summaryrefslogtreecommitdiff
path: root/src/btree/rec_write.c
blob: 6fd89ca9429f2b95228605a012afd9dd25b7d582 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
/*-
 * Copyright (c) 2008-2013 WiredTiger, Inc.
 *	All rights reserved.
 *
 * See the file LICENSE for redistribution information.
 */

#include "wt_internal.h"

struct __rec_boundary;		typedef struct __rec_boundary WT_BOUNDARY;
struct __rec_dictionary;	typedef struct __rec_dictionary WT_DICTIONARY;
struct __rec_kv;		typedef struct __rec_kv WT_KV;

/*
 * Reconciliation is the process of taking an in-memory page, walking each entry
 * in the page, building a backing disk image in a temporary buffer representing
 * that information, and writing that buffer to disk.  What could be simpler?
 *
 * WT_RECONCILE --
 *	Information tracking a single page reconciliation.
 */
typedef struct {
	WT_PAGE *page;			/* Page being reconciled */
	uint32_t flags;			/* Caller's configuration */

	WT_ITEM	 dsk;			/* Temporary disk-image buffer */

	/* Track whether all changes to the page are written. */
	uint64_t max_txn;
	uint32_t orig_write_gen;
	int	 upd_skipped;		/* Skipped a page's update */

	/*
	 * Raw compression (don't get me started, as if normal reconciliation
	 * wasn't bad enough).  If an application wants absolute control over
	 * what gets written to disk, we give it a list of byte strings and it
	 * gives us back an image that becomes a file block.  Because we don't
	 * know the number of items we're storing in a block until we've done
	 * a lot of work, we turn off most compression: dictionary, copy-cell,
	 * prefix and row-store internal page suffix compression are all off.
	 */
	int	  raw_compression;
	uint32_t  raw_max_slots;	/* Raw compression array sizes */
	uint32_t *raw_entries;		/* Raw compression slot entries */
	uint32_t *raw_offsets;		/* Raw compression slot offsets */
	uint64_t *raw_recnos;		/* Raw compression recno count */

	/*
	 * Track if reconciliation has seen any overflow items.  If a leaf page
	 * with no overflow items is written, the parent page's address cell is
	 * set to the leaf-no-overflow type.  This means we can delete the leaf
	 * page without reading it because we don't have to discard any overflow
	 * items it might reference.
	 *	The test test is per-page reconciliation, that is, once we see
	 * an overflow item on the page, all subsequent leaf pages written for
	 * the page will not be leaf-no-overflow type, regardless of whether or
	 * not they contain overflow items.  In other words, leaf-no-overflow
	 * is not guaranteed to be set on every page that doesn't contain an
	 * overflow item, only that if it is set, the page contains no overflow
	 * items.
	 *	The reason is because of raw compression: there's no easy/fast
	 * way to figure out if the rows selected by raw compression included
	 * overflow items, and the optimization isn't worth another pass over
	 * the data.
	 */
	int	ovfl_items;

	/*
	 * Reconciliation gets tricky if we have to split a page, which happens
	 * when the disk image we create exceeds the page type's maximum disk
	 * image size.
	 *
	 * First, the sizes of the page we're building.  If WiredTiger is doing
	 * page layout, page_size is the same as page_size_max.  We accumulate
	 * the maximum page size of raw data and when we reach that size, we
	 * split the page into multiple chunks, eventually compressing those
	 * chunks.  When the application is doing page layout (raw compression
	 * is configured), page_size can continue to grow past page_size_max,
	 * and we keep accumulating raw data until the raw compression callback
	 * accepts it.
	 */
	uint32_t page_size;		/* Current page size */
	uint32_t page_size_max;		/* Maximum on-disk page size */

	/*
	 * Second, the split size: if we're doing the page layout, split to a
	 * smaller-than-maximum page size when a split is required so we don't
	 * repeatedly split a packed page.
	 */
	uint32_t split_size;		/* Split page size */

	/*
	 * The problem with splits is we've done a lot of work by the time we
	 * realize we're going to have to split, we don't want to start over.
	 *
	 * To keep from having to start over when we hit the maximum page size,
	 * we track the page information when we approach a split boundary.
	 * If we eventually have to split, we walk this structure and pretend
	 * we were splitting all along.  After that, we continue to append to
	 * this structure, and eventually walk it to create a new internal page
	 * that references all of our split pages.
	 */
	struct __rec_boundary {
		/*
		 * The start field records location in the initial split buffer,
		 * that is, the first byte of the split chunk recorded before we
		 * decide to split a page; the offset between the first byte of
		 * chunk[0] and the first byte of chunk[1] is chunk[0]'s length.
		 *
		 * Once we split a page, we stop filling in the start field, as
		 * we're writing the split chunks as we find them.
		 */
		uint8_t *start;		/* Split's first byte */

		/*
		 * The recno and entries fields are the starting record number
		 * of the split chunk (for column-store splits), and the number
		 * of entries in the split chunk.  These fields are used both
		 * to write the split chunk, and to create a new internal page
		 * to reference the split pages.
		 */
		uint64_t recno;		/* Split's starting record */
		uint32_t entries;	/* Split's entries */

		WT_ADDR addr;		/* Split's written location */

		/*
		 * The key for a row-store page; no column-store key is needed
		 * because the page's recno, stored in the recno field, is the
		 * column-store key.
		 */
		WT_ITEM key;		/* Promoted row-store key */

		/*
		 * During wrapup, after reconciling the root page, we write a
		 * final block as part of a checkpoint.  If raw compression
		 * was configured, that block may have already been compressed.
		 */
		int already_compressed;
	} *bnd;				/* Saved boundaries */
	uint32_t bnd_next;		/* Next boundary slot */
	uint32_t bnd_next_max;		/* Maximum boundary slots used */
	uint32_t bnd_entries;		/* Total boundary slots */
	size_t   bnd_allocated;		/* Bytes allocated */

	/*
	 * We track the total number of page entries copied into split chunks
	 * so we can easily figure out how many entries in the current split
	 * chunk.
	 */
	uint32_t total_entries;		/* Total entries in splits */

	/*
	 * And there's state information as to where in this process we are:
	 * (1) tracking split boundaries because we can still fit more split
	 * chunks into the maximum page size, (2) tracking the maximum page
	 * size boundary because we can't fit any more split chunks into the
	 * maximum page size, (3) not performing boundary checks because it's
	 * either not useful with the current page size configuration, or
	 * because we've already been forced to split.
	 */
	enum {	SPLIT_BOUNDARY=0,	/* Next: a split page boundary */
		SPLIT_MAX=1,		/* Next: the maximum page boundary */
		SPLIT_TRACKING_OFF=2,	/* No boundary checks */
		SPLIT_TRACKING_RAW=3 }	/* Underlying compression decides */
	bnd_state;

	/*
	 * We track current information about the current record number, the
	 * number of entries copied into the temporary buffer, where we are
	 * in the temporary buffer, and how much memory remains.  Those items
	 * are packaged here rather than passing pointers to stack locations
	 * around the code.
	 */
	uint64_t recno;			/* Current record number */
	uint32_t entries;		/* Current number of entries */
	uint8_t *first_free;		/* Current first free byte */
	uint32_t space_avail;		/* Remaining space in this chunk */

	/*
	 * We don't need to keep the 0th key around on internal pages, the
	 * search code ignores them as nothing can sort less by definition.
	 * There's some trickiness here, see the code for comments on how
	 * these fields work.
	 */
	int	 cell_zero;		/* Row-store internal page 0th key */

	/*
	 * WT_DICTIONARY --
	 *	We optionally build a dictionary of row-store values for leaf
	 * pages.  Where two value cells are identical, only write the value
	 * once, the second and subsequent copies point to the original cell.
	 * The dictionary is fixed size, but organized in a skip-list to make
	 * searches faster.
	 */
	struct __rec_dictionary {
		uint64_t hash;				/* Hash value */
		void	*cell;				/* Matching cell */

		u_int depth;				/* Skiplist */
		WT_DICTIONARY *next[0];
	} **dictionary;					/* Dictionary */
	u_int dictionary_next, dictionary_slots;	/* Next, max entries */
							/* Skiplist head. */
	WT_DICTIONARY *dictionary_head[WT_SKIP_MAXDEPTH];

	/*
	 * WT_KV--
	 *	An on-page key/value item we're building.
	 */
	struct __rec_kv {
		WT_ITEM	 buf;		/* Data */
		WT_CELL	 cell;		/* Cell and cell's length */
		uint32_t cell_len;
		uint32_t len;		/* Total length of cell + data */
	} k, v;				/* Key/Value being built */

	WT_ITEM *cur, _cur;		/* Key/Value being built */
	WT_ITEM *last, _last;		/* Last key/value built */

	int key_pfx_compress;		/* If can prefix-compress next key */
	int key_pfx_compress_conf;	/* If prefix compression configured */
	int key_sfx_compress;		/* If can suffix-compress next key */
	int key_sfx_compress_conf;	/* If suffix compression configured */

	int bulk_load;			/* If it's a bulk load */

	int tested_ref_state;		/* Debugging information */
} WT_RECONCILE;

static void __rec_cell_build_addr(
		WT_RECONCILE *, const void *, uint32_t, u_int, uint64_t);
static int  __rec_cell_build_int_key(WT_SESSION_IMPL *,
		WT_RECONCILE *, const void *, uint32_t, int *);
static int  __rec_cell_build_leaf_key(WT_SESSION_IMPL *,
		WT_RECONCILE *, const void *, uint32_t, int *);
static int  __rec_cell_build_ovfl(WT_SESSION_IMPL *,
		WT_RECONCILE *, WT_KV *, uint8_t, uint64_t);
static int  __rec_cell_build_val(WT_SESSION_IMPL *,
		WT_RECONCILE *, const void *, uint32_t, uint64_t);
static int  __rec_child_deleted(
		WT_SESSION_IMPL *, WT_RECONCILE *, WT_PAGE *, WT_REF *, int *);
static int  __rec_col_fix(WT_SESSION_IMPL *, WT_RECONCILE *, WT_PAGE *);
static int  __rec_col_fix_slvg(WT_SESSION_IMPL *,
		WT_RECONCILE *, WT_PAGE *, WT_SALVAGE_COOKIE *);
static int  __rec_col_int(WT_SESSION_IMPL *, WT_RECONCILE *, WT_PAGE *);
static int  __rec_col_merge(WT_SESSION_IMPL *, WT_RECONCILE *, WT_PAGE *);
static int  __rec_col_var(WT_SESSION_IMPL *,
		WT_RECONCILE *, WT_PAGE *, WT_SALVAGE_COOKIE *);
static int  __rec_col_var_helper(WT_SESSION_IMPL *, WT_RECONCILE *,
		WT_SALVAGE_COOKIE *, WT_ITEM *, int, int, uint64_t);
static int  __rec_destroy_session(WT_SESSION_IMPL *);
static int  __rec_row_int(WT_SESSION_IMPL *, WT_RECONCILE *, WT_PAGE *);
static int  __rec_row_leaf(WT_SESSION_IMPL *,
		WT_RECONCILE *, WT_PAGE *, WT_SALVAGE_COOKIE *);
static int  __rec_row_leaf_insert(
		WT_SESSION_IMPL *, WT_RECONCILE *, WT_INSERT *);
static int  __rec_row_merge(WT_SESSION_IMPL *, WT_RECONCILE *, WT_PAGE *);
static int  __rec_split_col(
		WT_SESSION_IMPL *, WT_RECONCILE *, WT_PAGE *, WT_PAGE **);
static int  __rec_split_discard(WT_SESSION_IMPL *, WT_PAGE *);
static int  __rec_split_fixup(WT_SESSION_IMPL *, WT_RECONCILE *);
static int  __rec_split_row(
		WT_SESSION_IMPL *, WT_RECONCILE *, WT_PAGE *, WT_PAGE **);
static int  __rec_split_row_promote(
		WT_SESSION_IMPL *, WT_RECONCILE *, uint8_t);
static int  __rec_split_write(
		WT_SESSION_IMPL *, WT_RECONCILE *, WT_BOUNDARY *, WT_ITEM *);
static int  __rec_write_init(WT_SESSION_IMPL *, WT_PAGE *, uint32_t, void *);
static int  __rec_write_wrapup(WT_SESSION_IMPL *, WT_RECONCILE *, WT_PAGE *);
static int  __rec_write_wrapup_err(
		WT_SESSION_IMPL *, WT_RECONCILE *, WT_PAGE *);

static void __rec_dictionary_free(WT_SESSION_IMPL *, WT_RECONCILE *);
static int  __rec_dictionary_init(WT_SESSION_IMPL *, WT_RECONCILE *, u_int);
static int  __rec_dictionary_lookup(
		WT_SESSION_IMPL *, WT_RECONCILE *, WT_KV *, WT_DICTIONARY **);
static void __rec_dictionary_reset(WT_RECONCILE *);

/*
 * __wt_rec_write --
 *	Reconcile an in-memory page into its on-disk format, and write it.
 */
int
__wt_rec_write(WT_SESSION_IMPL *session,
    WT_PAGE *page, WT_SALVAGE_COOKIE *salvage, uint32_t flags)
{
	WT_RECONCILE *r;
	WT_DECL_RET;
	WT_CONNECTION_IMPL *conn;
	int locked;

	conn = S2C(session);

	/* We're shouldn't get called with a clean page, that's an error. */
	if (!__wt_page_is_modified(page))
		WT_RET_MSG(session, WT_ERROR,
		    "Attempt to reconcile a clean page.");

	/*
	 * We can't do anything with a split-merge page, it must be merged into
	 * its parent.
	 */
	if (F_ISSET(page->modify, WT_PM_REC_SPLIT_MERGE))
		return (0);

	WT_VERBOSE_RET(
	    session, reconcile, "%s", __wt_page_type_string(page->type));
	WT_STAT_FAST_CONN_INCR(session, rec_pages);
	WT_STAT_FAST_DATA_INCR(session, rec_pages);
	if (LF_ISSET(WT_EVICTION_SERVER_LOCKED)) {
		WT_STAT_FAST_CONN_INCR(session, rec_pages_eviction);
		WT_STAT_FAST_DATA_INCR(session, rec_pages_eviction);
	}

	/* Record the most recent transaction ID we will *not* write. */
	page->modify->disk_snap_min = session->txn.snap_min;

	/* Initialize the reconciliation structure for each new run. */
	WT_RET(__rec_write_init(session, page, flags, &session->reconcile));
	r = session->reconcile;

	/*
	 * The compaction process looks at the page's modification information;
	 * if compaction is running, lock the page down.
	 */
	locked = 0;
	if (conn->compact_in_memory_pass) {
		locked = 1;
		WT_PAGE_LOCK(session, page);
	}

	/* Reconcile the page. */
	switch (page->type) {
	case WT_PAGE_COL_FIX:
		if (salvage != NULL)
			ret = __rec_col_fix_slvg(session, r, page, salvage);
		else
			ret = __rec_col_fix(session, r, page);
		break;
	case WT_PAGE_COL_INT:
		ret = __rec_col_int(session, r, page);
		break;
	case WT_PAGE_COL_VAR:
		ret = __rec_col_var(session, r, page, salvage);
		break;
	case WT_PAGE_ROW_INT:
		ret = __rec_row_int(session, r, page);
		break;
	case WT_PAGE_ROW_LEAF:
		ret = __rec_row_leaf(session, r, page, salvage);
		break;
	WT_ILLEGAL_VALUE_SET(session);
	}

	/* Wrap up the page reconciliation. */
	if (ret == 0)
		ret = __rec_write_wrapup(session, r, page);
	else
		WT_TRET(__rec_write_wrapup_err(session, r, page));

	/* Release the page lock if we're holding one. */
	if (locked)
		WT_PAGE_UNLOCK(session, page);
	WT_RET(ret);

	/*
	 * If this page has a parent, mark the parent dirty.  Split-merge pages
	 * are a special case: they are always dirty and never reconciled, they
	 * are always merged into their parent.  For that reason, we mark the
	 * first non-split-merge parent we find dirty, not the split-merge page
	 * itself, ensuring the chain of dirty pages up the tree isn't broken.
	 *
	 * Don't mark the tree dirty: if this reconciliation is in service of a
	 * checkpoint, it's cleared the tree's dirty flag, and we don't want to
	 * set it again as part of that walk.
	 */
	if (!WT_PAGE_IS_ROOT(page)) {
		for (;;) {
			page = page->parent;
			if (page->modify == NULL ||
			    !F_ISSET(page->modify, WT_PM_REC_SPLIT_MERGE))
				break;
		}
		WT_RET(__wt_page_modify_init(session, page));
		__wt_page_only_modify_set(session, page);

		return (0);
	}

	/*
	 * Root pages are trickier.  First, if the page is empty or we performed
	 * a 1-for-1 page swap, we're done, we've written the root (and done the
	 * checkpoint).
	 */
	switch (F_ISSET(page->modify, WT_PM_REC_MASK)) {
	case WT_PM_REC_EMPTY:				/* Page is empty */
	case WT_PM_REC_REPLACE: 			/* 1-for-1 page swap */
		return (0);
	case WT_PM_REC_SPLIT:				/* Page split */
		break;
	WT_ILLEGAL_VALUE(session);
	}

	/*
	 * Newly created internal pages are normally merged into their parent
	 * when the parent is evicted.  Newly split root pages can't be merged,
	 * they have no parent and the new root page must be written.  We also
	 * have to write the root page immediately; the alternative would be to
	 * split the page in memory and continue, but that won't work because
	 * (1) we'd have to require incoming threads use hazard pointers to
	 * read the root page, and (2) the sync or close triggering the split
	 * won't see the new root page during the current traversal.
	 *
	 * Make the new split page look like a normal page that's been modified,
	 * and write it out.  Keep doing that and eventually we'll perform a
	 * simple replacement (as opposed to another level of split), and then
	 * we're done.  Given our support of big pages, the only time we see
	 * multiple splits is when we've bulk-loaded something huge, and we're
	 * evicting the index page referencing all of those leaf pages.
	 *
	 * This creates a new kind of data structure in the system: an in-memory
	 * root page, pointing to a chain of pages, each of which are flagged as
	 * "split" pages, up to a final replacement page.  We don't use those
	 * pages again, they are discarded in the next root page reconciliation.
	 * We could discard them immediately (as the checkpoint is complete, any
	 * pages we discard go on the next checkpoint's free list, it's safe to
	 * do), but the code is simpler this way, and this operation should not
	 * be common.
	 *
	 * Don't mark the tree dirty: if this reconciliation is in service of a
	 * checkpoint, it's cleared the tree's dirty flag, and we don't want to
	 * set it again as part of that walk.
	 */
	WT_VERBOSE_RET(session, reconcile,
	    "root page split %p -> %p", page, page->modify->u.split);
	page = page->modify->u.split;
	__wt_page_only_modify_set(session, page);
	F_CLR(page->modify, WT_PM_REC_SPLIT_MERGE);

	WT_RET(__wt_rec_write(session, page, NULL, flags));

	return (0);
}

/*
 * __rec_write_init --
 *	Initialize the reconciliation structure.
 */
static int
__rec_write_init(
    WT_SESSION_IMPL *session, WT_PAGE *page, uint32_t flags, void *reconcilep)
{
	WT_BOUNDARY *bnd;
	WT_BTREE *btree;
	WT_RECONCILE *r;
	uint32_t i;

	btree = S2BT(session);

	if ((r = *(WT_RECONCILE **)reconcilep) == NULL) {
		WT_RET(__wt_calloc_def(session, 1, &r));

		*(WT_RECONCILE **)reconcilep = r;
		session->reconcile_cleanup = __rec_destroy_session;

		/* Connect prefix compression pointers/buffers. */
		r->cur = &r->_cur;
		r->last = &r->_last;

		/* Disk buffers need to be aligned for writing. */
		F_SET(&r->dsk, WT_ITEM_ALIGNED);
	}

	/*
	 * Clean up any pre-existing boundary structures: almost none of this
	 * should be necessary (already_compressed is the notable exception),
	 * but it's cheap.
	 */
	if (r->bnd != NULL)
		for (bnd = r->bnd, i = 0; i < r->bnd_entries; ++bnd, ++i) {
			bnd->start = NULL;
			bnd->recno = 0;
			bnd->entries = 0;

			WT_ASSERT(session, bnd->addr.addr == NULL);
			bnd->addr.size = 0;
			bnd->addr.type = 0;

			/* Leave the key alone, it's space we re-use. */

			bnd->already_compressed = 0;
		}

	/*
	 * Raw compression, the application builds disk images: applicable only
	 * to row-and variable-length column-store objects.  Dictionary and
	 * prefix compression must be turned off or we ignore raw-compression,
	 * raw compression can't support either one.  (Technically, we could
	 * still use the raw callback on column-store variable length internal
	 * pages with dictionary compression configured, because dictionary
	 * compression only applies to column-store leaf pages, but that seems
	 * an unlikely use case.)
	 */
	r->raw_compression =
	    btree->compressor != NULL &&
	    btree->compressor->compress_raw != NULL &&
	    page->type != WT_PAGE_COL_FIX &&
	    btree->dictionary == 0 &&
	    btree->prefix_compression == 0;

	/*
	 * Suffix compression shortens internal page keys by discarding trailing
	 * bytes that aren't necessary for tree navigation.  We don't do suffix
	 * compression if there is a custom collator because we don't know what
	 * bytes a custom collator might use.  Some custom collators (for
	 * example, a collator implementing reverse ordering of strings), won't
	 * have any problem with suffix compression: if there's ever a reason to
	 * implement suffix compression for custom collators, we can add a
	 * setting to the collator, configured when the collator is added, that
	 * turns on suffix compression.
	 *
	 * The raw compression routines don't even consider suffix compression,
	 * but it doesn't hurt to confirm that.
	 */
	r->key_sfx_compress_conf = 0;
	if (btree->collator == NULL &&
	    btree->internal_key_truncate && !r->raw_compression)
		r->key_sfx_compress_conf = 1;

	/*
	 * Prefix compression discards repeated prefix bytes from row-store leaf
	 * page keys.
	 */
	r->key_pfx_compress_conf = 0;
	if (btree->prefix_compression && page->type == WT_PAGE_ROW_LEAF)
		r->key_pfx_compress_conf = 1;

	/*
	 * Dictionary compression only writes repeated values once.  We grow
	 * the dictionary as necessary, always using the largest size we've
	 * seen.
	 *
	 * Per-page reconciliation: reset the dictionary.
	 *
	 * Sanity check the size: 100 slots is the smallest dictionary
	 * we use.
	 */
	if (btree->dictionary != 0 && btree->dictionary > r->dictionary_slots)
		WT_RET(__rec_dictionary_init(session,
		    r, btree->dictionary < 100 ? 100 : btree->dictionary));
	__rec_dictionary_reset(r);

	/* Per-page reconciliation: track skipped updates. */
	r->upd_skipped = 0;

	/* Per-page reconciliation: track overflow items. */
	r->ovfl_items = 0;

	/* Remember the flags. */
	r->flags = flags;

	/* Save the page's write generation before reading the page. */
	r->page = page;
	WT_ORDERED_READ(r->orig_write_gen, page->modify->write_gen);

	return (0);
}

/*
 * __rec_destroy --
 *	Clean up the reconciliation structure.
 */
static void
__rec_destroy(WT_SESSION_IMPL *session, void *reconcilep)
{
	WT_BOUNDARY *bnd;
	WT_RECONCILE *r;
	uint32_t i;

	if ((r = *(WT_RECONCILE **)reconcilep) == NULL)
		return;
	*(WT_RECONCILE **)reconcilep = NULL;

	__wt_buf_free(session, &r->dsk);

	__wt_free(session, r->raw_entries);
	__wt_free(session, r->raw_offsets);
	__wt_free(session, r->raw_recnos);

	if (r->bnd != NULL) {
		for (bnd = r->bnd, i = 0; i < r->bnd_entries; ++bnd, ++i) {
			__wt_free(session, bnd->addr.addr);
			__wt_buf_free(session, &bnd->key);
		}
		__wt_free(session, r->bnd);
	}

	__wt_buf_free(session, &r->k.buf);
	__wt_buf_free(session, &r->v.buf);
	__wt_buf_free(session, &r->_cur);
	__wt_buf_free(session, &r->_last);

	__rec_dictionary_free(session, r);

	__wt_free(session, r);
}

/*
 * __rec_destroy_session --
 *	Clean up the reconciliation structure, session version.
 */
static int
__rec_destroy_session(WT_SESSION_IMPL *session)
{
	__rec_destroy(session, &session->reconcile);
	return (0);
}

/*
 * __rec_txn_skip_chk --
 *	Found an update we can't write: if that's not OK, fail.
 */
static inline int
__rec_txn_skip_chk(WT_SESSION_IMPL *session, WT_RECONCILE *r)
{
	r->upd_skipped = 1;

	switch (F_ISSET(r, WT_SKIP_UPDATE_ERR | WT_SKIP_UPDATE_QUIT)) {
	case WT_SKIP_UPDATE_ERR:
		WT_PANIC_RETX(
		    session, "reconciliation illegally skipped an update");
	case WT_SKIP_UPDATE_QUIT:
		WT_STAT_FAST_CONN_INCR(session, rec_skipped_update);
		WT_STAT_FAST_DATA_INCR(session, rec_skipped_update);
		return (EBUSY);
	case 0:
	default:
		break;
	}
	return (0);
}

/*
 * __rec_txn_read --
 *	Return the update structure that's visible, or fail if there's a change
 * that's not globally visible and we can't skip changes.
 */
static inline int
__rec_txn_read(
    WT_SESSION_IMPL *session, WT_RECONCILE *r, WT_UPDATE *upd, WT_UPDATE **updp)
{
	uint64_t txnid;
	int skip, retried;

	retried = 0;
retry:	*updp = __wt_txn_read_skip(session, upd, &skip);
	if (!skip) {
		/*
		 * Track the largest transaction ID written to disk for this
		 * page.  We store this in the page at the end of
		 * reconciliation if no updates are skipped.  It is used to
		 * avoid evicting a clean page from memory with changes that
		 * are required to satisfy a snapshot read.
		 */
		if (*updp != NULL) {
			txnid = (*updp)->txnid;
			if (TXNID_LT(r->max_txn, txnid))
				r->max_txn = txnid;
		}
		return (0);
	}

	/*
	 * If skipping this update will cause reconciliation to quit, update
	 * the oldest transaction ID and retry, in case some transactions have
	 * committed while we have been working.
	 */
	if (F_ISSET(r, WT_SKIP_UPDATE_QUIT) && !retried) {
		__wt_txn_update_oldest(session);
		retried = 1;
		goto retry;
	}

	return (__rec_txn_skip_chk(session, r));
}

/*
 * __rec_child_modify --
 *	Return if the internal page's child references any modifications.
 */
static int
__rec_child_modify(WT_SESSION_IMPL *session,
    WT_RECONCILE *r, WT_PAGE *page, WT_REF *ref, int *statep)
{
	WT_DECL_RET;
	WT_PAGE_MODIFY *mod;

#define	WT_CHILD_IGNORE		1		/* Deleted child: ignore */
#define	WT_CHILD_MODIFIED	2		/* Modified child */
#define	WT_CHILD_PROXY		3		/* Deleted child: proxy */
	*statep = 0;

	/*
	 * This function is called when walking an internal page to decide how
	 * to handle child pages referenced by the internal page, specifically
	 * if the child page is to be merged into its parent.
	 *
	 * Internal pages are reconciled for two reasons: first, when evicting
	 * an internal page, second by the checkpoint code when writing internal
	 * pages.  During eviction, the subtree is locked down so all pages
	 * should be in the WT_REF_DISK or WT_REF_LOCKED state. During
	 * checkpoint, any eviction that might affect our review of an internal
	 * page is prohibited, however, as the subtree is not reserved for our
	 * exclusive use, there are other page states that must be considered.
	 */
	for (;; __wt_yield())
		switch (r->tested_ref_state = ref->state) {
		case WT_REF_DISK:
			/* On disk, not modified by definition. */
			goto done;

		case WT_REF_DELETED:
			/*
			 * The child is in a deleted state.
			 *
			 * It's possible the state is changing underneath us and
			 * we can race between checking for a deleted state and
			 * looking at the stored transaction ID to see if the
			 * delete is visible to us.  Lock down the structure.
			 */
			if (!WT_ATOMIC_CAS(
			    ref->state, WT_REF_DELETED, WT_REF_LOCKED))
				break;
			ret =
			    __rec_child_deleted(session, r, page, ref, statep);
			WT_PUBLISH(ref->state, WT_REF_DELETED);
			goto done;

		case WT_REF_EVICT_WALK:
			/*
			 * The child is locked by a checkpoint or eviction walk
			 * of the tree.
			 *
			 * We should not be here if called by the eviction
			 * server (the eviction server doesn't evict the page
			 * that marks its walk in the tree, further, a child
			 * page in this state within an evicted page's subtree
			 * would cause the eviction review process to fail).
			 */
			WT_ASSERT(session,
			    !F_ISSET(r, WT_EVICTION_SERVER_LOCKED));

			/*
			 * We can be here if called by checkpoint (for example,
			 * the leaf page pass of checkpoint is based on hazard
			 * references, and so it can collide with the eviction
			 * server's walk).  The child can't be evicted, it's an
			 * in-memory case.
			 */
			 goto in_memory;

		case WT_REF_LOCKED:
			/*
			 * If being called by the eviction server, the evicted
			 * page's subtree, including this child, was selected
			 * for eviction by us and the state is stable until we
			 * reset it, it's an in-memory state.
			 */
			if (F_ISSET(r, WT_EVICTION_SERVER_LOCKED))
				goto in_memory;

			/*
			 * If called during checkpoint, the child is being
			 * considered by the eviction server or the child is a
			 * fast-delete page being read.  The eviction may have
			 * started before the checkpoint and so we must wait
			 * for the eviction to be resolved.  I suspect we could
			 * handle fast-delete reads, but we can't distinguish
			 * between the two and fast-delete reads aren't expected
			 * to be common.
			 */
			break;

		case WT_REF_MEM:
			/*
			 * In memory.  We should not be here if called by the
			 * eviction server, a child page in this state within
			 * an evicted page's subtree would have been set to
			 * WT_REF_LOCKED.
			 */
			WT_ASSERT(session,
			    !F_ISSET(r, WT_EVICTION_SERVER_LOCKED));

			/*
			 * If called during checkpoint, the child can't be
			 * evicted, it's an in-memory case.
			 */
			goto in_memory;

		case WT_REF_READING:
			/*
			 * Being read, not modified by definition.  We should
			 * never be here if called by the eviction server.
			 */
			WT_ASSERT(session,
			    !F_ISSET(r, WT_EVICTION_SERVER_LOCKED));
			goto done;

		WT_ILLEGAL_VALUE(session);
		}

in_memory:
	/*
	 * In-memory states: the child is potentially modified if the page's
	 * modify structure has been instantiated.   If the modify structure
	 * exists and the page has actually been modified, set that state.
	 * If that's not the case, we would normally using the original cell's
	 * disk address as our reference, but, if we're forced to instantiate
	 * a deleted child page and it's never modified, we end up here with
	 * a page that has a modify structure, no modifications, and no disk
	 * address.  Ignore those pages, they're not modified and there is no
	 * reason to write the cell.
	 */
	mod = ref->page->modify;
	if (mod != NULL && mod->flags != 0)
		*statep = WT_CHILD_MODIFIED;
	else if (ref->addr == NULL)
		*statep = WT_CHILD_IGNORE;

done:	WT_HAVE_DIAGNOSTIC_YIELD;
	return (ret);
}

/*
 * __rec_child_deleted --
 *	Handle pages with leaf pages in the WT_REF_DELETED state.
 */
static int
__rec_child_deleted(WT_SESSION_IMPL *session,
    WT_RECONCILE *r, WT_PAGE *page, WT_REF *ref, int *statep)
{
	WT_BM *bm;
	uint32_t size;
	const uint8_t *addr;

	bm = S2BT(session)->bm;

	/*
	 * Internal pages with child leaf pages in the WT_REF_DELETED state are
	 * a special case during reconciliation.  First, if the deletion was a
	 * result of a session truncate call, the deletion may not be visible to
	 * us.  In that case, we proceed as with any change that's not visible
	 * during reconciliation by setting the skipped flag and ignoring the
	 * change for the purposes of writing the internal page.
	 */
	if (!__wt_txn_visible(session, ref->txnid))
		return (__rec_txn_skip_chk(session, r));

	/*
	 * Deal with any underlying disk blocks.  First, check to see if there
	 * is an address associated with this leaf: if there isn't, we're done.
	 *
	 * Check for any transactions in the system that might want to see the
	 * page's state before the deletion.
	 *
	 * If any such transactions exist, we cannot discard the underlying leaf
	 * page to the block manager because the transaction may eventually read
	 * it.  However, this write might be part of a checkpoint, and should we
	 * recover to that checkpoint, we'll need to delete the leaf page, else
	 * we'd leak it.  The solution is to write a proxy cell on the internal
	 * page ensuring the leaf page is eventually discarded.
	 *
	 * If no such transactions exist, we can discard the leaf page to the
	 * block manager and no cell needs to be written at all.  We do this
	 * outside of the underlying tracking routines because this action is
	 * permanent and irrevocable.  (Clearing the address means we've lost
	 * track of the disk address in a permanent way.  This is safe because
	 * there's no path to reading the leaf page again: if reconciliation
	 * fails, and we ever read into this part of the name space again, the
	 * cache read function instantiates a new page.)
	 *
	 * One final note: if the WT_REF transaction ID is set to WT_TXN_NONE,
	 * it means this WT_REF is the re-creation of a deleted node (we wrote
	 * out the deleted node after the deletion became visible, but before
	 * we could delete the leaf page, and subsequently crashed, then read
	 * the page and re-created the WT_REF_DELETED state).   In other words,
	 * the delete is visible to all (it became visible), and by definition
	 * there are no older transactions needing to see previous versions of
	 * the page.
	 */
	if (ref->addr != NULL &&
	    (ref->txnid == WT_TXN_NONE ||
	    __wt_txn_visible_all(session, ref->txnid))) {
		WT_RET(__wt_ref_info(session, page, ref, &addr, &size, NULL));
		WT_RET(bm->free(bm, session, addr, size));

		if (__wt_off_page(page, ref->addr)) {
			__wt_free(session, ((WT_ADDR *)ref->addr)->addr);
			__wt_free(session, ref->addr);
		}
		ref->addr = NULL;
	}

	/*
	 * If there's still a disk address, then we have to write a proxy
	 * record, otherwise, we can safely ignore this child page.
	 */
	*statep = ref->addr == NULL ? WT_CHILD_IGNORE : WT_CHILD_PROXY;
	return (0);
}

/*
 * __rec_incr --
 *	Update the memory tracking structure for a set of new entries.
 */
static inline void
__rec_incr(WT_SESSION_IMPL *session, WT_RECONCILE *r, uint32_t v, uint32_t size)
{
	/*
	 * The buffer code is fragile and prone to off-by-one errors -- check
	 * for overflow in diagnostic mode.
	 */
	WT_ASSERT(session, r->space_avail >= size);
	WT_ASSERT(session,
	    WT_BLOCK_FITS(r->first_free, size, r->dsk.mem, r->page_size));

	r->entries += v;
	r->space_avail -= size;
	r->first_free += size;
}

/*
 * __rec_copy_incr --
 *	Copy a key/value cell and buffer pair into the new image.
 */
static inline void
__rec_copy_incr(WT_SESSION_IMPL *session, WT_RECONCILE *r, WT_KV *kv)
{
	uint32_t len;
	uint8_t *p, *t;

	/*
	 * If there's only one chunk of data to copy (because the cell and data
	 * are being copied from the original disk page), the cell length won't
	 * be set, the WT_ITEM data/length will reference the data to be copied.
	 *
	 * WT_CELLs are typically small, 1 or 2 bytes -- don't call memcpy, do
	 * the copy in-line.
	 */
	for (p = (uint8_t *)r->first_free,
	    t = (uint8_t *)&kv->cell, len = kv->cell_len; len > 0; --len)
		*p++ = *t++;

	/* The data can be quite large -- call memcpy. */
	if (kv->buf.size != 0)
		memcpy(p, kv->buf.data, kv->buf.size);

	WT_ASSERT(session, kv->len == kv->cell_len + kv->buf.size);
	__rec_incr(session, r, 1, kv->len);
}

/*
 * __rec_dict_replace --
 *	Check for a dictionary match.
 */
static int
__rec_dict_replace(
    WT_SESSION_IMPL *session, WT_RECONCILE *r, uint64_t rle, WT_KV *val)
{
	WT_DICTIONARY *dp;
	uint64_t offset;

	/*
	 * We optionally create a dictionary of values and only write a unique
	 * value once per page, using a special "copy" cell for all subsequent
	 * copies of the value.  We have to do the cell build and resolution at
	 * this low level because we need physical cell offsets for the page.
	 *
	 * Sanity check: short-data cells can be smaller than dictionary-copy
	 * cells.  If the data is already small, don't bother doing the work.
	 * This isn't just work avoidance: on-page cells can't grow as a result
	 * of writing a dictionary-copy cell, the reconciliation functions do a
	 * split-boundary test based on the size required by the value's cell;
	 * if we grow the cell after that test we'll potentially write off the
	 * end of the buffer's memory.
	 */
	if (val->buf.size <= WT_INTPACK32_MAXSIZE)
		return (0);
	WT_RET(__rec_dictionary_lookup(session, r, val, &dp));
	if (dp == NULL)
		return (0);

	/*
	 * If the dictionary cell reference is not set, we're creating a new
	 * entry in the dictionary, update its location.
	 *
	 * If the dictionary cell reference is set, we have a matching value.
	 * Create a copy cell instead.
	 */
	if (dp->cell == NULL)
		dp->cell = r->first_free;
	else {
		offset = WT_PTRDIFF32(r->first_free, dp->cell);
		val->len = val->cell_len =
		   __wt_cell_pack_copy(&val->cell, rle, offset);
		val->buf.data = NULL;
		val->buf.size = 0;
	}
	return (0);
}

/*
 * __rec_key_state_update --
 *	Update prefix and suffix compression based on the last key.
 */
static inline void
__rec_key_state_update(WT_RECONCILE *r, int ovfl_key)
{
	WT_ITEM *a;

	/*
	 * If writing an overflow key onto the page, don't update the "last key"
	 * value, and leave the state of prefix compression alone.  (If we are
	 * currently doing prefix compression, we have a key state which will
	 * continue to work, we're just skipping the key just created because
	 * it's an overflow key and doesn't participate in prefix compression.
	 * If we are not currently doing prefix compression, we can't start, an
	 * overflow key doesn't give us any state.)
	 *
	 * Additionally, if we wrote an overflow key onto the page, turn off the
	 * suffix compression of row-store internal node keys.  (When we split,
	 * "last key" is the largest key on the previous page, and "cur key" is
	 * the first key on the next page, which is being promoted.  In some
	 * cases we can discard bytes from the "cur key" that are not needed to
	 * distinguish between the "last key" and "cur key", compressing the
	 * size of keys on internal nodes.  If we just built an overflow key,
	 * we're not going to update the "last key", making suffix compression
	 * impossible for the next key.   Alternatively, we could remember where
	 * the last key was on the page, detect it's an overflow key, read it
	 * from disk and do suffix compression, but that's too much work for an
	 * unlikely event.)
	 *
	 * If we're not writing an overflow key on the page, update the last-key
	 * value and turn on both prefix and suffix compression.
	 */
	if (ovfl_key)
		r->key_sfx_compress = 0;
	else {
		a = r->cur;
		r->cur = r->last;
		r->last = a;

		r->key_pfx_compress = r->key_pfx_compress_conf;
		r->key_sfx_compress = r->key_sfx_compress_conf;
	}
}

/*
 * __rec_split_bnd_grow --
 *	Grow the boundary array as necessary.
 */
static int
__rec_split_bnd_grow(WT_SESSION_IMPL *session, WT_RECONCILE *r)
{
	uint32_t incr;

	/*
	 * Make sure there's enough room in which to save another boundary.
	 *
	 * The calculation is actually +1, because we save the start point one
	 * past the current entry; normal reconciliation generally doesn't use
	 * a lot of buffers, but we grow aggressively anyway, bulk load eats up
	 * a lot of these entries because we have an entry for each page that's
	 * created by the bulk load.
	 */
	if (r->bnd_next + 1 >= r->bnd_entries) {
		incr = r->bnd_entries + r->bnd_entries / 2 + 20;
		WT_RET(__wt_realloc(session,
		    &r->bnd_allocated, incr * sizeof(*r->bnd), &r->bnd));
		r->bnd_entries = incr;
	}
	return (0);
}

/*
 * __rec_split_init --
 *	Initialization for the reconciliation split functions.
 */
static int
__rec_split_init(WT_SESSION_IMPL *session,
    WT_RECONCILE *r, WT_PAGE *page, uint64_t recno, uint32_t max)
{
	WT_BM *bm;
	WT_BTREE *btree;
	WT_PAGE_HEADER *dsk;
	size_t corrected_page_size;

	btree = S2BT(session);
	bm = btree->bm;

	/*
	 * Set the page sizes.  If we're doing the page layout, the maximum page
	 * size is the same as the page size.  If the application is doing page
	 * layout (raw compression is configured), we accumulate some amount of
	 * additional data because we don't know how well it will compress, and
	 * we don't want to increment our way up to the amount of data needed by
	 * the application to successfully compress to the target page size.
	 */
	r->page_size = r->page_size_max = max;
	if (r->raw_compression)
		r->page_size *= 10;

	/*
	 * Ensure the disk image buffer is large enough for the max object, as
	 * corrected by the underlying block manager.
	 */
	corrected_page_size = r->page_size;
	WT_RET(bm->write_size(bm, session, &corrected_page_size));
	WT_RET(__wt_buf_init(session, &r->dsk, corrected_page_size));

	/*
	 * Clear the header and set the page type (the type doesn't change, and
	 * setting it later requires additional code in a few different places).
	 */
	dsk = r->dsk.mem;
	memset(dsk, 0, WT_PAGE_HEADER_SIZE);
	dsk->type = page->type;

	/*
	 * If we have to split, we want to choose a smaller page size for the
	 * split pages, because otherwise we could end up splitting one large
	 * packed page over and over.   We don't want to pick the minimum size
	 * either, because that penalizes an application that did a bulk load
	 * and subsequently inserted a few items into packed pages.  Currently
	 * defaulted to 75%, but I have no empirical evidence that's "correct".
	 *
	 * The maximum page size may be a multiple of the split page size (for
	 * example, there's a maximum page size of 128KB, but because the table
	 * is active and we don't want to split a lot, the split size is 20KB).
	 * The maximum page size may NOT be an exact multiple of the split page
	 * size.
	 *
	 * It's lots of work to build these pages and don't want to start over
	 * when we reach the maximum page size (it's painful to restart after
	 * creating overflow items and compacted data, for example, as those
	 * items have already been written to disk).  So, the loop calls the
	 * helper functions when approaching a split boundary, and we save the
	 * information at that point.  That allows us to go back and split the
	 * page at the boundary points if we eventually overflow the maximum
	 * page size.
	 *
	 * Finally, all this doesn't matter for fixed-size column-store pages
	 * and raw compression.  Fixed-size column store pages can split under
	 * (very) rare circumstances, but they're allocated at a fixed page
	 * size, never anything smaller.  In raw compression, the underlying
	 * compression routine decides when we split, so it's not our problem.
	 */
	if (r->raw_compression)
		r->split_size = 0;
	else if (page->type == WT_PAGE_COL_FIX)
		r->split_size = r->page_size_max;
	else
		r->split_size = __wt_split_page_size(btree, r->page_size_max);

	/*
	 * If the maximum page size is the same as the split page size, either
	 * because of the object type or application configuration, there isn't
	 * any need to maintain split boundaries within a larger page.
	 */
	if (r->raw_compression)
		r->bnd_state = SPLIT_TRACKING_RAW;
	else if (max == r->split_size)
		r->bnd_state = SPLIT_TRACKING_OFF;
	else
		r->bnd_state = SPLIT_BOUNDARY;

	/*
	 * Initialize the array of boundary items and set the initial record
	 * number and buffer address.
	 */
	r->bnd_next = 0;
	WT_RET(__rec_split_bnd_grow(session, r));
	r->bnd[0].recno = recno;
	r->bnd[0].start = WT_PAGE_HEADER_BYTE(btree, dsk);

	/* Initialize the total entries. */
	r->total_entries = 0;

	/*
	 * Set the caller's information and configuration so the loop calls the
	 * split function when approaching the split boundary.
	 */
	r->recno = recno;
	r->entries = 0;
	r->first_free = WT_PAGE_HEADER_BYTE(btree, dsk);
	if (r->raw_compression)
		r->space_avail = r->page_size - WT_PAGE_HEADER_BYTE_SIZE(btree);
	else
		r->space_avail =
		    r->split_size - WT_PAGE_HEADER_BYTE_SIZE(btree);

	/* New page, compression off. */
	r->key_pfx_compress = r->key_sfx_compress = 0;

	return (0);
}

/*
 * __rec_is_checkpoint --
 *	Return if we're writing a checkpoint.
 */
static int
__rec_is_checkpoint(WT_RECONCILE *r, WT_BOUNDARY *bnd)
{
	/*
	 * Check to see if we're going to create a checkpoint.
	 *
	 * This function exists as a place to hang this comment.
	 *
	 * Any time we write the root page of the tree without splitting we are
	 * creating a checkpoint (and have to tell the underlying block manager
	 * so it creates and writes the additional information checkpoints
	 * require).  However, checkpoints are completely consistent, and so we
	 * have to resolve information about the blocks we're expecting to free
	 * as part of the checkpoint, before writing the checkpoint.  In short,
	 * we don't do checkpoint writes here; clear the boundary information as
	 * a reminder and create the checkpoint during wrapup.
	 */
	if (bnd == &r->bnd[0] && WT_PAGE_IS_ROOT(r->page)) {
		bnd->addr.addr = NULL;
		bnd->addr.size = 0;
		bnd->addr.type = 0;
		return (1);
	}
	return (0);
}

/*
 * __rec_split_row_promote_cell --
 *	Get a key from a cell for the purposes of promotion.
 */
static int
__rec_split_row_promote_cell(
    WT_SESSION_IMPL *session, WT_PAGE_HEADER *dsk, WT_ITEM *copy)
{
	WT_BTREE *btree;
	WT_CELL *cell;
	WT_CELL_UNPACK *unpack, _unpack;

	btree = S2BT(session);
	unpack = &_unpack;

	/*
	 * The cell had better have a zero-length prefix and not be a copy cell;
	 * the first cell on a page cannot refer an earlier cell on the page.
	 */
	cell = WT_PAGE_HEADER_BYTE(btree, dsk);
	__wt_cell_unpack(cell, unpack);
	WT_ASSERT(session,
	    unpack->prefix == 0 && unpack->raw != WT_CELL_VALUE_COPY);

	WT_RET(__wt_cell_data_copy(session, dsk->type, unpack, copy));
	return (0);
}

/*
 * __rec_split_row_promote --
 *	Key promotion for a row-store.
 */
static int
__rec_split_row_promote(WT_SESSION_IMPL *session, WT_RECONCILE *r, uint8_t type)
{
	uint32_t cnt, len, size;
	const uint8_t *pa, *pb;

	/*
	 * For a column-store, the promoted key is the recno and we already have
	 * a copy.  For a row-store, it's the first key on the page, a variable-
	 * length byte string, get a copy.
	 *
	 * This function is called from the split code at each split boundary,
	 * but that means we're not called before the first boundary.  It's OK
	 * we never do the work for the first boundary because that key cannot
	 * come from the page, it has to come from the parent.  See the comment
	 * in the code that creates the row-store split-merge page for details.
	 *
	 * For the current slot, take the last key we built, after doing suffix
	 * compression.  The "last key we built" describes some process: before
	 * calling the split code, we must place the last key on the page before
	 * the boundary into the "last" key structure, and the first key on the
	 * page after the boundary into the "current" key structure, we're going
	 * to compare them for suffix compression.
	 *
	 * Suffix compression is a hack to shorten keys on internal pages.  We
	 * only need enough bytes in the promoted key to ensure searches go to
	 * the correct page: the promoted key has to be larger than the last key
	 * on the leaf page preceding it, but we don't need any more bytes than
	 * that.   In other words, we can discard any suffix bytes not required
	 * to distinguish between the key being promoted and the last key on the
	 * leaf page preceding it.  This can only be done for the first level of
	 * internal pages, you cannot repeat suffix truncation as you split up
	 * the tree, it loses too much information.
	 *
	 * One note: if the last key on the previous page was an overflow key,
	 * we don't have the in-memory key against which to compare, and don't
	 * try to do suffix compression.  The code for that case turns suffix
	 * compression off for the next key.
	 *
	 * The r->last key sorts before the r->cur key, so we'll either find a
	 * larger byte value in r->cur, or r->cur will be the longer key, and
	 * the interesting byte is one past the length of the shorter key.
	 */
	if (type == WT_PAGE_ROW_LEAF && r->key_sfx_compress) {
		pa = r->last->data;
		pb = r->cur->data;
		len = WT_MIN(r->last->size, r->cur->size);
		size = len + 1;
		for (cnt = 1; len > 0; ++cnt, --len, ++pa, ++pb)
			if (*pa != *pb) {
				size = cnt;
				break;
			}
	} else
		size = r->cur->size;
	return (__wt_buf_set(
	    session, &r->bnd[r->bnd_next].key, r->cur->data, size));
}

/*
 * __rec_split --
 *	Handle the page reconciliation bookkeeping.  (Did you know "bookkeeper"
 * has 3 doubled letters in a row?  Sweet-tooth does, too.)
 */
static int
__rec_split(WT_SESSION_IMPL *session, WT_RECONCILE *r)
{
	WT_BTREE *btree;
	WT_BOUNDARY *bnd;
	WT_PAGE_HEADER *dsk;
	uint32_t len;

	/*
	 * Handle page-buffer size tracking; we have to do this work in every
	 * reconciliation loop, and I don't want to repeat the code that many
	 * times.
	 */
	btree = S2BT(session);
	dsk = r->dsk.mem;

	/* Hitting a page boundary resets the dictionary, in all cases. */
	__rec_dictionary_reset(r);

	/*
	 * There are 3 cases we have to handle.
	 *
	 * #1
	 * About to cross a split boundary: save current boundary information
	 * and return.
	 *
	 * #2
	 * About to cross the maximum boundary: use saved boundary information
	 * to write all of the split pages.
	 *
	 * #3
	 * About to cross a split boundary, but we've either already done the
	 * split thing when we approached the maximum boundary, in which
	 * case we write the page and keep going, or we were never tracking
	 * split boundaries at all.
	 *
	 * Cases #1 and #2 are the hard ones: we're called when we're about to
	 * cross each split boundary, and we save information away so we can
	 * split if we have to.  We're also called when we're about to cross
	 * the maximum page boundary: in that case, we do the actual split and
	 * clean up all the previous boundaries, then keep going.
	 */
	switch (r->bnd_state) {
	case SPLIT_BOUNDARY:				/* Case #1 */
		/*
		 * Save the information about where we are when the split would
		 * have happened.
		 */
		WT_RET(__rec_split_bnd_grow(session, r));
		bnd = &r->bnd[r->bnd_next++];

		/* Set the number of entries for the just finished chunk. */
		bnd->entries = r->entries - r->total_entries;
		r->total_entries = r->entries;

		/*
		 * Set the starting record number, buffer address and promotion
		 * key for the next chunk, clear the entries (not required, but
		 * cleaner).
		 */
		++bnd;
		bnd->recno = r->recno;
		bnd->start = r->first_free;
		if (dsk->type == WT_PAGE_ROW_INT ||
		    dsk->type == WT_PAGE_ROW_LEAF)
			WT_RET(__rec_split_row_promote(session, r, dsk->type));
		bnd->entries = 0;

		/*
		 * Set the space available to another split-size chunk, if we
		 * have one.  If we don't have room for another split chunk,
		 * add whatever space remains in the maximum page size, and
		 * hope it's enough.
		 */
		len = WT_PTRDIFF32(r->first_free, dsk);
		if (len + r->split_size <= r->page_size)
			r->space_avail =
			    r->split_size - WT_PAGE_HEADER_BYTE_SIZE(btree);
		else {
			r->bnd_state = SPLIT_MAX;
			r->space_avail = r->page_size -
			    (WT_PAGE_HEADER_BYTE_SIZE(btree) + len);
		}
		break;
	case SPLIT_MAX:					/* Case #2 */
		/*
		 * It didn't all fit into a single page.
		 *
		 * Cycle through the saved split-point information, writing the
		 * split chunks we have tracked.
		 */
		WT_RET(__rec_split_fixup(session, r));

		/* We're done saving split chunks. */
		r->bnd_state = SPLIT_TRACKING_OFF;
		break;
	case SPLIT_TRACKING_OFF:			/* Case #3 */
		WT_RET(__rec_split_bnd_grow(session, r));
		bnd = &r->bnd[r->bnd_next++];

		/*
		 * It didn't all fit, but either we've already noticed it and
		 * are now processing the rest of the page at the split-size
		 * boundaries, or the split size was the same as the page size,
		 * so we never bothered with saving split-point information.
		 *
		 * Finalize the header information and write the page.
		 */
		dsk->recno = bnd->recno;
		dsk->u.entries = r->entries;
		dsk->mem_size = r->dsk.size = WT_PTRDIFF32(r->first_free, dsk);
		WT_RET(__rec_split_write(session, r, bnd, &r->dsk));

		/*
		 * Set the starting record number and promotion key for the next
		 * chunk, clear the entries (not required, but cleaner).
		 */
		++bnd;
		bnd->recno = r->recno;
		if (dsk->type == WT_PAGE_ROW_INT ||
		    dsk->type == WT_PAGE_ROW_LEAF)
			WT_RET(__rec_split_row_promote(session, r, dsk->type));
		bnd->entries = 0;

		/*
		 * Set the caller's entry count and buffer information for the
		 * next chunk.  We only get here if we're not splitting or have
		 * already split, so it's split-size chunks from here on out.
		 */
		r->entries = 0;
		r->first_free = WT_PAGE_HEADER_BYTE(btree, dsk);
		r->space_avail =
		    r->split_size - WT_PAGE_HEADER_BYTE_SIZE(btree);
		break;
	case SPLIT_TRACKING_RAW:
	WT_ILLEGAL_VALUE(session);
	}
	return (0);
}

/*
 * __rec_split_raw_worker --
 *	Raw compression split routine.
 *	Handle the raw compression page reconciliation bookkeeping.
 */
static int
__rec_split_raw_worker(WT_SESSION_IMPL *session, WT_RECONCILE *r, int final)
{
	WT_BM *bm;
	WT_BOUNDARY *bnd;
	WT_BTREE *btree;
	WT_CELL *cell;
	WT_CELL_UNPACK *unpack, _unpack;
	WT_COMPRESSOR *compressor;
	WT_DECL_ITEM(dst);
	WT_DECL_RET;
	WT_PAGE_HEADER *dsk, *dsk_dst;
	WT_SESSION *wt_session;
	size_t corrected_page_size, result_len;
	uint64_t recno;
	uint32_t entry, i, len, result_slots, slots;
	uint8_t *dsk_start;

	wt_session = (WT_SESSION *)session;
	btree = S2BT(session);
	bm = btree->bm;
	compressor = btree->compressor;
	unpack = &_unpack;
	dsk = r->dsk.mem;

	bnd = &r->bnd[r->bnd_next];
	switch (dsk->type) {
	case WT_PAGE_COL_INT:
	case WT_PAGE_COL_VAR:
		recno = bnd->recno;
		break;
	case WT_PAGE_ROW_INT:
	case WT_PAGE_ROW_LEAF:
		recno = 0;

		/*
		 * Set the promotion key for the chunk.  Repeated each time we
		 * try and split, which might be wasted work, but detecting
		 * repeated key-building is probably more complicated than it's
		 * worth.  Don't bother doing the work for the first boundary,
		 * that key cannot come from the page, it has to come from the
		 * parent.  See the comment in the code that creates the row-
		 * store split-merge page for details.
		 */
		if (r->bnd_next == 0)
			break;

		WT_RET(__rec_split_row_promote_cell(session, dsk, &bnd->key));
		break;
	WT_ILLEGAL_VALUE(session);
	}

	/*
	 * Build arrays of offsets and cumulative counts of cells and rows in
	 * the page: the offset is the byte offset to the possible split-point
	 * (adjusted for an initial chunk that cannot be compressed), entries
	 * is the cumulative page entries covered by the byte offset, recnos is
	 * the cumulative rows covered by the byte offset.
	 */
	if (r->entries >= r->raw_max_slots) {
		__wt_free(session, r->raw_entries);
		__wt_free(session, r->raw_offsets);
		__wt_free(session, r->raw_recnos);
		r->raw_max_slots = 0;

		i = r->entries + 100;
		WT_RET(__wt_calloc_def(session, i, &r->raw_entries));
		WT_RET(__wt_calloc_def(session, i, &r->raw_offsets));
		if (dsk->type == WT_PAGE_COL_INT ||
		    dsk->type == WT_PAGE_COL_VAR)
			WT_RET(__wt_calloc_def(session, i, &r->raw_recnos));
		r->raw_max_slots = i;
	}

	/*
	 * We're going to walk the disk image, which requires setting the
	 * number of entries.
	 */
	dsk->u.entries = r->entries;

	slots = 0;
	entry = 0;
	WT_CELL_FOREACH(btree, dsk, cell, unpack, i) {
		++entry;

		/*
		 * Row-store pages can split at keys, but not at values,
		 * column-store pages can split at values.
		 */
		__wt_cell_unpack(cell, unpack);
		switch (unpack->type) {
		case WT_CELL_KEY:
		case WT_CELL_KEY_OVFL:
		case WT_CELL_KEY_SHORT:
			break;
		case WT_CELL_ADDR_DEL:
		case WT_CELL_ADDR_INT:
		case WT_CELL_ADDR_LEAF:
		case WT_CELL_ADDR_LEAF_NO:
		case WT_CELL_DEL:
		case WT_CELL_VALUE:
		case WT_CELL_VALUE_OVFL:
		case WT_CELL_VALUE_SHORT:
			if (dsk->type == WT_PAGE_COL_INT) {
				recno = unpack->v;
				break;
			}
			if (dsk->type == WT_PAGE_COL_VAR) {
				recno += __wt_cell_rle(unpack);
				break;
			}
			r->raw_entries[slots] = entry;
			continue;
		WT_ILLEGAL_VALUE(session);
		}

		/*
		 * We can't compress the first 64B of the block (it must be
		 * written without compression), and a possible split point
		 * may appear in that 64B; keep it simple, ignore the first
		 * 1KB of data, anybody splitting a smaller than 1KB piece
		 * (as calculated before compression), is doing us wrong.
		 */
		if ((len = WT_PTRDIFF32(cell, dsk)) > 1024)
			r->raw_offsets[++slots] = len - WT_BLOCK_COMPRESS_SKIP;

		if (dsk->type == WT_PAGE_COL_INT ||
		    dsk->type == WT_PAGE_COL_VAR)
			r->raw_recnos[slots] = recno;
		r->raw_entries[slots] = entry;
	}

	/*
	 * If we haven't managed to find at least one split point, we're done,
	 * don't bother calling the underlying compression function.
	 */
	if (slots == 0 && final)
		goto too_small;
	if (slots == 0)
		goto more_rows;

	/* The slot at array's end is the total length of the data. */
	r->raw_offsets[++slots] =
	    WT_PTRDIFF32(cell, dsk) - WT_BLOCK_COMPRESS_SKIP;

	/*
	 * Allocate a destination buffer.  If there's a pre-size function, use
	 * it to determine the destination buffer's minimum size, otherwise the
	 * destination buffer is documented to be at least the maximum object
	 * size.
	 *
	 * The destination buffer really only needs to be large enough for the
	 * target block size, corrected for the requirements of the underlying
	 * block manager.  If the target block size is 8KB, that's a multiple
	 * of 512Band so the underlying block manager is fine with it.  But...
	 * we don't control what the pre_size method returns us as a required
	 * size, and we don't want to document the compress_raw method has to
	 * skip bytes in the buffer because that's confusing, so do something
	 * more complicated.  First, find out how much space the compress_raw
	 * function might need, either the value returned from pre_size, or the
	 * maximum object size.  Add the compress-skip bytes, and then correct
	 * that value for the underlying block manager.   As a result, we have
	 * a destination buffer that's the right "object" size when calling the
	 * compress_raw method, and there are bytes in the header just for us.
	 */
	if (compressor->pre_size == NULL)
		result_len = r->page_size_max;
	else
		WT_RET(compressor->pre_size(compressor, wt_session,
		    (uint8_t *)dsk + WT_BLOCK_COMPRESS_SKIP,
		    (size_t)r->raw_offsets[slots], &result_len));
	corrected_page_size = result_len + WT_BLOCK_COMPRESS_SKIP;
	WT_RET(bm->write_size(bm, session, &corrected_page_size));
	WT_RET(__wt_scr_alloc(session, corrected_page_size, &dst));

	/*
	 * Copy the header bytes into the destination buffer, then call the
	 * compression function.
	 */
	memcpy(dst->mem, dsk, WT_BLOCK_COMPRESS_SKIP);
	WT_ERR(compressor->compress_raw(compressor, wt_session,
	    r->page_size_max, btree->split_pct,
	    WT_BLOCK_COMPRESS_SKIP, (uint8_t *)dsk + WT_BLOCK_COMPRESS_SKIP,
	    r->raw_offsets, slots,
	    (uint8_t *)dst->mem + WT_BLOCK_COMPRESS_SKIP,
	    result_len, final, &result_len, &result_slots));
	dst->size = (uint32_t)result_len + WT_BLOCK_COMPRESS_SKIP;

	if (result_slots != 0) {
		WT_STAT_FAST_DATA_INCR(session, compress_raw_ok);

		/*
		 * Compression succeeded: finalize the header information.
		 */
		dsk_dst = dst->mem;
		dsk_dst->recno = bnd->recno;
		dsk_dst->mem_size =
		    r->raw_offsets[result_slots] + WT_BLOCK_COMPRESS_SKIP;
		dsk_dst->u.entries = r->raw_entries[result_slots - 1];

		/*
		 * There may be a remnant in the working buffer that didn't get
		 * compressed; copy it down to the start of the working buffer
		 * and update the starting record number, free space and so on.
		 */
		len = WT_PTRDIFF32(r->first_free,
		    (uint8_t *)dsk +
		    r->raw_offsets[result_slots] + WT_BLOCK_COMPRESS_SKIP);
		dsk_start = WT_PAGE_HEADER_BYTE(btree, dsk);
		(void)memcpy(dsk_start, (uint8_t *)r->first_free - len, len);

		r->entries -= r->raw_entries[result_slots - 1];
		r->first_free = dsk_start + len;
		r->space_avail =
		    r->page_size - (WT_PAGE_HEADER_BYTE_SIZE(btree) + len);

		switch (dsk->type) {
		case WT_PAGE_COL_INT:
			recno = r->raw_recnos[result_slots];
			break;
		case WT_PAGE_COL_VAR:
			recno = r->raw_recnos[result_slots - 1];
			break;
		case WT_PAGE_ROW_INT:
		case WT_PAGE_ROW_LEAF:
			recno = 0;
			break;
		}

		bnd->already_compressed = 1;
	} else if (final) {
		WT_STAT_FAST_DATA_INCR(session, compress_raw_fail);

too_small:	/*
		 * Compression wasn't even attempted, or failed and there are no
		 * more rows to accumulate, write the original buffer instead.
		 */
		dsk->recno = bnd->recno;
		dsk->mem_size = r->dsk.size = WT_PTRDIFF32(r->first_free, dsk);
		dsk->u.entries = r->entries;

		r->entries = 0;
		r->first_free = WT_PAGE_HEADER_BYTE(btree, dsk);
		r->space_avail = r->page_size - WT_PAGE_HEADER_BYTE_SIZE(btree);

		switch (dsk->type) {
		case WT_PAGE_COL_INT:
		case WT_PAGE_COL_VAR:
			recno = r->recno;
			break;
		case WT_PAGE_ROW_INT:
		case WT_PAGE_ROW_LEAF:
			recno = 0;
			break;
		}

		bnd->already_compressed = 0;
	} else {
		WT_STAT_FAST_DATA_INCR(session, compress_raw_fail_temporary);

more_rows:	/*
		 * Compression failed, increase the size of the "page" and try
		 * again after we accumulate some more rows.
		 */
		len = WT_PTRDIFF32(r->first_free, r->dsk.mem);
		corrected_page_size = r->page_size * 2;
		WT_ERR(bm->write_size(bm, session, &corrected_page_size));
		WT_ERR(__wt_buf_grow(session, &r->dsk, corrected_page_size));
		r->page_size *= 2;
		r->first_free = (uint8_t *)r->dsk.mem + len;
		r->space_avail =
		    r->page_size - (WT_PAGE_HEADER_BYTE_SIZE(btree) + len);
		goto done;
	}

	/*
	 * If we are writing the whole page in our first/only attempt, it might
	 * be a checkpoint.  In the case of a checkpoint, copy any compressed
	 * version of the page into the original buffer, the wrapup functions
	 * will perform the actual write from that buffer.  If not a checkpoint,
	 * write the newly created compressed page.
	 */
	if (final &&
	    r->entries == 0 && r->bnd_next == 0 &&
	    __rec_is_checkpoint(r, bnd)) {
		if (bnd->already_compressed)
			WT_ERR(__wt_buf_set(
			    session, &r->dsk, dst->mem, dst->size));
	} else
		WT_ERR(__rec_split_write(
		    session, r, bnd, bnd->already_compressed ? dst : &r->dsk));

	/* We wrote something, move to the next boundary. */
	WT_ERR(__rec_split_bnd_grow(session, r));
	bnd = &r->bnd[++r->bnd_next];
	bnd->recno = recno;

done:
err:	__wt_scr_free(&dst);
	return (ret);
}

/*
 * __rec_split_raw --
 *	Raw compression split routine.
 */
static inline int
__rec_split_raw(WT_SESSION_IMPL *session, WT_RECONCILE *r)
{
	return (__rec_split_raw_worker(session, r, 0));
}

/*
 * __rec_split_finish_std --
 *	Finish processing a page, standard version.
 */
static int
__rec_split_finish_std(WT_SESSION_IMPL *session, WT_RECONCILE *r)
{
	WT_BOUNDARY *bnd;
	WT_PAGE_HEADER *dsk;

	/* Check our split status. */
	switch (r->bnd_state) {
	case SPLIT_BOUNDARY:
	case SPLIT_MAX:
		/*
		 * If we have could have split, but never did, the reconciled
		 * page fit into a maximum page size, our boundary checking
		 * was wasted.   Change the first boundary slot to represent
		 * the full page (the first boundary slot is largely correct,
		 * just update the number of entries).
		 */
		r->bnd_next = 0;
		break;
	case SPLIT_TRACKING_OFF:
		/*
		 * If we have already split, or were never going to split,
		 * put the remaining data in the next boundary slot.
		 */
		WT_RET(__rec_split_bnd_grow(session, r));
		break;
	case SPLIT_TRACKING_RAW:
	WT_ILLEGAL_VALUE(session);
	}

	/* Set the boundary reference and increment the count. */
	bnd = &r->bnd[r->bnd_next++];
	bnd->entries = r->entries;

	/* Finalize the header information. */
	dsk = r->dsk.mem;
	dsk->recno = bnd->recno;
	dsk->u.entries = r->entries;
	dsk->mem_size = r->dsk.size = WT_PTRDIFF32(r->first_free, dsk);

	/* If this is a checkpoint, we're done, otherwise write the page. */
	return (
	    __rec_is_checkpoint(r, bnd) ? 0 :
	    __rec_split_write(session, r, bnd, &r->dsk));
}

/*
 * __rec_split_finish_raw --
 *	Finish processing page, raw compression version.
 */
static inline int
__rec_split_finish_raw(WT_SESSION_IMPL *session, WT_RECONCILE *r)
{
	while (r->entries != 0)
		WT_RET(__rec_split_raw_worker(session, r, 1));
	return (0);
}

/*
 * __rec_split_finish --
 *	Finish processing a split page.
 */
static inline int
__rec_split_finish(WT_SESSION_IMPL *session, WT_RECONCILE *r)
{
	/*
	 * We're done reconciling a page.
	 *
	 * We only arrive here with no entries to write if the page was entirely
	 * empty (if the page wasn't empty, the only reason to split, resetting
	 * entries to 0, is because there's another entry to write, which then
	 * sets entries to 1).  If the page was empty, we eventually delete it.
	 */
	if (r->entries == 0)
		return (0);

	return (r->raw_compression ?
	    __rec_split_finish_raw(session, r) :
	    __rec_split_finish_std(session, r));
}

/*
 * __rec_split_fixup --
 *	Fix up after crossing the maximum page boundary.
 */
static int
__rec_split_fixup(WT_SESSION_IMPL *session, WT_RECONCILE *r)
{
	WT_BOUNDARY *bnd;
	WT_BTREE *btree;
	WT_DECL_ITEM(tmp);
	WT_DECL_RET;
	WT_PAGE_HEADER *dsk;
	uint32_t i, len;
	uint8_t *dsk_start;

	/*
	 * When we overflow physical limits of the page, we walk the list of
	 * split chunks we've created and write those pages out, then update
	 * the caller's information.
	 */
	btree = S2BT(session);

	/*
	 * The data isn't laid out on a page boundary or nul padded; copy it to
	 * a clean, aligned, padded buffer before writing it.
	 *
	 * Allocate a scratch buffer to hold the new disk image.  Copy the
	 * WT_PAGE_HEADER header onto the scratch buffer, most of the header
	 * information remains unchanged between the pages.
	 */
	WT_RET(__wt_scr_alloc(session, r->page_size_max, &tmp));
	dsk = tmp->mem;
	memcpy(dsk, r->dsk.mem, WT_PAGE_HEADER_SIZE);

	/*
	 * For each split chunk we've created, update the disk image and copy
	 * it into place.
	 */
	dsk_start = WT_PAGE_HEADER_BYTE(btree, dsk);
	for (i = 0, bnd = r->bnd; i < r->bnd_next; ++i, ++bnd) {
		/* Copy the page contents to the temporary buffer. */
		len = WT_PTRDIFF32((bnd + 1)->start, bnd->start);
		memcpy(dsk_start, bnd->start, len);

		/* Finalize the header information and write the page. */
		dsk->recno = bnd->recno;
		dsk->u.entries = bnd->entries;
		dsk->mem_size =
		    tmp->size = WT_PAGE_HEADER_BYTE_SIZE(btree) + len;
		WT_ERR(__rec_split_write(session, r, bnd, tmp));
	}

	/*
	 * There is probably a remnant in the working buffer that didn't get
	 * written; copy it down to the beginning of the working buffer, and
	 * update the starting record number.
	 *
	 * Confirm the remnant is no larger than the available split buffer.
	 *
	 * Fix up our caller's information.
	 */
	len = WT_PTRDIFF32(r->first_free, bnd->start);
	if (len >= r->split_size - WT_PAGE_HEADER_BYTE_SIZE(btree))
		WT_PANIC_ERR(session, ret = WT_PANIC,
		    "Reconciliation remnant too large for the split buffer");

	dsk = r->dsk.mem;
	dsk_start = WT_PAGE_HEADER_BYTE(btree, dsk);
	(void)memmove(dsk_start, bnd->start, len);

	r->entries -= r->total_entries;
	r->first_free = dsk_start + len;
	r->space_avail =
	    (r->split_size - WT_PAGE_HEADER_BYTE_SIZE(btree)) - len;

err:	__wt_scr_free(&tmp);
	return (ret);
}

/*
 * __rec_split_write --
 *	Write a disk block out for the split helper functions.
 */
static int
__rec_split_write(
    WT_SESSION_IMPL *session, WT_RECONCILE *r, WT_BOUNDARY *bnd, WT_ITEM *buf)
{
	WT_PAGE_HEADER *dsk;
	uint32_t addr_size;
	uint8_t addr[WT_BTREE_MAX_ADDR_COOKIE];

	/* Write the chunk and save the location information. */
	WT_RET(__wt_bt_write(
	    session, buf, addr, &addr_size, 0, bnd->already_compressed));
	WT_RET(__wt_strndup(session, (char *)addr, addr_size, &bnd->addr.addr));
	bnd->addr.size = addr_size;

	dsk = buf->mem;
	switch (dsk->type) {
	case WT_PAGE_COL_FIX:
		bnd->addr.type = WT_ADDR_LEAF_NO;
		break;
	case WT_PAGE_COL_VAR:
	case WT_PAGE_ROW_LEAF:
		bnd->addr.type = r->ovfl_items ? WT_ADDR_LEAF : WT_ADDR_LEAF_NO;
		break;
	case WT_PAGE_COL_INT:
	case WT_PAGE_ROW_INT:
		bnd->addr.type = WT_ADDR_INT;
		break;
	WT_ILLEGAL_VALUE(session);
	}
	return (0);
}

/*
 * __wt_rec_bulk_init --
 *	Bulk insert reconciliation initialization.
 */
int
__wt_rec_bulk_init(WT_CURSOR_BULK *cbulk)
{
	WT_BTREE *btree;
	WT_PAGE *page;
	WT_RECONCILE *r;
	WT_SESSION_IMPL *session;
	uint64_t recno;

	session = (WT_SESSION_IMPL *)cbulk->cbt.iface.session;
	btree = S2BT(session);
	page = cbulk->leaf;

	WT_RET(__rec_write_init(session, page, 0, &cbulk->reconcile));
	r = cbulk->reconcile;
	r->bulk_load = 1;

	switch (btree->type) {
	case BTREE_COL_FIX:
	case BTREE_COL_VAR:
		recno = 1;
		break;
	case BTREE_ROW:
		recno = 0;
		break;
	WT_ILLEGAL_VALUE(session);
	}

	WT_RET(__rec_split_init(session, r, page, recno, btree->maxleafpage));

	return (0);
}

/*
 * __wt_rec_bulk_wrapup --
 *	Bulk insert reconciliation cleanup.
 */
int
__wt_rec_bulk_wrapup(WT_CURSOR_BULK *cbulk)
{
	WT_BTREE *btree;
	WT_PAGE *page;
	WT_RECONCILE *r;
	WT_SESSION_IMPL *session;

	session = (WT_SESSION_IMPL *)cbulk->cbt.iface.session;
	r = cbulk->reconcile;
	btree = S2BT(session);

	switch (btree->type) {
	case BTREE_COL_FIX:
		if (cbulk->entry != 0)
			__rec_incr(session, r, cbulk->entry,
			    __bitstr_size(cbulk->entry * btree->bitcnt));
		break;
	case BTREE_COL_VAR:
		if (cbulk->rle != 0)
			WT_RET(__wt_rec_col_var_bulk_insert(cbulk));
		break;
	case BTREE_ROW:
		break;
	WT_ILLEGAL_VALUE(session);
	}

	page = cbulk->leaf;

	WT_RET(__rec_split_finish(session, r));
	WT_RET(__rec_write_wrapup(session, r, page));

	/* Mark the page's parent dirty. */
	WT_RET(__wt_page_modify_init(session, page->parent));
	__wt_page_modify_set(session, page->parent);

	__rec_destroy(session, &cbulk->reconcile);

	return (0);
}

/*
 * __wt_rec_row_bulk_insert --
 *	Row-store bulk insert.
 */
int
__wt_rec_row_bulk_insert(WT_CURSOR_BULK *cbulk)
{
	WT_BTREE *btree;
	WT_CURSOR *cursor;
	WT_KV *key, *val;
	WT_RECONCILE *r;
	WT_SESSION_IMPL *session;
	int ovfl_key;

	session = (WT_SESSION_IMPL *)cbulk->cbt.iface.session;
	r = cbulk->reconcile;
	btree = S2BT(session);

	cursor = &cbulk->cbt.iface;
	key = &r->k;
	val = &r->v;
	WT_RET(__rec_cell_build_leaf_key(session, r,	/* Build key cell */
	    cursor->key.data, cursor->key.size, &ovfl_key));
	WT_RET(__rec_cell_build_val(session, r,		/* Build value cell */
	    cursor->value.data, cursor->value.size, (uint64_t)0));

	/*
	 * Boundary: split or write the page.
	 */
	while (key->len + val->len > r->space_avail)
		if (r->raw_compression)
			WT_RET(__rec_split_raw(session, r));
		else {
			WT_RET(__rec_split(session, r));

			/*
			 * Turn off prefix compression until a full key written
			 * to the new page, and (unless we're already working
			 * with an overflow key), rebuild the key without prefix
			 * compression.
			 */
			if (r->key_pfx_compress_conf) {
				r->key_pfx_compress = 0;
				if (!ovfl_key)
					WT_RET(__rec_cell_build_leaf_key(
					    session, r, NULL, 0, &ovfl_key));
			}
		}

	/* Copy the key/value pair onto the page. */
	__rec_copy_incr(session, r, key);
	if (val->len != 0) {
		if (btree->dictionary)
			WT_RET(__rec_dict_replace(session, r, 0, val));
		__rec_copy_incr(session, r, val);
	}

	/* Update compression state. */
	__rec_key_state_update(r, ovfl_key);

	return (0);
}

#define	WT_FIX_ENTRIES(btree, bytes)	(((bytes) * 8) / (btree)->bitcnt)

/*
 * __rec_col_fix_bulk_insert_split_check --
 *	Check if a bulk-loaded fixed-length column store page needs to split.
 */
static inline int
__rec_col_fix_bulk_insert_split_check(WT_CURSOR_BULK *cbulk)
{
	WT_BTREE *btree;
	WT_RECONCILE *r;
	WT_SESSION_IMPL *session;

	session = (WT_SESSION_IMPL *)cbulk->cbt.iface.session;
	r = cbulk->reconcile;
	btree = S2BT(session);

	if (cbulk->entry == cbulk->nrecs) {
		if (cbulk->entry != 0) {
			/*
			 * If everything didn't fit, update the counters and
			 * split.
			 *
			 * Boundary: split or write the page.
			 */
			__rec_incr(session, r, cbulk->entry,
			    __bitstr_size(cbulk->entry * btree->bitcnt));
			WT_RET(__rec_split(session, r));
		}
		cbulk->entry = 0;
		cbulk->nrecs = WT_FIX_ENTRIES(btree, r->space_avail);
	}
	return (0);
}

/*
 * __wt_rec_col_fix_bulk_insert --
 *	Fixed-length column-store bulk insert.
 */
int
__wt_rec_col_fix_bulk_insert(WT_CURSOR_BULK *cbulk)
{
	WT_BTREE *btree;
	WT_CURSOR *cursor;
	WT_RECONCILE *r;
	WT_SESSION_IMPL *session;
	uint32_t entries, offset, page_entries, page_size;
	const uint8_t *data;

	session = (WT_SESSION_IMPL *)cbulk->cbt.iface.session;
	r = cbulk->reconcile;
	btree = S2BT(session);
	cursor = &cbulk->cbt.iface;

	if (cbulk->bitmap) {
		if (((r->recno - 1) * btree->bitcnt) & 0x7)
			WT_RET_MSG(session, EINVAL,
			    "Bulk bitmap load not aligned on a byte boundary");
		for (data = cursor->value.data, entries = cursor->value.size;
		    entries > 0;
		    entries -= page_entries, data += page_size) {
			WT_RET(__rec_col_fix_bulk_insert_split_check(cbulk));

			page_entries =
			    WT_MIN(entries, cbulk->nrecs - cbulk->entry);
			page_size = __bitstr_size(page_entries * btree->bitcnt);
			offset = __bitstr_size(cbulk->entry * btree->bitcnt);
			memcpy(r->first_free + offset, data, page_size);
			cbulk->entry += page_entries;
			r->recno += page_entries;
		}
		return (0);
	}

	WT_RET(__rec_col_fix_bulk_insert_split_check(cbulk));

	__bit_setv(r->first_free,
	    cbulk->entry, btree->bitcnt, ((uint8_t *)cursor->value.data)[0]);
	++cbulk->entry;
	++r->recno;

	return (0);
}

/*
 * __wt_rec_col_var_bulk_insert --
 *	Variable-length column-store bulk insert.
 */
int
__wt_rec_col_var_bulk_insert(WT_CURSOR_BULK *cbulk)
{
	WT_BTREE *btree;
	WT_KV *val;
	WT_RECONCILE *r;
	WT_SESSION_IMPL *session;

	session = (WT_SESSION_IMPL *)cbulk->cbt.iface.session;
	r = cbulk->reconcile;
	btree = S2BT(session);

	val = &r->v;
	WT_RET(__rec_cell_build_val(
	    session, r, cbulk->cmp.data, cbulk->cmp.size, cbulk->rle));

	/* Boundary: split or write the page. */
	while (val->len > r->space_avail)
		if (r->raw_compression)
			WT_RET(__rec_split_raw(session, r));
		else
			WT_RET(__rec_split(session, r));

	/* Copy the value onto the page. */
	if (btree->dictionary)
		WT_RET(__rec_dict_replace(session, r, cbulk->rle, val));
	__rec_copy_incr(session, r, val);

	/* Update the starting record number in case we split. */
	r->recno += cbulk->rle;

	return (0);
}

/*
 * __rec_vtype --
 *	Return a value cell's address type.
 */
static inline u_int
__rec_vtype(WT_ADDR *addr)
{
	if (addr->type == WT_ADDR_INT)
		return (WT_CELL_ADDR_INT);
	if (addr->type == WT_ADDR_LEAF)
		return (WT_CELL_ADDR_LEAF);
	return (WT_CELL_ADDR_LEAF_NO);
}

/*
 * __rec_col_int --
 *	Reconcile a column-store internal page.
 */
static int
__rec_col_int(WT_SESSION_IMPL *session, WT_RECONCILE *r, WT_PAGE *page)
{
	WT_BTREE *btree;

	btree = S2BT(session);

	WT_RET(__rec_split_init(
	    session, r, page, page->u.intl.recno, btree->maxintlpage));

	/*
	 * Walking the row-store internal pages is complicated by the fact that
	 * we're taking keys from the underlying disk image for the top-level
	 * page and we're taking keys from in-memory structures for merge pages.
	 * Column-store is simpler because the only information we copy is the
	 * record number and address, and it comes from in-memory structures in
	 * both the top-level and merge cases.  In short, both the top-level
	 * and merge page walks look the same, and we just call the merge page
	 * function on the top-level page.
	 */
	WT_RET(__rec_col_merge(session, r, page));

	/* Write the remnant page. */
	return (__rec_split_finish(session, r));
}

/*
 * __rec_col_merge --
 *	Recursively walk a column-store internal tree of merge pages.
 */
static int
__rec_col_merge(WT_SESSION_IMPL *session, WT_RECONCILE *r, WT_PAGE *page)
{
	WT_ADDR *addr;
	WT_KV *val;
	WT_CELL_UNPACK *unpack, _unpack;
	WT_PAGE *rp;
	WT_REF *ref;
	uint32_t i;
	int state;

	WT_STAT_FAST_DATA_INCR(session, rec_page_merge);

	val = &r->v;
	unpack = &_unpack;

	/* For each entry in the page... */
	WT_REF_FOREACH(page, ref, i) {
		/* Update the starting record number in case we split. */
		r->recno = ref->key.recno;

		/*
		 * The page may be emptied or internally created during a split.
		 * Deleted/split pages are merged into the parent and discarded.
		 */
		addr = NULL;
		WT_RET(__rec_child_modify(session, r, page, ref, &state));
		if (state) {
			WT_ASSERT(session, state == WT_CHILD_MODIFIED);
			rp = ref->page;
			switch (F_ISSET(rp->modify, WT_PM_REC_MASK)) {
			case WT_PM_REC_EMPTY:
				/*
				 * Column-store pages are almost never empty, as
				 * discarding a page would remove a chunk of the
				 * name space.  The exceptions are pages created
				 * when the tree is created, and never filled.
				 */
				continue;
			case WT_PM_REC_REPLACE:
				addr = &rp->modify->u.replace;
				break;
			case WT_PM_REC_SPLIT:
				WT_RET(__rec_col_merge(
				    session, r, rp->modify->u.split));
				continue;
			case WT_PM_REC_SPLIT_MERGE:
				WT_RET(__rec_col_merge(session, r, rp));
				continue;
			}
		}

		/*
		 * Build the value cell.  The child page address is in one of 3
		 * places: if the page was replaced, the page's modify structure
		 * references it and we built the value cell just above in the
		 * switch statement.  Else, the WT_REF->addr reference points to
		 * an on-page cell or an off-page WT_ADDR structure: if it's an
		 * on-page cell and we copy it from the page, else build a new
		 * cell.
		 */
		if (addr == NULL && __wt_off_page(page, ref->addr))
			addr = ref->addr;
		if (addr == NULL) {
			__wt_cell_unpack(ref->addr, unpack);
			val->buf.data = ref->addr;
			val->buf.size = __wt_cell_total_len(unpack);
			val->cell_len = 0;
			val->len = val->buf.size;
		} else
			__rec_cell_build_addr(r, addr->addr, addr->size,
			    __rec_vtype(addr), ref->key.recno);

		/* Boundary: split or write the page. */
		while (val->len > r->space_avail)
			if (r->raw_compression)
				WT_RET(__rec_split_raw(session, r));
			else
				WT_RET(__rec_split(session, r));

		/* Copy the value onto the page. */
		__rec_copy_incr(session, r, val);
	}

	return (0);
}

/*
 * __rec_col_fix --
 *	Reconcile a fixed-width, column-store leaf page.
 */
static int
__rec_col_fix(WT_SESSION_IMPL *session, WT_RECONCILE *r, WT_PAGE *page)
{
	WT_BTREE *btree;
	WT_INSERT *ins;
	WT_INSERT_HEAD *append;
	WT_UPDATE *upd;
	uint64_t recno;
	uint32_t entry, nrecs;

	btree = S2BT(session);

	/* Update any changes to the original on-page data items. */
	WT_SKIP_FOREACH(ins, WT_COL_UPDATE_SINGLE(page)) {
		WT_RET(__rec_txn_read(session, r, ins->upd, &upd));
		if (upd == NULL)
			continue;
		__bit_setv_recno(page, WT_INSERT_RECNO(ins),
		    btree->bitcnt, ((uint8_t *)WT_UPDATE_DATA(upd))[0]);
	}

	/* Allocate the memory. */
	WT_RET(__rec_split_init(session, r,
	    page, page->u.col_fix.recno, btree->maxleafpage));

	/* Copy the updated, disk-image bytes into place. */
	memcpy(r->first_free, page->u.col_fix.bitf,
	    __bitstr_size(page->entries * btree->bitcnt));

	/* Calculate the number of entries per page remainder. */
	entry = page->entries;
	nrecs = WT_FIX_ENTRIES(btree, r->space_avail) - page->entries;
	r->recno += entry;

	/* Walk any append list. */
	append = WT_COL_APPEND(page);
	WT_SKIP_FOREACH(ins, append) {
		WT_RET(__rec_txn_read(session, r, ins->upd, &upd));
		if (upd == NULL)
			continue;
		for (;;) {
			/*
			 * The application may have inserted records which left
			 * gaps in the name space.
			 */
			for (recno = WT_INSERT_RECNO(ins);
			    nrecs > 0 && r->recno < recno;
			    --nrecs, ++entry, ++r->recno)
				__bit_setv(
				    r->first_free, entry, btree->bitcnt, 0);

			if (nrecs > 0) {
				__bit_setv(r->first_free, entry, btree->bitcnt,
				    ((uint8_t *)WT_UPDATE_DATA(upd))[0]);
				--nrecs;
				++entry;
				++r->recno;
				break;
			}

			/*
			 * If everything didn't fit, update the counters and
			 * split.
			 *
			 * Boundary: split or write the page.
			 */
			__rec_incr(session,
			    r, entry, __bitstr_size(entry * btree->bitcnt));
			WT_RET(__rec_split(session, r));

			/* Calculate the number of entries per page. */
			entry = 0;
			nrecs = WT_FIX_ENTRIES(btree, r->space_avail);
		}
	}

	/* Update the counters. */
	__rec_incr(session, r, entry, __bitstr_size(entry * btree->bitcnt));

	/* Write the remnant page. */
	return (__rec_split_finish(session, r));
}

/*
 * __rec_col_fix_slvg --
 *	Reconcile a fixed-width, column-store leaf page created during salvage.
 */
static int
__rec_col_fix_slvg(WT_SESSION_IMPL *session,
    WT_RECONCILE *r, WT_PAGE *page, WT_SALVAGE_COOKIE *salvage)
{
	WT_BTREE *btree;
	uint64_t page_start, page_take;
	uint32_t entry, nrecs;

	btree = S2BT(session);

	/*
	 * !!!
	 * It's vanishingly unlikely and probably impossible for fixed-length
	 * column-store files to have overlapping key ranges.  It's possible
	 * for an entire key range to go missing (if a page is corrupted and
	 * lost), but because pages can't split, it shouldn't be possible to
	 * find pages where the key ranges overlap.  That said, we check for
	 * it during salvage and clean up after it here because it doesn't
	 * cost much and future column-store formats or operations might allow
	 * for fixed-length format ranges to overlap during salvage, and I
	 * don't want to have to retrofit the code later.
	 */
	WT_RET(__rec_split_init(session, r,
	    page, page->u.col_fix.recno, btree->maxleafpage));

	/* We may not be taking all of the entries on the original page. */
	page_take = salvage->take == 0 ? page->entries : salvage->take;
	page_start = salvage->skip == 0 ? 0 : salvage->skip;
	for (;;) {
		/* Calculate the number of entries per page. */
		entry = 0;
		nrecs = WT_FIX_ENTRIES(btree, r->space_avail);

		for (; nrecs > 0 && salvage->missing > 0;
		    --nrecs, --salvage->missing, ++entry)
			__bit_setv(r->first_free, entry, btree->bitcnt, 0);

		for (; nrecs > 0 && page_take > 0;
		    --nrecs, --page_take, ++page_start, ++entry)
			__bit_setv(r->first_free, entry, btree->bitcnt,
			    __bit_getv(page->u.col_fix.bitf,
				(uint32_t)page_start, btree->bitcnt));

		r->recno += entry;
		__rec_incr(
		    session, r, entry, __bitstr_size(entry * btree->bitcnt));

		/*
		 * If everything didn't fit, then we have to force a split and
		 * keep going.
		 *
		 * Boundary: split or write the page.
		 */
		if (salvage->missing == 0 && page_take == 0)
			break;
		WT_RET(__rec_split(session, r));
	}

	/* Write the remnant page. */
	return (__rec_split_finish(session, r));
}

/*
 * __rec_col_var_helper --
 *	Create a column-store variable length record cell and write it onto a
 * page.
 */
static int
__rec_col_var_helper(WT_SESSION_IMPL *session, WT_RECONCILE *r,
    WT_SALVAGE_COOKIE *salvage,
    WT_ITEM *value, int deleted, int ovfl, uint64_t rle)
{
	WT_BTREE *btree;
	WT_KV *val;

	btree = S2BT(session);
	val = &r->v;

	/*
	 * Occasionally, salvage needs to discard records from the beginning or
	 * end of the page, and because the items may be part of a RLE cell, do
	 * the adjustments here.   It's not a mistake we don't bother telling
	 * our caller we've handled all the records from the page we care about,
	 * and can quit processing the page: salvage is a rare operation and I
	 * don't want to complicate our caller's loop.
	 */
	if (salvage != NULL) {
		if (salvage->done)
			return (0);
		if (salvage->skip != 0) {
			if (rle <= salvage->skip) {
				salvage->skip -= rle;
				return (0);
			}
			salvage->skip = 0;
			rle -= salvage->skip;
		}
		if (salvage->take != 0) {
			if (rle <= salvage->take)
				salvage->take -= rle;
			else {
				rle = salvage->take;
				salvage->take = 0;
			}
			if (salvage->take == 0)
				salvage->done = 1;
		}
	}

	if (deleted) {
		val->cell_len = __wt_cell_pack_del(&val->cell, rle);
		val->buf.data = NULL;
		val->buf.size = 0;
		val->len = val->cell_len;
	} else if (ovfl) {
		val->cell_len = __wt_cell_pack_ovfl(
		    &val->cell, WT_CELL_VALUE_OVFL, rle, value->size);
		val->buf.data = value->data;
		val->buf.size = value->size;
		val->len = val->cell_len + value->size;
	} else
		WT_RET(__rec_cell_build_val(
		    session, r, value->data, value->size, rle));

	/* Boundary: split or write the page. */
	while (val->len > r->space_avail)
		if (r->raw_compression)
			WT_RET(__rec_split_raw(session, r));
		else
			WT_RET(__rec_split(session, r));

	/* Copy the value onto the page. */
	if (!deleted && !ovfl && btree->dictionary)
		WT_RET(__rec_dict_replace(session, r, rle, val));
	__rec_copy_incr(session, r, val);

	/* Update the starting record number in case we split. */
	r->recno += rle;

	return (0);
}

/*
 * __rec_col_var --
 *	Reconcile a variable-width column-store leaf page.
 */
static int
__rec_col_var(WT_SESSION_IMPL *session,
    WT_RECONCILE *r, WT_PAGE *page, WT_SALVAGE_COOKIE *salvage)
{
	enum { OVFL_IGNORE, OVFL_UNUSED, OVFL_USED } ovfl_state;
	WT_BTREE *btree;
	WT_CELL *cell;
	WT_CELL_UNPACK *unpack, _unpack;
	WT_COL *cip;
	WT_DECL_ITEM(orig);
	WT_DECL_RET;
	WT_INSERT *ins;
	WT_INSERT_HEAD *append;
	WT_ITEM *last;
	WT_UPDATE *upd;
	uint64_t n, nrepeat, repeat_count, rle, slvg_missing, src_recno;
	uint32_t i, size;
	int deleted, last_deleted, orig_deleted, update_no_copy;
	const void *data;

	btree = S2BT(session);
	last = r->last;
	unpack = &_unpack;

	WT_RET(__wt_scr_alloc(session, 0, &orig));
	data = NULL;
	size = 0;
	upd = NULL;

	WT_RET(__rec_split_init(
	    session, r, page, page->u.col_var.recno, btree->maxleafpage));

	/*
	 * The salvage code may be calling us to reconcile a page where there
	 * were missing records in the column-store name space.  In this case
	 * we write a single RLE element onto a new page, so we know it fits,
	 * then update the starting record number.
	 *
	 * Note that we DO NOT pass the salvage cookie to our helper function
	 * in this case, we're handling one of the salvage cookie fields on
	 * our own, and don't need assistance from the helper function.
	 */
	slvg_missing = salvage == NULL ? 0 : salvage->missing;
	if (slvg_missing)
		WT_ERR(__rec_col_var_helper(
		    session, r, NULL, NULL, 1, 0, slvg_missing));

	/*
	 * We track two data items through this loop: the previous (last) item
	 * and the current item: if the last item is the same as the current
	 * item, we increment the RLE count for the last item; if the last item
	 * is different from the current item, we write the last item onto the
	 * page, and replace it with the current item.  The r->recno counter
	 * tracks records written to the page, and is incremented by the helper
	 * function immediately after writing records to the page.  The record
	 * number of our source record, that is, the current item, is maintained
	 * in src_recno.
	 */
	src_recno = r->recno;

	/* For each entry in the in-memory page... */
	rle = 0;
	last_deleted = 0;
	WT_COL_FOREACH(page, cip, i) {
		ovfl_state = OVFL_IGNORE;
		if ((cell = WT_COL_PTR(page, cip)) == NULL) {
			nrepeat = 1;
			ins = NULL;
			orig_deleted = 1;
		} else {
			__wt_cell_unpack(cell, unpack);
			nrepeat = __wt_cell_rle(unpack);
			ins = WT_SKIP_FIRST(WT_COL_UPDATE(page, cip));

			/*
			 * If the original value is "deleted", there's no value
			 * to compare, we're done.
			 */
			orig_deleted = unpack->type == WT_CELL_DEL ? 1 : 0;
			if (orig_deleted)
				goto record_loop;

			/*
			 * Overflow items are tricky: we don't know until we're
			 * finished processing the set of values if we need the
			 * overflow value or not.  If we don't use the overflow
			 * item at all, we'll have to discard it (that's safe
			 * because once the original value is unused during any
			 * page reconciliation, it will never be needed again).
			 *
			 * Regardless, we avoid copying in overflow records: if
			 * there's a WT_INSERT entry that modifies a reference
			 * counted overflow record, we may have to write copies
			 * of the overflow record, and in that case we'll do the
			 * comparisons, but we don't read overflow items just to
			 * see if they match records on either side.
			 */
			if (unpack->ovfl) {
				ovfl_state = OVFL_UNUSED;
				goto record_loop;
			}

			/*
			 * If data is Huffman encoded, we have to decode it in
			 * order to compare it with the last item we saw, which
			 * may have been an update string.  This guarantees we
			 * find every single pair of objects we can RLE encode,
			 * including applications updating an existing record
			 * where the new value happens (?) to match a Huffman-
			 * encoded value in a previous or next record.
			 */
			WT_ERR(__wt_dsk_cell_data_ref(
			    session, WT_PAGE_COL_VAR, unpack, orig));
		}

record_loop:	/*
		 * Generate on-page entries: loop repeat records, looking for
		 * WT_INSERT entries matching the record number.  The WT_INSERT
		 * lists are in sorted order, so only need check the next one.
		 */
		for (n = 0;
		    n < nrepeat; n += repeat_count, src_recno += repeat_count) {
			upd = NULL;
			if (ins != NULL && WT_INSERT_RECNO(ins) == src_recno) {
				WT_ERR(
				    __rec_txn_read(session, r, ins->upd, &upd));
				ins = WT_SKIP_NEXT(ins);
			}
			if (upd != NULL) {
				update_no_copy = 1;	/* No data copy */

				repeat_count = 1;

				deleted = WT_UPDATE_DELETED_ISSET(upd);
				if (!deleted) {
					data = WT_UPDATE_DATA(upd);
					size = upd->size;
				}
			} else {
				update_no_copy = 0;	/* Maybe data copy */

				/*
				 * The repeat count is the number of records up
				 * to the next WT_INSERT record, or up to the
				 * end of the entry if we have no more WT_INSERT
				 * records.
				 */
				if (ins == NULL)
					repeat_count = nrepeat - n;
				else
					repeat_count =
					    WT_INSERT_RECNO(ins) - src_recno;

				deleted = orig_deleted;
				if (deleted)
					goto compare;

				/*
				 * If we are handling overflow items, use the
				 * overflow item itself exactly once, after
				 * which we have to copy it into a buffer and
				 * from then on use a complete copy because we
				 * are re-creating a new overflow record each
				 * time.
				 */
				switch (ovfl_state) {
				case OVFL_UNUSED:
					/*
					 * Original is an overflow item, as yet
					 * unused -- use it now.
					 *
					 * Write out any record we're tracking.
					 */
					if (rle != 0) {
						WT_ERR(__rec_col_var_helper(
						    session, r, salvage, last,
						    last_deleted, 0, rle));
						rle = 0;
					}

					/* Write the overflow item. */
					last->data = unpack->data;
					last->size = unpack->size;
					WT_ERR(__rec_col_var_helper(
					    session, r, salvage,
					    last, 0, 1, repeat_count));

					/* Track if page has overflow items. */
					r->ovfl_items = 1;

					ovfl_state = OVFL_USED;
					continue;
				case OVFL_USED:
					/*
					 * Original is an overflow item; we used
					 * it for a key and now we need another
					 * copy; read it into memory.
					 */
					WT_ERR(__wt_dsk_cell_data_ref(session,
					    WT_PAGE_COL_VAR, unpack, orig));

					ovfl_state = OVFL_IGNORE;
					/* FALLTHROUGH */
				case OVFL_IGNORE:
					/*
					 * Original is an overflow item and we
					 * were forced to copy it into memory,
					 * or the original wasn't an overflow
					 * item; use the data copied into orig.
					 */
					data = orig->data;
					size = orig->size;
					break;
				}
			}

compare:		/*
			 * If we have a record against which to compare, and
			 * the records compare equal, increment the rle counter
			 * and continue.  If the records don't compare equal,
			 * output the last record and swap the last and current
			 * buffers: do NOT update the starting record number,
			 * we've been doing that all along.
			 */
			if (rle != 0) {
				if ((deleted && last_deleted) ||
				    (!last_deleted && !deleted &&
				    last->size == size &&
				    memcmp(last->data, data, size) == 0)) {
					rle += repeat_count;
					continue;
				}
				WT_ERR(__rec_col_var_helper(session, r,
				    salvage, last, last_deleted, 0, rle));
			}

			/*
			 * Swap the current/last state.
			 *
			 * Reset RLE counter and turn on comparisons.
			 */
			if (!deleted) {
				/*
				 * We can't simply assign the data values into
				 * the last buffer because they may have come
				 * from a copy built from an encoded/overflow
				 * cell and creating the next record is going
				 * to overwrite that memory.  Check, because
				 * encoded/overflow cells aren't that common
				 * and we'd like to avoid the copy.  If data
				 * was taken from the current unpack structure
				 * (which points into the page), or was taken
				 * from an update structure, we can just use
				 * the pointers, they're not moving.
				 */
				if (data == unpack->data || update_no_copy) {
					last->data = data;
					last->size = size;
				} else
					WT_ERR(__wt_buf_set(
					    session, last, data, size));
			}
			last_deleted = deleted;
			rle = repeat_count;
		}

		/*
		 * If we had a reference to an overflow record we never used,
		 * discard the underlying blocks, they're no longer useful.
		 * One complication: we must cache a copy before discarding the
		 * on-disk version if there's a transaction in the system that
		 * might read the original value.
		 */
		if (ovfl_state == OVFL_UNUSED) {
			WT_ERR(__wt_ovfl_onpage_add(
			    session, page, unpack->data, unpack->size));
			WT_ERR(__wt_ovfl_cache(session, page, upd, unpack));
		}
	}

	/* Walk any append list. */
	append = WT_COL_APPEND(page);
	WT_SKIP_FOREACH(ins, append) {
		WT_ERR(__rec_txn_read(session, r, ins->upd, &upd));
		if (upd == NULL)
			continue;
		for (n = WT_INSERT_RECNO(ins); src_recno <= n; ++src_recno) {
			/*
			 * The application may have inserted records which left
			 * gaps in the name space.
			 */
			if (src_recno < n)
				deleted = 1;
			else {
				deleted = WT_UPDATE_DELETED_ISSET(upd);
				if (!deleted) {
					data = WT_UPDATE_DATA(upd);
					size = upd->size;
				}
			}

			/*
			 * Handle RLE accounting and comparisons -- see comment
			 * above, this code fragment does the same thing.
			 */
			if (rle != 0) {
				if ((deleted && last_deleted) ||
				    (!last_deleted && !deleted &&
				    last->size == size &&
				    memcmp(last->data, data, size) == 0)) {
					++rle;
					continue;
				}
				WT_ERR(__rec_col_var_helper(session, r,
				    salvage, last, last_deleted, 0, rle));
			}

			/*
			 * Swap the current/last state.  We always assign the
			 * data values to the buffer because they can only be
			 * the data from a WT_UPDATE structure.
			 *
			 * Reset RLE counter and turn on comparisons.
			 */
			if (!deleted) {
				last->data = data;
				last->size = size;
			}
			last_deleted = deleted;
			rle = 1;
		}
	}

	/* If we were tracking a record, write it. */
	if (rle != 0)
		WT_ERR(__rec_col_var_helper(
		    session, r, salvage, last, last_deleted, 0, rle));

	/* Write the remnant page. */
	ret = __rec_split_finish(session, r);

err:	__wt_scr_free(&orig);
	return (ret);
}

/*
 * __rec_row_int --
 *	Reconcile a row-store internal page.
 */
static int
__rec_row_int(WT_SESSION_IMPL *session, WT_RECONCILE *r, WT_PAGE *page)
{
	WT_ADDR *addr;
	WT_BTREE *btree;
	WT_CELL *cell;
	WT_CELL_UNPACK *kpack, _kpack, *vpack, _vpack;
	WT_IKEY *ikey;
	WT_KV *key, *val;
	WT_PAGE *rp;
	WT_REF *ref;
	uint32_t i, size;
	u_int vtype;
	int onpage_ovfl, ovfl_key, state;
	const void *p;

	btree = S2BT(session);

	key = &r->k;
	kpack = &_kpack;
	val = &r->v;
	vpack = &_vpack;

	WT_RET(__rec_split_init(session, r, page, 0ULL, btree->maxintlpage));

	/*
	 * Ideally, we'd never store the 0th key on row-store internal pages
	 * because it's never used during tree search and there's no reason
	 * to waste the space.  The problem is how we do splits: when we split,
	 * we've potentially picked out several "split points" in the buffer
	 * which is overflowing the maximum page size, and when the overflow
	 * happens, we go back and physically split the buffer, at those split
	 * points, into new pages.  It would be both difficult and expensive
	 * to re-process the 0th key at each split point to be an empty key,
	 * so we don't do that.  However, we are reconciling an internal page
	 * for whatever reason, and the 0th key is known to be useless.  We
	 * truncate the key to a single byte, instead of removing it entirely,
	 * it simplifies various things in other parts of the code (we don't
	 * have to special case transforming the page from its disk image to
	 * its in-memory version, for example).
	 */
	r->cell_zero = 1;

	/* For each entry in the in-memory page... */
	WT_REF_FOREACH(page, ref, i) {
		/*
		 * There are different paths if the key is an overflow item vs.
		 * a straight-forward on-page value.   If an overflow item, we
		 * would have instantiated it, and we can use that fact to set
		 * things up.
		 *
		 * Note the cell reference and unpacked key cell are available
		 * only in the case of an instantiated, off-page key.
		 */
		ikey = __wt_ref_key_instantiated(ref);
		if (ikey == NULL || ikey->cell_offset == 0) {
			cell = NULL;
			onpage_ovfl = 0;
		} else {
			cell = WT_PAGE_REF_OFFSET(page, ikey->cell_offset);
			__wt_cell_unpack(cell, kpack);
			onpage_ovfl = kpack->ovfl == 1 ? 1 : 0;
		}

		vtype = 0;
		addr = ref->addr;
		rp = ref->page;
		WT_RET(__rec_child_modify(session, r, page, ref, &state));

		/* Deleted child we don't have to write. */
		if (state == WT_CHILD_IGNORE) {
			/*
			 * Overflow keys referencing discarded pages are no
			 * longer useful, schedule them for discard.  Don't
			 * worry about instantiation, internal page keys are
			 * always instantiated.  Don't worry about reuse,
			 * reusing this key in this reconciliation is unlikely.
			 */
			if (onpage_ovfl)
				WT_RET(__wt_ovfl_onpage_add(
				    session, page, kpack->data, kpack->size));
			continue;
		}

		/* Deleted child requiring a proxy cell. */
		if (state == WT_CHILD_PROXY)
			vtype = WT_CELL_ADDR_DEL;

		/*
		 * Modified child.
		 * The page may be emptied or internally created during a split.
		 * Deleted/split pages are merged into the parent and discarded.
		 */
		if (state == WT_CHILD_MODIFIED)
			switch (F_ISSET(rp->modify, WT_PM_REC_MASK)) {
			case WT_PM_REC_EMPTY:
				/*
				 * Overflow keys referencing empty pages are no
				 * longer useful, schedule them for discard.
				 * Don't worry about instantiation, internal
				 * page keys are always instantiated.  Don't
				 * worry about reuse, reusing this key in this
				 * reconciliation is unlikely.
				 */
				if (onpage_ovfl)
					WT_RET(__wt_ovfl_onpage_add(
					    session, page,
					    kpack->data, kpack->size));
				continue;
			case WT_PM_REC_REPLACE:
				/*
				 * If the page is replaced, the page's modify
				 * structure has the page's address.
				 */
				addr = &rp->modify->u.replace;
				break;
			case WT_PM_REC_SPLIT:
			case WT_PM_REC_SPLIT_MERGE:
				/*
				 * Overflow keys referencing split pages are no
				 * longer useful (the split page's key is the
				 * interesting key); schedule them for discard.
				 * Don't worry about instantiation, internal
				 * page keys are always instantiated.  Don't
				 * worry about reuse, reusing this key in this
				 * reconciliation is unlikely.
				 */
				if (onpage_ovfl)
					WT_RET(__wt_ovfl_onpage_add(
					    session, page,
					    kpack->data, kpack->size));

				WT_RET(__rec_row_merge(session, r,
				    F_ISSET(rp->modify, WT_PM_REC_SPLIT_MERGE) ?
				    rp : rp->modify->u.split));
				continue;
			WT_ILLEGAL_VALUE(session);
			}

		/*
		 * Build the value cell, the child page's address.  Addr points
		 * to an on-page cell or an off-page WT_ADDR structure.   The
		 * cell type has been set in the case of page deletion requiring
		 * a proxy cell, otherwise use the information from the addr or
		 * original cell.
		 */
		if (__wt_off_page(page, addr)) {
			p = addr->addr;
			size = addr->size;
			if (vtype == 0)
				vtype = __rec_vtype(addr);
		} else {
			__wt_cell_unpack(ref->addr, vpack);
			p = vpack->data;
			size = vpack->size;
			if (vtype == 0)
				vtype = vpack->raw;
		}
		__rec_cell_build_addr(r, p, size, vtype, 0);

		/*
		 * If the key is an overflow key, check to see if we've entered
		 * the key into the tracking system.  In that case, the original
		 * overflow key blocks have been freed, we have to build a new
		 * key.  If there's no tracking entry, use the original blocks.
		 */
		if (onpage_ovfl &&
		    __wt_ovfl_onpage_search(page, kpack->data, kpack->size))
			onpage_ovfl = 0;

		/*
		 * Build key cell.
		 * Truncate any 0th key, internal pages don't need 0th keys.
		 */
		if (onpage_ovfl) {
			key->buf.data = cell;
			key->buf.size = __wt_cell_total_len(kpack);
			key->cell_len = 0;
			key->len = key->buf.size;
			ovfl_key = 1;
		} else {
			__wt_ref_key(page, ref, &p, &size);
			WT_RET(__rec_cell_build_int_key(session, r,
			    p, r->cell_zero ? 1 : size, &ovfl_key));
		}
		r->cell_zero = 0;

		/*
		 * Boundary: split or write the page.
		 */
		while (key->len + val->len > r->space_avail) {
			if (r->raw_compression) {
				WT_RET(__rec_split_raw(session, r));
				continue;
			}

			/*
			 * In one path above, we copied the key from the page
			 * rather than building the actual key.  In that case,
			 * we have to build the actual key now because we are
			 * about to promote it.
			 */
			if (onpage_ovfl) {
				WT_RET(__wt_buf_set(session,
				    r->cur, WT_IKEY_DATA(ikey), ikey->size));
				onpage_ovfl = 0;
			}
			WT_RET(__rec_split(session, r));
		}

		/* Copy the key and value onto the page. */
		__rec_copy_incr(session, r, key);
		__rec_copy_incr(session, r, val);

		/* Update compression state. */
		__rec_key_state_update(r, ovfl_key);
	}

	/* Write the remnant page. */
	return (__rec_split_finish(session, r));
}

/*
 * __rec_row_merge --
 *	Recursively walk a row-store internal tree of merge pages.
 */
static int
__rec_row_merge(WT_SESSION_IMPL *session, WT_RECONCILE *r, WT_PAGE *page)
{
	WT_ADDR *addr;
	WT_CELL_UNPACK *vpack, _vpack;
	WT_KV *key, *val;
	WT_PAGE *rp;
	WT_REF *ref;
	uint32_t i, size;
	u_int vtype;
	int ovfl_key, state;
	const void *p;

	WT_STAT_FAST_DATA_INCR(session, rec_page_merge);

	key = &r->k;
	val = &r->v;
	vpack = &_vpack;

	/* For each entry in the in-memory page... */
	WT_REF_FOREACH(page, ref, i) {
		vtype = 0;
		addr = ref->addr;
		rp = ref->page;
		WT_RET(__rec_child_modify(session, r, page, ref, &state));

		/* Deleted child we don't have to write. */
		if (state == WT_CHILD_IGNORE)
			continue;

		/* Deleted child requiring a proxy cell. */
		if (state == WT_CHILD_PROXY)
			vtype = WT_CELL_ADDR_DEL;

		/*
		 * Modified child.
		 * The page may be emptied or internally created during a split.
		 * Deleted/split pages are merged into the parent and discarded.
		 */
		if (state == WT_CHILD_MODIFIED)
			switch (F_ISSET(rp->modify, WT_PM_REC_MASK)) {
			case WT_PM_REC_EMPTY:
				continue;
			case WT_PM_REC_REPLACE:
				/*
				 * If the page is replaced, the page's modify
				 * structure has the page's address.
				 */
				addr = &rp->modify->u.replace;
				break;
			case WT_PM_REC_SPLIT:
			case WT_PM_REC_SPLIT_MERGE:
				WT_RET(__rec_row_merge(session, r,
				    F_ISSET(rp->modify, WT_PM_REC_SPLIT_MERGE) ?
				    rp : rp->modify->u.split));
				continue;
			WT_ILLEGAL_VALUE(session);
			}

		/*
		 * Build the value cell, the child page's address.  Addr points
		 * to an on-page cell or an off-page WT_ADDR structure.   The
		 * cell type has been set in the case of page deletion requiring
		 * a proxy cell, otherwise use the information from the addr or
		 * original cell.
		 */
		if (__wt_off_page(page, addr)) {
			p = addr->addr;
			size = addr->size;
			if (vtype == 0)
				vtype = __rec_vtype(addr);
		} else {
			__wt_cell_unpack(ref->addr, vpack);
			p = vpack->data;
			size = vpack->size;
			if (vtype == 0)
				vtype = vpack->raw;
		}
		__rec_cell_build_addr(r, p, size, vtype, 0);

		/*
		 * Build the key cell.
		 * Truncate any 0th key, internal pages don't need 0th keys.
		 */
		__wt_ref_key(page, ref, &p, &size);
		WT_RET(__rec_cell_build_int_key(session, r,
		    p, r->cell_zero ? 1 : size, &ovfl_key));
		r->cell_zero = 0;

		/*
		 * Boundary: split or write the page.
		 */
		while (key->len + val->len > r->space_avail) {
			if (r->raw_compression) {
				WT_RET(__rec_split_raw(session, r));
				continue;
			}
			WT_RET(__rec_split(session, r));
		}

		/* Copy the key and value onto the page. */
		__rec_copy_incr(session, r, key);
		__rec_copy_incr(session, r, val);

		/* Update compression state. */
		__rec_key_state_update(r, ovfl_key);
	}

	return (0);
}

/*
 * __rec_row_leaf --
 *	Reconcile a row-store leaf page.
 */
static int
__rec_row_leaf(WT_SESSION_IMPL *session,
    WT_RECONCILE *r, WT_PAGE *page, WT_SALVAGE_COOKIE *salvage)
{
	WT_BTREE *btree;
	WT_CELL *cell, *val_cell;
	WT_CELL_UNPACK *unpack, _unpack;
	WT_DECL_ITEM(tmpkey);
	WT_DECL_ITEM(tmpval);
	WT_DECL_RET;
	WT_IKEY *ikey;
	WT_INSERT *ins;
	WT_KV *key, *val;
	WT_ROW *rip;
	WT_UPDATE *upd;
	uint64_t slvg_skip;
	uint32_t i, size;
	int dictionary, onpage_ovfl, ovfl_key;
	const void *p;

	btree = S2BT(session);
	slvg_skip = salvage == NULL ? 0 : salvage->skip;

	key = &r->k;
	val = &r->v;
	unpack = &_unpack;

	WT_RET(__rec_split_init(session, r, page, 0ULL, btree->maxleafpage));

	/*
	 * Write any K/V pairs inserted into the page before the first from-disk
	 * key on the page.
	 */
	if ((ins = WT_SKIP_FIRST(WT_ROW_INSERT_SMALLEST(page))) != NULL)
		WT_RET(__rec_row_leaf_insert(session, r, ins));

	/*
	 * Temporary buffers in which to instantiate any uninstantiated keys
	 * or value items we need.
	 */
	WT_RET(__wt_scr_alloc(session, 0, &tmpkey));
	WT_RET(__wt_scr_alloc(session, 0, &tmpval));

	/* For each entry in the page... */
	WT_ROW_FOREACH(page, rip, i) {
		/*
		 * The salvage code, on some rare occasions, wants to reconcile
		 * a page but skip some leading records on the page.  Because
		 * the row-store leaf reconciliation function copies keys from
		 * the original disk page, this is non-trivial -- just changing
		 * the in-memory pointers isn't sufficient, we have to change
		 * the WT_CELL structures on the disk page, too.  It's ugly, but
		 * we pass in a value that tells us how many records to skip in
		 * this case.
		 */
		if (slvg_skip != 0) {
			--slvg_skip;
			continue;
		}

		/*
		 * Set the WT_IKEY reference (if the key was instantiated), and
		 * the key cell reference.
		 */
		ikey = WT_ROW_KEY_COPY(rip);
		if (__wt_off_page(page, ikey))
			cell = WT_PAGE_REF_OFFSET(page, ikey->cell_offset);
		else {
			cell = (WT_CELL *)ikey;
			ikey = NULL;
		}

		/* Build value cell. */
		dictionary = 0;
		if ((val_cell = __wt_row_value(page, rip)) != NULL)
			__wt_cell_unpack(val_cell, unpack);
		WT_ERR(
		    __rec_txn_read(session, r, WT_ROW_UPDATE(page, rip), &upd));
		if (upd == NULL) {
			/*
			 * When the page was read into memory, there may not
			 * have been a value item.
			 *
			 * If there was a value item, check if it's a dictionary
			 * cell (a copy of another item on the page).  If it's a
			 * copy, we have to create a new value item as the old
			 * item might have been discarded from the page.
			 */
			if (val_cell == NULL) {
				val->buf.data = NULL;
				val->cell_len = val->len = val->buf.size = 0;
			} else if (unpack->raw == WT_CELL_VALUE_COPY) {
				/* If the item is Huffman encoded, decode it. */
				if (btree->huffman_value == NULL) {
					p = unpack->data;
					size = unpack->size;
				} else {
					WT_ERR(__wt_huffman_decode(session,
					    btree->huffman_value,
					    unpack->data, unpack->size,
					    tmpval));
					p = tmpval->data;
					size = tmpval->size;
				}
				WT_ERR(__rec_cell_build_val(
				    session, r, p, size, (uint64_t)0));
				dictionary = 1;
			} else {
				val->buf.data = val_cell;
				val->buf.size = __wt_cell_total_len(unpack);
				val->cell_len = 0;
				val->len = val->buf.size;

				/* Track if page has overflow items. */
				if (unpack->ovfl)
					r->ovfl_items = 1;
			}
		} else {
			/*
			 * If the original value was an overflow and we've not
			 * already done so, discard it.  One complication: we
			 * must cache a copy before discarding the on-disk
			 * version if there's a transaction in the system that
			 * might read the original value.
			 */
			if (val_cell != NULL && unpack->ovfl) {
				WT_ERR(__wt_ovfl_onpage_add(
				    session, page, unpack->data, unpack->size));
				WT_ERR(__wt_ovfl_cache(
				    session, page, rip, unpack));
			}

			/* If this key/value pair was deleted, we're done. */
			if (WT_UPDATE_DELETED_ISSET(upd)) {
				/*
				 * Overflow keys referencing discarded values
				 * are no longer useful, schedule the discard
				 * of the backing blocks.  Don't worry about
				 * reuse, reusing the key in this reconciliation
				 * is unlikely.
				 *
				 * Keys are part of the name-space though, we
				 * can't remove them from the in-memory tree;
				 * if an overflow key was never instantiated,
				 * do it now.
				 */
				__wt_cell_unpack(cell, unpack);
				if (unpack->ovfl) {
					if (ikey == NULL)
						WT_ERR(__wt_row_leaf_key_work(
						    session,
						    page, rip, NULL, 1));

					/*
					 * Acquire the overflow lock to avoid
					 * racing with a thread instantiating
					 * the key.  Reader threads hold read
					 * locks on the overflow lock when
					 * checking for key instantiation.
					 */
					WT_ERR(__wt_writelock(session,
					    S2BT(session)->val_ovfl_lock));
					WT_ERR(__wt_rwunlock(session,
					    S2BT(session)->val_ovfl_lock));

					WT_ERR(__wt_ovfl_onpage_add(
					    session, page,
					    unpack->data, unpack->size));
				}

				/*
				 * We aren't actually creating the key so we
				 * can't use bytes from this key to provide
				 * prefix information for a subsequent key.
				 */
				tmpkey->size = 0;

				/* Proceed with appended key/value pairs. */
				goto leaf_insert;
			}

			/*
			 * If no value, nothing needs to be copied.  Otherwise,
			 * build the value's WT_CELL chunk from the most recent
			 * update value.
			 */
			if (upd->size == 0) {
				val->buf.data = NULL;
				val->cell_len = val->len = val->buf.size = 0;
			} else {
				WT_ERR(__rec_cell_build_val(session, r,
				    WT_UPDATE_DATA(upd), upd->size,
				    (uint64_t)0));
				dictionary = 1;
			}
		}

		/*
		 * If the key is an overflow key, check to see if we've entered
		 * the key into the tracking system.  In that case, the original
		 * overflow key blocks have been freed, we have to build a new
		 * key.  If there's no tracking entry, use the original blocks.
		 */
		__wt_cell_unpack(cell, unpack);
		onpage_ovfl = unpack->ovfl;
		if (onpage_ovfl &&
		    __wt_ovfl_onpage_search(page, unpack->data, unpack->size)) {
			onpage_ovfl = 0;
			WT_ASSERT(session, ikey != NULL);
		}

		/*
		 * Build key cell.
		 */
		if (onpage_ovfl) {
			key->buf.data = cell;
			key->buf.size = __wt_cell_total_len(unpack);
			key->cell_len = 0;
			key->len = key->buf.size;
			ovfl_key = 1;

			/*
			 * We aren't creating a key so we can't use this key as
			 * a prefix for a subsequent key.
			 */
			tmpkey->size = 0;

			/* Track if page has overflow items. */
			r->ovfl_items = 1;
		} else {
			/*
			 * Use an already instantiated key, or
			 * Use the key from the disk image, or
			 * Build a key from a previous key, or
			 * Instantiate the key from scratch.
			 */
			if (ikey != NULL) {
				tmpkey->data = WT_IKEY_DATA(ikey);
				tmpkey->size = ikey->size;
			} else if (btree->huffman_key == NULL &&
			    unpack->type == WT_CELL_KEY &&
			    unpack->prefix == 0) {
				tmpkey->data = unpack->data;
				tmpkey->size = unpack->size;
			} else if (btree->huffman_key == NULL &&
			    unpack->type == WT_CELL_KEY &&
			    tmpkey->size >= unpack->prefix) {
				/*
				 * The previous clause checked for a prefix of
				 * zero, which means the temporary buffer must
				 * have a non-zero size, and it references a
				 * valid key.
				 */
				WT_ASSERT(session, tmpkey->size != 0);

				/*
				 * If we previously built a prefix-compressed
				 * key in the temporary buffer, WT_ITEM->data
				 * will be the same as WT_ITEM->mem: grow the
				 * buffer and copy the suffix into place.
				 *
				 * If we previously pointed the temporary buffer
				 * at an in-memory or on-page key, WT_ITEM->data
				 * will not be the same as WT_ITEM->mem: grow
				 * the buffer, copy the prefix into place, reset
				 * the data field to point to the buffer memory,
				 * then copy the suffix into place.
				 */
				WT_ERR(__wt_buf_grow(session,
				    tmpkey, unpack->prefix + unpack->size));
				if (tmpkey->data != tmpkey->mem) {
					memcpy(tmpkey->mem, tmpkey->data,
					    unpack->prefix);
					tmpkey->data = tmpkey->mem;
				}
				memcpy((uint8_t *)tmpkey->mem + unpack->prefix,
				    unpack->data, unpack->size);
				tmpkey->size = unpack->prefix + unpack->size;
			} else
				WT_ERR(__wt_row_leaf_key_copy(
				    session, page, rip, tmpkey));

			WT_ERR(__rec_cell_build_leaf_key(session, r,
			    tmpkey->data, tmpkey->size, &ovfl_key));
		}

		/*
		 * Boundary: split or write the page.
		 */
		while (key->len + val->len > r->space_avail) {
			if (r->raw_compression) {
				WT_ERR(__rec_split_raw(session, r));
				continue;
			}

			/*
			 * In one path above, we copied the key from the page
			 * rather than building the actual key.  In that case,
			 * we have to build the actual key now because we are
			 * about to promote it.
			 */
			if (onpage_ovfl) {
				WT_ERR(__wt_dsk_cell_data_ref(
				    session, WT_PAGE_ROW_LEAF, unpack, r->cur));
				onpage_ovfl = 0;
			}
			WT_ERR(__rec_split(session, r));

			/*
			 * Turn off prefix compression until a full key written
			 * to the new page, and (unless we're already working
			 * with an overflow key), rebuild the key without prefix
			 * compression.
			 */
			if (r->key_pfx_compress_conf) {
				r->key_pfx_compress = 0;
				if (!ovfl_key)
					WT_ERR(__rec_cell_build_leaf_key(
					    session, r, NULL, 0, &ovfl_key));
			}
		}

		/* Copy the key/value pair onto the page. */
		__rec_copy_incr(session, r, key);
		if (val->len != 0) {
			if (dictionary && btree->dictionary)
				WT_ERR(__rec_dict_replace(session, r, 0, val));
			__rec_copy_incr(session, r, val);
		}

		/* Update compression state. */
		__rec_key_state_update(r, ovfl_key);

leaf_insert:	/* Write any K/V pairs inserted into the page after this key. */
		if ((ins = WT_SKIP_FIRST(WT_ROW_INSERT(page, rip))) != NULL)
			WT_ERR(__rec_row_leaf_insert(session, r, ins));
	}

	/* Write the remnant page. */
	ret = __rec_split_finish(session, r);

err:	__wt_scr_free(&tmpkey);
	__wt_scr_free(&tmpval);
	return (ret);
}

/*
 * __rec_row_leaf_insert --
 *	Walk an insert chain, writing K/V pairs.
 */
static int
__rec_row_leaf_insert(WT_SESSION_IMPL *session, WT_RECONCILE *r, WT_INSERT *ins)
{
	WT_BTREE *btree;
	WT_KV *key, *val;
	WT_UPDATE *upd;
	int ovfl_key;

	btree = S2BT(session);
	key = &r->k;
	val = &r->v;

	for (; ins != NULL; ins = WT_SKIP_NEXT(ins)) {
		/* Build value cell. */
		WT_RET(__rec_txn_read(session, r, ins->upd, &upd));
		if (upd == NULL || WT_UPDATE_DELETED_ISSET(upd))
			continue;
		if (upd->size == 0)
			val->len = 0;
		else
			WT_RET(__rec_cell_build_val(session, r,
			    WT_UPDATE_DATA(upd), upd->size, (uint64_t)0));

							/* Build key cell. */
		WT_RET(__rec_cell_build_leaf_key(session, r,
		    WT_INSERT_KEY(ins), WT_INSERT_KEY_SIZE(ins), &ovfl_key));

		/*
		 * Boundary: split or write the page.
		 */
		while (key->len + val->len > r->space_avail) {
			if (r->raw_compression) {
				WT_RET(__rec_split_raw(session, r));
				continue;
			}
			WT_RET(__rec_split(session, r));

			/*
			 * Turn off prefix compression until a full key written
			 * to the new page, and (unless we're already working
			 * with an overflow key), rebuild the key without prefix
			 * compression.
			 */
			if (r->key_pfx_compress_conf) {
				r->key_pfx_compress = 0;
				if (!ovfl_key)
					WT_RET(__rec_cell_build_leaf_key(
					    session, r, NULL, 0, &ovfl_key));
			}
		}

		/* Copy the key/value pair onto the page. */
		__rec_copy_incr(session, r, key);
		if (val->len != 0) {
			if (btree->dictionary)
				WT_RET(__rec_dict_replace(session, r, 0, val));
			__rec_copy_incr(session, r, val);
		}

		/* Update compression state. */
		__rec_key_state_update(r, ovfl_key);
	}

	return (0);
}

/*
 * __rec_split_discard --
 *	Discard the pages resulting from a previous split.
 */
static int
__rec_split_discard(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_BM *bm;
	WT_PAGE_MODIFY *mod;
	WT_REF *ref;
	uint32_t i;

	bm = S2BT(session)->bm;

	/*
	 * A page that split is being reconciled for the second, or subsequent
	 * time; discard the underlying block space and overflow items used in
	 * the previous reconciliation.
	 *
	 * This routine would be trivial, and only walk a single page freeing
	 * any blocks that were written to support the split -- the problem is
	 * root splits.  In the case of root splits, we potentially have to
	 * cope with the underlying sets of multiple pages.
	 */
	WT_REF_FOREACH(page, ref, i)
		WT_RET(bm->free(bm, session,
		    ((WT_ADDR *)ref->addr)->addr,
		    ((WT_ADDR *)ref->addr)->size));
	WT_RET(__wt_ovfl_track_wrapup(session, page));

	if ((mod = page->modify) != NULL)
		switch (F_ISSET(mod, WT_PM_REC_MASK)) {
		case WT_PM_REC_SPLIT_MERGE:
			/*
			 * NOT root page split: this is the split merge page for
			 * a normal page split, and we don't need to do anything
			 * further.
			 */
			break;
		case WT_PM_REC_SPLIT:
			/*
			 * Root page split: continue walking the list of split
			 * pages, cleaning up as we go.
			 */
			WT_RET(__rec_split_discard(session, mod->u.split));
			break;
		case WT_PM_REC_REPLACE:
			/*
			 * Root page split: the last entry on the list.  There
			 * won't be a page to discard because writing the page
			 * created a checkpoint, not a replacement page.
			 */
			WT_ASSERT(session, mod->u.replace.addr == NULL);
			break;
		WT_ILLEGAL_VALUE(session);
		}
	return (0);
}

/*
 * __rec_write_wrapup --
 *	Finish the reconciliation.
 */
static int
__rec_write_wrapup(WT_SESSION_IMPL *session, WT_RECONCILE *r, WT_PAGE *page)
{
	WT_BM *bm;
	WT_BOUNDARY *bnd;
	WT_BTREE *btree;
	WT_PAGE_MODIFY *mod;
	WT_REF *ref;
	uint32_t size;
	const uint8_t *addr;

	btree = S2BT(session);
	bm = btree->bm;
	mod = page->modify;

	/*
	 * This page may have previously been reconciled, and that information
	 * is now about to be replaced.  Make sure it's discarded at some point,
	 * and clear the underlying modification information, we're creating a
	 * new reality.
	 */
	switch (F_ISSET(mod, WT_PM_REC_MASK)) {
	case 0:	/*
		 * The page has never been reconciled before, free the original
		 * address blocks (if any).  The "if any" is for empty trees
		 * created when a new tree is opened, previously deleted pages
		 * instantiated in memory, or pages reconciled into split-merge
		 * pages and then replaced by other pages because the tree grew
		 * too deep.
		 *
		 * The exception is root pages are never tracked or free'd, they
		 * are checkpoints, and must be explicitly dropped.
		 */
		if (WT_PAGE_IS_ROOT(page))
			break;

		ref = page->ref;
		if (ref->addr != NULL) {
			/*
			 * Free the page and clear the address (so we don't free
			 * it twice).
			 */
			WT_RET(__wt_ref_info(session,
			    page->parent, ref, &addr, &size, NULL));
			WT_RET(bm->free(bm, session, addr, size));
			if (__wt_off_page(page->parent, ref->addr)) {
				__wt_free(
				    session, ((WT_ADDR *)ref->addr)->addr);
				__wt_free(session, ref->addr);
			}
			ref->addr = NULL;
		}
		break;
	case WT_PM_REC_EMPTY:				/* Page deleted */
		break;
	case WT_PM_REC_REPLACE:				/* 1-for-1 page swap */
		/*
		 * Discard the replacement leaf page's blocks.
		 *
		 * The exception is root pages are never tracked or free'd, they
		 * are checkpoints, and must be explicitly dropped.
		 */
		if (!WT_PAGE_IS_ROOT(page))
			WT_RET(bm->free(bm, session,
			    mod->u.replace.addr, mod->u.replace.size));

		/* Discard the replacement page's address. */
		__wt_free(session, mod->u.replace.addr);
		mod->u.replace.size = 0;
		break;
	case WT_PM_REC_SPLIT:				/* Page split */
		/* Discard the split page. */
		WT_RET(__rec_split_discard(session, mod->u.split));
		__wt_page_out(session, &mod->u.split);
		mod->u.split = NULL;
		break;
	case WT_PM_REC_SPLIT_MERGE:			/* Page split */
		/*
		 * We should never be here with a split-merge page: you cannot
		 * reconcile split-merge pages, they can only be merged into a
		 * parent.
		 */
		/* FALLTHROUGH */
	WT_ILLEGAL_VALUE(session);
	}
	F_CLR(mod, WT_PM_REC_MASK);

	/*
	 * Wrap up overflow tracking.  If we are about to create a checkpoint,
	 * the system must be entirely consistent at that point (the underlying
	 * block manager is presumably going to do some action to resolve the
	 * list of allocated/free/whatever blocks that are associated with the
	 * checkpoint).
	 */
	WT_RET(__wt_ovfl_track_wrapup(session, page));

	switch (r->bnd_next) {
	case 0:						/* Page delete */
		WT_VERBOSE_RET(session, reconcile, "page %p empty", page);
		WT_STAT_FAST_DATA_INCR(session, rec_page_delete);

		/* If this is the root page, we need to create a sync point. */
		if (WT_PAGE_IS_ROOT(page))
			WT_RET(
			    bm->checkpoint(bm, session, NULL, btree->ckpt, 0));

		/*
		 * If the page was empty, we want to discard it from the tree
		 * by discarding the parent's key when evicting the parent.
		 * Mark the page as deleted, then return success, leaving the
		 * page in memory.  If the page is subsequently modified, that
		 * is OK, we'll just reconcile it again.
		 */
		F_SET(mod, WT_PM_REC_EMPTY);
		break;
	case 1:						/* 1-for-1 page swap */
		/*
		 * Because WiredTiger's pages grow without splitting, we're
		 * replacing a single page with another single page most of
		 * the time.
		 *
		 * If this is a root page, then we don't have an address and we
		 * have to create a sync point.  The address was cleared when
		 * we were about to write the buffer so we know what to do here.
		 */
		bnd = &r->bnd[0];
		if (bnd->addr.addr == NULL)
			WT_RET(__wt_bt_write(session,
			    &r->dsk, NULL, NULL, 1, bnd->already_compressed));
		else {
			mod->u.replace = bnd->addr;
			bnd->addr.addr = NULL;
		}

		F_SET(mod, WT_PM_REC_REPLACE);
		break;
	default:					/* Page split */
		WT_VERBOSE_RET(session, reconcile,
		    "page %p split into %" PRIu32 " pages",
		    page, r->bnd_next);

		switch (page->type) {
		case WT_PAGE_COL_INT:
		case WT_PAGE_ROW_INT:
			WT_STAT_FAST_DATA_INCR(session, rec_split_internal);
			break;
		case WT_PAGE_COL_FIX:
		case WT_PAGE_COL_VAR:
		case WT_PAGE_ROW_LEAF:
			WT_STAT_FAST_DATA_INCR(session, rec_split_leaf);
			break;
		WT_ILLEGAL_VALUE(session);
		}

		if (WT_VERBOSE_ISSET(session, reconcile)) {
			WT_DECL_ITEM(tkey);
			WT_DECL_RET;
			uint32_t i;

			if (page->type == WT_PAGE_ROW_INT ||
			    page->type == WT_PAGE_ROW_LEAF)
				WT_RET(__wt_scr_alloc(session, 0, &tkey));
			for (bnd = r->bnd, i = 0; i < r->bnd_next; ++bnd, ++i)
				switch (page->type) {
				case WT_PAGE_ROW_INT:
				case WT_PAGE_ROW_LEAF:
					WT_ERR(__wt_buf_set_printable(
					    session, tkey,
					    bnd->key.data, bnd->key.size));
					WT_VERBOSE_ERR(session, reconcile,
					    "split: starting key "
					    "%.*s",
					    (int)tkey->size,
					    (const char *)tkey->data);
					break;
				case WT_PAGE_COL_FIX:
				case WT_PAGE_COL_INT:
				case WT_PAGE_COL_VAR:
					WT_VERBOSE_ERR(session, reconcile,
					    "split: starting recno %" PRIu64,
					    bnd->recno);
					break;
				WT_ILLEGAL_VALUE_ERR(session);
				}
err:			__wt_scr_free(&tkey);
			WT_RET(ret);
		}

		if (r->bnd_next > r->bnd_next_max) {
			r->bnd_next_max = r->bnd_next;
			WT_STAT_FAST_DATA_SET(
			    session, rec_split_max, r->bnd_next_max);
		}

		switch (page->type) {
		case WT_PAGE_ROW_INT:
		case WT_PAGE_ROW_LEAF:
			WT_RET(__rec_split_row(
			    session, r, page, &mod->u.split));
			break;
		case WT_PAGE_COL_INT:
		case WT_PAGE_COL_FIX:
		case WT_PAGE_COL_VAR:
			WT_RET(__rec_split_col(
			    session, r, page, &mod->u.split));
			break;
		WT_ILLEGAL_VALUE(session);
		}
		F_SET(mod, WT_PM_REC_SPLIT);
		break;
	}

	/*
	 * If updates were skipped, the tree isn't clean.  The checkpoint call
	 * cleared the tree's modified value before calling the eviction thread,
	 * so we must explicitly reset the tree's modified flag.  We insert a
	 * barrier after the change for clarity (the requirement is the value
	 * be set before a subsequent checkpoint reads it, and because the
	 * current checkpoint is waiting on this reconciliation to complete,
	 * there's no risk of that happening).
	 */
	if (r->upd_skipped) {
		btree->modified = 1;
		WT_FULL_BARRIER();
	}

	/*
	 * If no updates were skipped, we have a new maximum transaction
	 * written for the page (used to decide if a clean page can be
	 * evicted).  The page might be clean; if the write generation is
	 * unchanged since reconciliation started, clear it and update the
	 * cache's dirty statistics.
	 */
	if (!r->upd_skipped) {
		mod->disk_txn = r->max_txn;

		if (WT_ATOMIC_CAS(mod->write_gen, r->orig_write_gen, 0))
			__wt_cache_dirty_decr(session, page);
	}

	return (0);
}

/*
 * __rec_write_wrapup_err --
 *	Finish the reconciliation on error.
 */
static int
__rec_write_wrapup_err(WT_SESSION_IMPL *session, WT_RECONCILE *r, WT_PAGE *page)
{
	WT_BM *bm;
	WT_BOUNDARY *bnd;
	WT_DECL_RET;
	uint32_t i;

	bm = S2BT(session)->bm;

	/*
	 * On error, discard pages we've written, they're unreferenced by the
	 * tree.  This is not a question of correctness, we're avoiding block
	 * leaks.
	 */
	WT_TRET(__wt_ovfl_track_wrapup_err(session, page));
	for (bnd = r->bnd, i = 0; i < r->bnd_next; ++bnd, ++i)
		if (bnd->addr.addr != NULL) {
			WT_TRET(bm->free(
			    bm, session, bnd->addr.addr, bnd->addr.size));
			__wt_free(session, bnd->addr.addr);
		}
	return (ret);
}

/*
 * __rec_split_merge_new --
 *	Create a split-merge page.
 */
static int
__rec_split_merge_new(WT_SESSION_IMPL *session,
    WT_RECONCILE *r, WT_PAGE *orig, WT_PAGE **pagep, uint8_t type)
{
	WT_PAGE *page;

	/*
	 * Allocate a new internal page and fill it in.
	 *
	 * Our caller cleans up, make sure we return a valid page reference,
	 * even on error.
	 */
	WT_RET(__wt_page_alloc(session, type, r->bnd_next, pagep));
	page = *pagep;
	page->parent = orig->parent;
	page->ref = orig->ref;
	if (type == WT_PAGE_COL_INT)
		page->u.intl.recno = r->bnd[0].recno;
	page->read_gen = WT_READ_GEN_NOTSET;
	page->entries = r->bnd_next;

	/*
	 * We don't re-write parent pages when child pages split, which means
	 * we have only one slot to work with in the parent.  When a leaf page
	 * splits, we create a new internal page referencing the split pages,
	 * and when the leaf page is evicted, we update the leaf's slot in the
	 * parent to reference the new internal page in the tree (deepening the
	 * tree by a level).  We don't want the tree to deepen permanently, so
	 * we never write that new internal page to disk, we only merge it into
	 * the parent when the parent page is evicted.
	 *
	 * We set one flag (WT_PM_REC_SPLIT) on the original page so future
	 * reconciliations of its parent merge in the newly created split page.
	 * We set a different flag (WT_PM_REC_SPLIT_MERGE) on the created
	 * split page so after we evict the original page and replace it with
	 * the split page, the parent continues to merge in the split page.
	 * The flags are different because the original page can be evicted and
	 * its memory discarded, but the newly created split page cannot be
	 * evicted, it can only be merged into its parent.
	 */
	WT_RET(__wt_page_modify_init(session, page));
	F_SET(page->modify, WT_PM_REC_SPLIT_MERGE);

	return (0);
}

/*
 * __rec_split_row --
 *	Split a row-store page, creating a new internal page.
 */
static int
__rec_split_row(
    WT_SESSION_IMPL *session, WT_RECONCILE *r, WT_PAGE *orig, WT_PAGE **splitp)
{
	WT_ADDR *addr;
	WT_BOUNDARY *bnd;
	WT_DECL_RET;
	WT_PAGE *page;
	WT_REF *ref;
	size_t size;
	uint32_t i, ksize;
	void *p;

	addr = NULL;

	/* Allocate a split-merge page. */
	WT_ERR(__rec_split_merge_new(session, r, orig, &page, WT_PAGE_ROW_INT));

	/*
	 * The "parent" key for each split chunk is the first key on the chunk,
	 * except for the 0th chunk, which cannot come from the page itself as
	 * it might not be small enough.    If the existing key for the page is
	 * smaller than the first key on the chunk we can lose after the merge.
	 * Imagine the following tree, where an internal page has keys 2, 5 and
	 * 40.  The page with key 5 splits into two chunks, and 10 is the first
	 * key in the first chunk.
	 *
	 *	2	5	40	internal page
	 *		|
	 * 	    10  | 20		split-created internal page
	 *
	 * If we subsequently insert a key 6, it works because the page search
	 * algorithm coerces the 0th key of an internal page to be smaller than
	 * any search key.  (We do that because we don't want to have to update
	 * internal pages every time a new "smallest" key is inserted into the
	 * tree.)   Anyway, that results in the following tree:
	 *
	 *	2	5	40	internal page
	 *		|
	 * 	    10  | 20		split-created internal page
	 *	    |
	 *	    6			inserted smallest key
	 *
	 * after a simple merge where we replace page 5 with pages 10 and 20,
	 * we'd have corruption:
	 *
	 *	2    10    20	40	merged internal page
	 *	     |
	 *	     6			key sorts before parent's key
	 *
	 * To fix this problem, we take the original parent page's key as the
	 * first chunk's key because that key sorts before any possible key
	 * inserted into the subtree.
	 */
	if (WT_PAGE_IS_ROOT(orig))
		WT_ERR(__wt_buf_set(session, &r->bnd[0].key, "", 1));
	else {
		__wt_ref_key(orig->parent, orig->ref, &p, &ksize);
		WT_ERR(__wt_buf_set(session, &r->bnd[0].key, p, ksize));
	}

	/* Enter each split child page into the new internal page. */
	size = 0;
	for (ref = page->u.intl.t,
	    bnd = r->bnd, i = 0; i < r->bnd_next; ++ref, ++bnd, ++i) {
		WT_ERR(__wt_calloc(session, 1, sizeof(WT_ADDR), &addr));
		*addr = bnd->addr;
		bnd->addr.addr = NULL;
		size += bnd->addr.size;

		ref->page = NULL;
		WT_ERR(__wt_row_ikey(session, 0,
		    bnd->key.data, bnd->key.size, &ref->key.ikey));
		size += sizeof(WT_IKEY) + bnd->key.size;
		ref->addr = addr;
		addr = NULL;
		ref->state = WT_REF_DISK;
	}
	__wt_cache_page_inmem_incr(
	    session, page, r->bnd_next * sizeof(WT_ADDR) + size);

	*splitp = page;
	return (0);

err:	if (addr != NULL)
		__wt_free(session, addr);
	if (page != NULL)
		__wt_page_out(session, &page);
	return (ret);
}

/*
 * __rec_split_col --
 *	Split a column-store page, creating a new internal page.
 */
static int
__rec_split_col(
    WT_SESSION_IMPL *session, WT_RECONCILE *r, WT_PAGE *orig, WT_PAGE **splitp)
{
	WT_ADDR *addr;
	WT_BOUNDARY *bnd;
	WT_DECL_RET;
	WT_PAGE *page;
	WT_REF *ref;
	uint32_t i;

	/* Allocate a split-merge page. */
	WT_ERR(__rec_split_merge_new(session, r, orig, &page, WT_PAGE_COL_INT));

	/* Enter each split child page into the new internal page. */
	for (ref = page->u.intl.t,
	    bnd = r->bnd, i = 0; i < r->bnd_next; ++ref, ++bnd, ++i) {
		WT_ERR(__wt_calloc(session, 1, sizeof(WT_ADDR), &addr));
		*addr= bnd->addr;
		bnd->addr.addr = NULL;

		ref->page = NULL;
		ref->key.recno = bnd->recno;
		ref->addr = addr;
		ref->state = WT_REF_DISK;
	}
	__wt_cache_page_inmem_incr(
	    session, page, r->bnd_next * sizeof(WT_ADDR));

	*splitp = page;
	return (0);

err:	if (page != NULL)
		__wt_page_out(session, &page);
	return (ret);
}

/*
 * __rec_cell_build_int_key --
 *	Process a key and return a WT_CELL structure and byte string to be
 * stored on a row-store internal page.
 */
static int
__rec_cell_build_int_key(WT_SESSION_IMPL *session,
    WT_RECONCILE *r, const void *data, uint32_t size, int *is_ovflp)
{
	WT_BTREE *btree;
	WT_KV *key;

	*is_ovflp = 0;

	btree = S2BT(session);
	key = &r->k;

	/* Copy the bytes into the "current" and key buffers. */
	WT_RET(__wt_buf_set(session, r->cur, data, size));
	WT_RET(__wt_buf_set(session, &key->buf, data, size));

	/* Create an overflow object if the data won't fit. */
	if (size > btree->maxintlitem) {
		WT_STAT_FAST_DATA_INCR(session, rec_overflow_key_internal);

		*is_ovflp = 1;
		return (__rec_cell_build_ovfl(
		    session, r, key, WT_CELL_KEY_OVFL, (uint64_t)0));
	}

	key->cell_len = __wt_cell_pack_int_key(&key->cell, key->buf.size);
	key->len = key->cell_len + key->buf.size;

	return (0);
}

/*
 * __rec_cell_build_leaf_key --
 *	Process a key and return a WT_CELL structure and byte string to be
 * stored on a row-store leaf page.
 */
static int
__rec_cell_build_leaf_key(WT_SESSION_IMPL *session,
    WT_RECONCILE *r, const void *data, uint32_t size, int *is_ovflp)
{
	WT_BTREE *btree;
	WT_KV *key;
	uint32_t pfx_max;
	uint8_t pfx;
	const uint8_t *a, *b;

	btree = S2BT(session);
	key = &r->k;
	*is_ovflp = 0;

	pfx = 0;
	if (data == NULL)
		/*
		 * When data is NULL, our caller has a prefix compressed key
		 * they can't use (probably because they just crossed a split
		 * point).  Use the full key saved when last called, instead.
		 */
		WT_RET(__wt_buf_set(
		    session, &key->buf, r->cur->data, r->cur->size));
	else {
		/*
		 * Save a copy of the key for later reference: we use the full
		 * key for prefix-compression comparisons, and if we are, for
		 * any reason, unable to use the compressed key we generate.
		 */
		WT_RET(__wt_buf_set(session, r->cur, data, size));

		/*
		 * Do prefix compression on the key.  We know by definition the
		 * previous key sorts before the current key, which means the
		 * keys must differ and we just need to compare up to the
		 * shorter of the two keys.
		 */
		if (r->key_pfx_compress) {
			/*
			 * We can't compress out more than 256 bytes, limit the
			 * comparison to that.
			 */
			pfx_max = UINT8_MAX;
			if (size < pfx_max)
				pfx_max = size;
			if (r->last->size < pfx_max)
				pfx_max = r->last->size;
			for (a = data, b = r->last->data; pfx < pfx_max; ++pfx)
				if (*a++ != *b++)
					break;

			/*
			 * Prefix compression may cost us CPU and memory when
			 * the page is re-loaded, don't do it unless there's
			 * reasonable gain.
			 */
			if (pfx < btree->prefix_compression_min)
				pfx = 0;
		}

		/* Copy the non-prefix bytes into the key buffer. */
		WT_RET(__wt_buf_set(
		    session, &key->buf, (uint8_t *)data + pfx, size - pfx));
	}

	/* Optionally compress the key using the Huffman engine. */
	if (btree->huffman_key != NULL)
		WT_RET(__wt_huffman_encode(session, btree->huffman_key,
		    key->buf.data, key->buf.size, &key->buf));

	/* Create an overflow object if the data won't fit. */
	if (key->buf.size > btree->maxleafitem) {
		/*
		 * Overflow objects aren't prefix compressed -- rebuild any
		 * object that was prefix compressed.
		 */
		if (pfx == 0) {
			WT_STAT_FAST_DATA_INCR(session, rec_overflow_key_leaf);

			*is_ovflp = 1;
			return (__rec_cell_build_ovfl(
			    session, r, key, WT_CELL_KEY_OVFL, (uint64_t)0));
		}
		return (
		    __rec_cell_build_leaf_key(session, r, NULL, 0, is_ovflp));
	}

	key->cell_len = __wt_cell_pack_leaf_key(&key->cell, pfx, key->buf.size);
	key->len = key->cell_len + key->buf.size;

	return (0);
}

/*
 * __rec_cell_build_addr --
 *	Process an address reference and return a cell structure to be stored
 * on the page.
 */
static void
__rec_cell_build_addr(WT_RECONCILE *r,
    const void *addr, uint32_t size, u_int cell_type, uint64_t recno)
{
	WT_KV *val;

	val = &r->v;

	/*
	 * We don't check the address size because we can't store an address on
	 * an overflow page: if the address won't fit, the overflow page's
	 * address won't fit either.  This possibility must be handled by Btree
	 * configuration, we have to disallow internal page sizes that are too
	 * small with respect to the largest address cookie the underlying block
	 * manager might return.
	 */

	/*
	 * We don't copy the data into the buffer, it's not necessary; just
	 * re-point the buffer's data/length fields.
	 */
	val->buf.data = addr;
	val->buf.size = size;
	val->cell_len = __wt_cell_pack_addr(
	    &val->cell, cell_type, recno, val->buf.size);
	val->len = val->cell_len + val->buf.size;
}

/*
 * __rec_cell_build_val --
 *	Process a data item and return a WT_CELL structure and byte string to
 * be stored on the page.
 */
static int
__rec_cell_build_val(WT_SESSION_IMPL *session,
    WT_RECONCILE *r, const void *data, uint32_t size, uint64_t rle)
{
	WT_BTREE *btree;
	WT_KV *val;

	btree = S2BT(session);
	val = &r->v;

	/*
	 * We don't copy the data into the buffer, it's not necessary; just
	 * re-point the buffer's data/length fields.
	 */
	val->buf.data = data;
	val->buf.size = size;

	/* Handle zero-length cells quickly. */
	if (size != 0) {
		/* Optionally compress the data using the Huffman engine. */
		if (btree->huffman_value != NULL)
			WT_RET(__wt_huffman_encode(
			    session, btree->huffman_value,
			    val->buf.data, val->buf.size, &val->buf));

		/* Create an overflow object if the data won't fit. */
		if (val->buf.size > btree->maxleafitem) {
			WT_STAT_FAST_DATA_INCR(session, rec_overflow_value);

			return (__rec_cell_build_ovfl(
			    session, r, val, WT_CELL_VALUE_OVFL, rle));
		}
	}
	val->cell_len = __wt_cell_pack_data(&val->cell, rle, val->buf.size);
	val->len = val->cell_len + val->buf.size;

	return (0);
}

/*
 * __rec_cell_build_ovfl --
 *	Store overflow items in the file, returning the address cookie.
 */
static int
__rec_cell_build_ovfl(WT_SESSION_IMPL *session,
    WT_RECONCILE *r, WT_KV *kv, uint8_t type, uint64_t rle)
{
	WT_BM *bm;
	WT_BTREE *btree;
	WT_DECL_ITEM(tmp);
	WT_DECL_RET;
	WT_PAGE *page;
	WT_PAGE_HEADER *dsk;
	size_t alloc_size;
	uint32_t size;
	uint8_t *addr, buf[WT_BTREE_MAX_ADDR_COOKIE];

	btree = S2BT(session);
	bm = btree->bm;
	page = r->page;

	/* Track if page has overflow items. */
	r->ovfl_items = 1;

	/*
	 * See if this overflow record has already been written and reuse it if
	 * possible.  Else, write a new overflow record.
	 */
	if (!__wt_ovfl_reuse_search(session, page,
	    &addr, &size, kv->buf.data, kv->buf.size)) {
		/* Allocate a buffer big enough to write the overflow record. */
		alloc_size = kv->buf.size;
		WT_RET(bm->write_size(bm, session, &alloc_size));
		WT_RET(__wt_scr_alloc(session, alloc_size, &tmp));

		/* Initialize the buffer: disk header and overflow record. */
		dsk = tmp->mem;
		memset(dsk, 0, WT_PAGE_HEADER_SIZE);
		dsk->type = WT_PAGE_OVFL;
		dsk->u.datalen = kv->buf.size;
		memcpy(WT_PAGE_HEADER_BYTE(btree, dsk),
		    kv->buf.data, kv->buf.size);
		dsk->mem_size =
		    tmp->size = WT_PAGE_HEADER_BYTE_SIZE(btree) + kv->buf.size;

		/* Write the buffer. */
		addr = buf;
		size = (uint32_t)alloc_size;
		WT_ERR(__wt_bt_write(session, tmp, addr, &size, 0, 0));

		/*
		 * Track the overflow record (unless it's a bulk load, which
		 * by definition won't ever reuse a record.
		 */
		if (!r->bulk_load)
			WT_ERR(__wt_ovfl_reuse_add(session, page,
			    addr, size, kv->buf.data, kv->buf.size));
	}

	/* Set the callers K/V to reference the overflow record's address. */
	WT_ERR(__wt_buf_set(session, &kv->buf, addr, size));

	/* Build the cell and return. */
	kv->cell_len = __wt_cell_pack_ovfl(&kv->cell, type, rle, kv->buf.size);
	kv->len = kv->cell_len + kv->buf.size;

err:	__wt_scr_free(&tmp);
	return (ret);
}

/*
 * The dictionary --
 *	The rest of this file is support for dictionaries.
 *
 * It's difficult to write generic skiplist functions without turning a single
 * memory allocation into two, or requiring a function call instead of a simple
 * comparison.  Fortunately, skiplists are relatively simple things and we can
 * include them in-place.  If you need generic skip-list functions to modify,
 * this set wouldn't be a bad place to start.
 *
 * __rec_dictionary_skip_search --
 *	Search a dictionary skiplist.
 */
static WT_DICTIONARY *
__rec_dictionary_skip_search(WT_DICTIONARY **head, uint64_t hash)
{
	WT_DICTIONARY **e;
	int i;

	/*
	 * Start at the highest skip level, then go as far as possible at each
	 * level before stepping down to the next.
	 */
	for (i = WT_SKIP_MAXDEPTH - 1, e = &head[i]; i >= 0;) {
		if (*e == NULL) {		/* Empty levels */
			--i;
			--e;
			continue;
		}

		/*
		 * Return any exact matches: we don't care in what search level
		 * we found a match.
		 */
		if ((*e)->hash == hash)		/* Exact match */
			return (*e);
		if ((*e)->hash > hash) {	/* Drop down a level */
			--i;
			--e;
		} else				/* Keep going at this level */
			e = &(*e)->next[i];
	}
	return (NULL);
}

/*
 * __rec_dictionary_skip_search_stack --
 *	Search a dictionary skiplist, returning an insert/remove stack.
 */
static void
__rec_dictionary_skip_search_stack(
    WT_DICTIONARY **head, WT_DICTIONARY ***stack, uint64_t hash)
{
	WT_DICTIONARY **e;
	int i;

	/*
	 * Start at the highest skip level, then go as far as possible at each
	 * level before stepping down to the next.
	 */
	for (i = WT_SKIP_MAXDEPTH - 1, e = &head[i]; i >= 0;)
		if (*e == NULL || (*e)->hash > hash)
			stack[i--] = e--;	/* Drop down a level */
		else
			e = &(*e)->next[i];	/* Keep going at this level */
}

/*
 * __rec_dictionary_skip_insert --
 *	Insert an entry into the dictionary skip-list.
 */
static void
__rec_dictionary_skip_insert(
    WT_DICTIONARY **head, WT_DICTIONARY *e, uint64_t hash)
{
	WT_DICTIONARY **stack[WT_SKIP_MAXDEPTH];
	u_int i;

	/* Insert the new entry into the skiplist. */
	__rec_dictionary_skip_search_stack(head, stack, hash);
	for (i = 0; i < e->depth; ++i) {
		e->next[i] = *stack[i];
		*stack[i] = e;
	}
}

/*
 * __rec_dictionary_init --
 *	Allocate and initialize the dictionary.
 */
static int
__rec_dictionary_init(WT_SESSION_IMPL *session, WT_RECONCILE *r, u_int slots)
{
	u_int depth, i;

	/* Free any previous dictionary. */
	__rec_dictionary_free(session, r);

	r->dictionary_slots = slots;
	WT_RET(__wt_calloc(session,
	    r->dictionary_slots, sizeof(WT_DICTIONARY *), &r->dictionary));
	for (i = 0; i < r->dictionary_slots; ++i) {
		depth = __wt_skip_choose_depth();
		WT_RET(__wt_calloc(session, 1,
		    sizeof(WT_DICTIONARY) + depth * sizeof(WT_DICTIONARY *),
		    &r->dictionary[i]));
		r->dictionary[i]->depth = depth;
	}
	return (0);
}

/*
 * __rec_dictionary_free --
 *	Free the dictionary.
 */
static void
__rec_dictionary_free(WT_SESSION_IMPL *session, WT_RECONCILE *r)
{
	u_int i;

	if (r->dictionary == NULL)
		return;

	/*
	 * We don't correct dictionary_slots when we fail during allocation,
	 * but that's OK, the value is either NULL or a memory reference to
	 * be free'd.
	 */
	for (i = 0; i < r->dictionary_slots; ++i)
		__wt_free(session, r->dictionary[i]);
	__wt_free(session, r->dictionary);
}

/*
 * __rec_dictionary_reset --
 *	Reset the dictionary when reconciliation restarts and when crossing a
 * page boundary (a potential split).
 */
static void
__rec_dictionary_reset(WT_RECONCILE *r)
{
	if (r->dictionary_slots) {
		r->dictionary_next = 0;
		memset(r->dictionary_head, 0, sizeof(r->dictionary_head));
	}
}

/*
 * __rec_dictionary_lookup --
 *	Check the dictionary for a matching value on this page.
 */
static int
__rec_dictionary_lookup(
    WT_SESSION_IMPL *session, WT_RECONCILE *r, WT_KV *val, WT_DICTIONARY **dpp)
{
	WT_DICTIONARY *dp, *next;
	uint64_t hash;
	int match;

	*dpp = NULL;

	/* Search the dictionary, and return any match we find. */
	hash = __wt_hash_fnv64(val->buf.data, val->buf.size);
	for (dp = __rec_dictionary_skip_search(r->dictionary_head, hash);
	    dp != NULL && dp->hash == hash; dp = dp->next[0]) {
		WT_RET(__wt_cell_pack_data_match(
		    dp->cell, &val->cell, val->buf.data, &match));
		if (match) {
			WT_STAT_FAST_DATA_INCR(session, rec_dictionary);
			*dpp = dp;
			return (0);
		}
	}

	/*
	 * We're not doing value replacement in the dictionary.  We stop adding
	 * new entries if we run out of empty dictionary slots (but continue to
	 * use the existing entries).  I can't think of any reason a leaf page
	 * value is more likely to be seen because it was seen more recently
	 * than some other value: if we find working sets where that's not the
	 * case, it shouldn't be too difficult to maintain a pointer which is
	 * the next dictionary slot to re-use.
	 */
	if (r->dictionary_next >= r->dictionary_slots)
		return (0);

	/*
	 * Set the hash value, we'll add this entry into the dictionary when we
	 * write it into the page's disk image buffer (because that's when we
	 * know where on the page it will be written).
	 */
	next = r->dictionary[r->dictionary_next++];
	next->cell = NULL;		/* Not necessary, just cautious. */
	next->hash = hash;
	__rec_dictionary_skip_insert(r->dictionary_head, next, hash);
	*dpp = next;
	return (0);
}