walk, NULL, 0));
}
}
break;
WT_ILLEGAL_VALUE_ERR(session);
}
if (WT_VERBOSE_ISSET(session, WT_VERB_CHECKPOINT)) {
WT_ERR(__wt_epoch(session, &end));
WT_ERR(__wt_verbose(session, WT_VERB_CHECKPOINT,
"__sync_file WT_SYNC_%s wrote:\n\t %" PRIu64
" bytes, %" PRIu64 " pages of leaves\n\t %" PRIu64
" bytes, %" PRIu64 " pages of internal\n\t"
"Took: %" PRIu64 "ms",
syncop == WT_SYNC_WRITE_LEAVES ?
"WRITE_LEAVES" : "CHECKPOINT",
leaf_bytes, leaf_pages, internal_bytes, internal_pages,
WT_TIMEDIFF(end, start) / WT_MILLION));
}
err: /* On error, clear any left-over tree walk. */
if (walk != NULL)
WT_TRET(__wt_page_release(session, walk));
if (txn->isolation == TXN_ISO_READ_COMMITTED && session->ncursors == 0)
__wt_txn_release_snapshot(session);
if (btree->checkpointing) {
/*
* Clear the checkpoint flag and push the change; not required,
* but publishing the change means stalled eviction gets moving
* as soon as possible.
*/
btree->checkpointing = 0;
WT_FULL_BARRIER();
/*
* Wake the eviction server, in case application threads have
* stalled while the eviction server decided it couldn't make
* progress. Without this, application threads will be stalled
* until the eviction server next wakes.
*/
WT_TRET(__wt_evict_server_wake(session));
}
return (ret);
}
/*
* __evict_file --
* Discard pages for a specific file.
*/
static int
__evict_file(WT_SESSION_IMPL *session, int syncop)
{
WT_BTREE *btree;
WT_DECL_RET;
WT_PAGE *page;
WT_REF *next_ref, *ref;
int eviction_enabled;
btree = S2BT(session);
eviction_enabled = !F_ISSET(btree, WT_BTREE_NO_EVICTION);
/*
* We need exclusive access to the file -- disable ordinary eviction
* and drain any blocks already queued.
*/
if (eviction_enabled)
WT_RET(__wt_evict_file_exclusive_on(session));
/* Make sure the oldest transaction ID is up-to-date. */
__wt_txn_update_oldest(session);
/* Walk the tree, discarding pages. */
next_ref = NULL;
WT_ERR(__wt_tree_walk(
session, &next_ref, WT_READ_CACHE | WT_READ_NO_GEN));
while ((ref = next_ref) != NULL) {
page = ref->page;
/*
* Eviction can fail when a page in the evicted page's subtree
* switches state. For example, if we don't evict a page marked
* empty, because we expect it to be merged into its parent, it
* might no longer be empty after it's reconciled, in which case
* eviction of its parent would fail. We can either walk the
* tree multiple times (until it's finally empty), or reconcile
* each page to get it to its final state before considering if
* it's an eviction target or will be merged into its parent.
*
* Don't limit this test to any particular page type, that tends
* to introduce bugs when the reconciliation of other page types
* changes, and there's no advantage to doing so.
*
* Eviction can also fail because an update cannot be written.
* If sessions have disjoint sets of files open, updates in a
* no-longer-referenced file may not yet be globally visible,
* and the write will fail with EBUSY. Our caller handles that
* error, retrying later.
*/
if (syncop == WT_SYNC_CLOSE && __wt_page_is_modified(page))
WT_ERR(__wt_rec_write(session, ref, NULL, WT_EVICTING));
/*
* We can't evict the page just returned to us (it marks our
* place in the tree), so move the walk to one page ahead of
* the page being evicted. Note, we reconciled the returned
* page first: if reconciliation of that page were to change
* the shape of the tree, and we did the next walk call before
* the reconciliation, the next walk call could miss a page in
* the tree.
*/
WT_ERR(__wt_tree_walk(
session, &next_ref, WT_READ_CACHE | WT_READ_NO_GEN));
switch (syncop) {
case WT_SYNC_CLOSE:
/*
* Evict the page.
* Do not attempt to evict pages expected to be merged
* into their parents, with the exception that the root
* page can't be merged, it must be written.
*/
if (__wt_ref_is_root(ref) ||
page->modify == NULL ||
!F_ISSET(page->modify, WT_PM_REC_EMPTY))
WT_ERR(__wt_rec_evict(session, ref, 1));
break;
case WT_SYNC_DISCARD:
/*
* Discard the page, whether clean or dirty.
*
* Clean the page, both to keep statistics correct, and
* to let the page-discard function assert no dirty page
* is ever discarded.
*/
if (__wt_page_is_modified(page)) {
page->modify->write_gen = 0;
__wt_cache_dirty_decr(session, page);
}
__wt_ref_out(session, ref);
break;
WT_ILLEGAL_VALUE_ERR(session);
}
}
if (0) {
err: /* On error, clear any left-over tree walk. */
if (next_ref != NULL)
WT_TRET(__wt_page_release(session, next_ref));
}
if (eviction_enabled)
__wt_evict_file_exclusive_off(session);
return (ret);
}
/*
* __wt_cache_force_write --
* Dirty the root page of the tree so it gets written.
*/
int
__wt_cache_force_write(WT_SESSION_IMPL *session)
{
WT_BTREE *btree;
WT_PAGE *page;
btree = S2BT(session);
page = btree->root.page;
/* Dirty the root page to ensure a write. */
WT_RET(__wt_page_modify_init(session, page));
__wt_page_modify_set(session, page);
return (0);
}
/*
* __wt_cache_op --
* Cache operations.
*/
int
__wt_cache_op(WT_SESSION_IMPL *session, WT_CKPT *ckptbase, int op)
{
WT_DECL_RET;
WT_BTREE *btree;
btree = S2BT(session);
switch (op) {
case WT_SYNC_CHECKPOINT:
case WT_SYNC_CLOSE:
/*
* Set the checkpoint reference for reconciliation; it's ugly,
* but drilling a function parameter path from our callers to
* the reconciliation of the tree's root page is going to be
* worse.
*/
WT_ASSERT(session, btree->ckpt == NULL);
btree->ckpt = ckptbase;
break;
}
switch (op) {
case WT_SYNC_CHECKPOINT:
case WT_SYNC_WRITE_LEAVES:
WT_ERR(__sync_file(session, op));
break;
case WT_SYNC_CLOSE:
case WT_SYNC_DISCARD:
WT_ERR(__evict_file(session, op));
break;
WT_ILLEGAL_VALUE_ERR(session);
}
err: switch (op) {
case WT_SYNC_CHECKPOINT:
case WT_SYNC_CLOSE:
btree->ckpt = NULL;
break;
}
return (ret);
}
|