summaryrefslogtreecommitdiff
path: root/src/include/btree.i
blob: 81b2b5779654234f668cd18f4d387d05563f1ceb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
/*-
 * Copyright (c) 2008-2013 WiredTiger, Inc.
 *	All rights reserved.
 *
 * See the file LICENSE for redistribution information.
 */

/*
 * __wt_page_is_modified --
 *	Return if the page is dirty.
 */
static inline int
__wt_page_is_modified(WT_PAGE *page)
{
	return (page->modify != NULL &&
	    page->modify->write_gen != page->modify->disk_gen ? 1 : 0);
}

/*
 * __wt_eviction_page_force --
 *      Add a page for forced eviction if it matches the criteria.
 */
static inline void
__wt_eviction_page_force(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_BTREE *btree;

	btree = session->btree;

	/*
	 * Ignore internal pages (check read-only information first to the
	 * extent possible, this is shared data).
	 */
	if (page->type == WT_PAGE_ROW_INT || page->type == WT_PAGE_COL_INT)
		return;

	if (!F_ISSET(btree, WT_BTREE_NO_EVICTION) &&
	    __wt_page_is_modified(page) &&
	    page->memory_footprint > btree->maxmempage)
		__wt_evict_forced_page(session, page);
}

/*
 * __wt_cache_page_inmem_incr --
 *	Increment a page's memory footprint in the cache.
 */
static inline void
__wt_cache_page_inmem_incr(WT_SESSION_IMPL *session, WT_PAGE *page, size_t size)
{
	WT_CACHE *cache;

	cache = S2C(session)->cache;
	(void)WT_ATOMIC_ADD(cache->bytes_inmem, size);
	(void)WT_ATOMIC_ADD(page->memory_footprint, WT_STORE_SIZE(size));
	if (__wt_page_is_modified(page))
		(void)WT_ATOMIC_ADD(cache->bytes_dirty, size);
}

/*
 * __wt_cache_page_inmem_decr --
 *	Decrement a page's memory footprint in the cache.
 */
static inline void
__wt_cache_page_inmem_decr(WT_SESSION_IMPL *session, WT_PAGE *page, size_t size)
{
	WT_CACHE *cache;

	cache = S2C(session)->cache;
	(void)WT_ATOMIC_SUB(cache->bytes_inmem, size);
	(void)WT_ATOMIC_SUB(page->memory_footprint, WT_STORE_SIZE(size));
	if (__wt_page_is_modified(page))
		(void)WT_ATOMIC_SUB(cache->bytes_dirty, size);
}

/*
 * __wt_cache_dirty_decr --
 *	Decrement a page's memory footprint from the cache dirty count. Will
 *	be called after a reconciliation leaves a page clean.
 */
static inline void
__wt_cache_dirty_decr(WT_SESSION_IMPL *session, size_t size)
{
	WT_CACHE *cache;

	cache = S2C(session)->cache;
	if (cache->bytes_dirty < size || cache->pages_dirty == 0) {
		if (WT_VERBOSE_ISSET(session, evictserver))
			(void)__wt_verbose(session,
			    "Cache dirty decrement failed: %" PRIu64
			    " pages dirty, %" PRIu64
			    " bytes dirty, decrement size %" PRIuMAX,
			    cache->pages_dirty,
			    cache->bytes_dirty, (uintmax_t)size);
		cache->bytes_dirty = 0;
		cache->pages_dirty = 0;
	} else {
		(void)WT_ATOMIC_SUB(cache->bytes_dirty, size);
		(void)WT_ATOMIC_SUB(cache->pages_dirty, 1);
	}
}

/*
 * __wt_cache_page_new --
 *	Create or read a page into the cache.
 */
static inline int
__wt_cache_page_new(WT_SESSION_IMPL *session, WT_PAGE **pagep)
{
	WT_CACHE *cache;
	WT_PAGE *page;

	cache = S2C(session)->cache;

	/*
	 * Encapsulated because we're going to "discard" the page on error,
	 * and we need to make sure we've incremented the page count.
	 */
	WT_RET(__wt_calloc_def(session, 1, &page));
	__wt_cache_page_inmem_incr(session, page, sizeof(WT_PAGE));

	(void)WT_ATOMIC_ADD(cache->pages_inmem, 1);

	*pagep = page;
	return (0);
}

/*
 * __wt_cache_page_evict --
 *	Evict pages from the cache.
 */
static inline void
__wt_cache_page_evict(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_CACHE *cache;

	cache = S2C(session)->cache;

	WT_ASSERT(session, page->memory_footprint != 0);

	(void)WT_ATOMIC_ADD(cache->pages_evict, 1);
	(void)WT_ATOMIC_ADD(cache->bytes_evict, page->memory_footprint);

	page->memory_footprint = 0;
}

static inline uint64_t
__wt_cache_read_gen(WT_SESSION_IMPL *session)
{
	return (S2C(session)->cache->read_gen);
}

static inline uint64_t
__wt_cache_read_gen_set(WT_SESSION_IMPL *session)
{
	/*
	 * We return read-generations from the future (where "the future" is
	 * measured by increments of the global read generation).  The reason
	 * is because when acquiring a new hazard reference on a page, we can
	 * check its read generation, and if the read generation isn't less
	 * than the current global generation, we don't bother updating the
	 * page.  In other words, the goal is to avoid some number of updates
	 * immediately after each update we have to make.
	 */
	return (++S2C(session)->cache->read_gen + WT_READ_GEN_STEP);
}

/*
 * __wt_cache_pages_inuse --
 *	Return the number of pages in use.
 */
static inline uint64_t
__wt_cache_pages_inuse(WT_CACHE *cache)
{
	uint64_t pages_in, pages_out;

	/*
	 * Reading 64-bit fields, potentially on 32-bit machines, and other
	 * threads of control may be modifying them.  Check them for sanity
	 * (although "interesting" corruption is vanishingly unlikely, these
	 * values just increment over time).
	 */
	pages_in = cache->pages_inmem;
	pages_out = cache->pages_evict;
	return (pages_in > pages_out ? pages_in - pages_out : 0);
}

/*
 * __wt_cache_bytes_inuse --
 *	Return the number of bytes in use.
 */
static inline uint64_t
__wt_cache_bytes_inuse(WT_CACHE *cache)
{
	uint64_t bytes_in, bytes_out;

	/*
	 * Reading 64-bit fields, potentially on 32-bit machines, and other
	 * threads of control may be modifying them.  Check them for sanity
	 * (although "interesting" corruption is vanishingly unlikely, these
	 * values just increment over time).
	 */
	bytes_in = cache->bytes_inmem;
	bytes_out = cache->bytes_evict;
	return (bytes_in > bytes_out ? bytes_in - bytes_out : 0);
}

/*
 * __wt_cache_bytes_dirty --
 *	Return the number of bytes in cache marked dirty.
 */
static inline uint64_t
__wt_cache_bytes_dirty(WT_CACHE *cache)
{
	return (cache->bytes_dirty);
}

/*
 * __wt_cache_pages_dirty --
 *	Return the number of pages in cache marked dirty.
 */
static inline uint64_t
__wt_cache_pages_dirty(WT_CACHE *cache)
{
	return (cache->pages_dirty);
}

/*
 * __wt_page_modify_init --
 *	A page is about to be modified, allocate the modification structure.
 */
static inline int
__wt_page_modify_init(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_PAGE_MODIFY *modify;

	if (page->modify != NULL)
		return (0);

	WT_RET(__wt_calloc_def(session, 1, &modify));

	/*
	 * Multiple threads of control may be searching and deciding to modify
	 * a page.  If our modify structure is used, update the page's memory
	 * footprint, else discard the modify structure, another thread did the
	 * work.
	 */
	if (WT_ATOMIC_CAS(page->modify, NULL, modify))
		__wt_cache_page_inmem_incr(session, page, sizeof(*modify));
	else
		__wt_free(session, modify);
	return (0);
}

/*
 * __wt_page_modify_set --
 *	Mark the page dirty.
 */
static inline void
__wt_page_modify_set(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	if (!__wt_page_is_modified(page)) {
		(void)WT_ATOMIC_ADD(S2C(session)->cache->pages_dirty, 1);
		(void)WT_ATOMIC_ADD(
		    S2C(session)->cache->bytes_dirty, page->memory_footprint);

		/*
		 * The page can never end up with changes older than the oldest
		 * running transaction.
		 */
		if (F_ISSET(&session->txn, TXN_RUNNING))
			page->modify->disk_txn = session->txn.snap_min - 1;
	}

	/*
	 * Publish: there must be a barrier to ensure all changes to the page
	 * are flushed before we update the page's write generation, otherwise
	 * a thread searching the page might see the page's write generation
	 * update before the changes to the page, which breaks the protocol.
	 */
	WT_WRITE_BARRIER();

	/* The page is dirty if the disk and write generations differ. */
	++page->modify->write_gen;
}

/*
 * __wt_page_and_tree_modify_set --
 *	Mark both the page and tree dirty.
 */
static inline void
__wt_page_and_tree_modify_set(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_BTREE *btree;

	btree = session->btree;

	/*
	 * A memory barrier is required for setting the tree's modified value,
	 * we depend on the barrier called in setting the page's modified value.
	 */
	btree->modified = 1;

	__wt_page_modify_set(session, page);
}

/*
 * __wt_page_write_gen_wrapped_check --
 *	Confirm the page's write generation number hasn't wrapped.
 */
static inline int
__wt_page_write_gen_wrapped_check(WT_PAGE *page)
{
	WT_PAGE_MODIFY *mod;

	mod = page->modify;

	/* 
	 * If the page's write generation has wrapped and caught up with the
	 * disk generation (wildly unlikely but technically possible as it
	 * implies 4B updates between page reconciliations), fail the update.
	 */
	return (mod->write_gen + 1 == mod->disk_gen ? WT_RESTART : 0);
}

/*
 * __wt_page_write_gen_check --
 *	Confirm the page's write generation number is correct.
 */
static inline int
__wt_page_write_gen_check(
    WT_SESSION_IMPL *session, WT_PAGE *page, uint32_t write_gen)
{
	WT_PAGE_MODIFY *mod;

	WT_RET(__wt_page_write_gen_wrapped_check(page));

	/*
	 * If the page's write generation matches the search generation, we can
	 * proceed.  Except, if the page's write generation has wrapped and
	 * caught up with the disk generation (wildly unlikely but technically
	 * possible as it implies 4B updates between page reconciliations), fail
	 * the update.
	 */
	mod = page->modify;
	if (mod->write_gen == write_gen)
		return (0);

	WT_DSTAT_INCR(session, txn_write_conflict);
	return (WT_RESTART);
}

/*
 * __wt_off_page --
 *	Return if a pointer references off-page data.
 */
static inline int
__wt_off_page(WT_PAGE *page, const void *p)
{
	/*
	 * There may be no underlying page, in which case the reference is
	 * off-page by definition.
	 */
	return (page->dsk == NULL ||
	    p < (void *)page->dsk ||
	    p >= (void *)((uint8_t *)page->dsk + page->dsk->mem_size));
}

/*
 * __wt_row_key --
 *	Set a buffer to reference a key as cheaply as possible.
 */
static inline int
__wt_row_key(WT_SESSION_IMPL *session,
    WT_PAGE *page, WT_ROW *rip, WT_ITEM *key, int instantiate)
{
	WT_BTREE *btree;
	WT_IKEY *ikey;
	WT_CELL_UNPACK unpack;

	btree = session->btree;

retry:	ikey = WT_ROW_KEY_COPY(rip);

	/* If the key has been instantiated for any reason, off-page, use it. */
	if (__wt_off_page(page, ikey)) {
		key->data = WT_IKEY_DATA(ikey);
		key->size = ikey->size;
		return (0);
	}

	/* If the key isn't compressed or an overflow, take it from the page. */
	if (btree->huffman_key == NULL)
		__wt_cell_unpack((WT_CELL *)ikey, &unpack);
	if (btree->huffman_key == NULL &&
	    unpack.type == WT_CELL_KEY && unpack.prefix == 0) {
		key->data = unpack.data;
		key->size = unpack.size;
		return (0);
	}

	/*
	 * We're going to have to build the key (it's never been instantiated,
	 * and it's compressed or an overflow key).
	 *
	 * If we're instantiating the key on the page, do that, and then look
	 * it up again, else, we have a copy and we can return.
	 */
	WT_RET(__wt_row_key_copy(session, page, rip, instantiate ? NULL : key));
	if (instantiate)
		goto retry;
	return (0);
}

/*
 * __wt_get_addr --
 *	Return the addr/size pair for a reference.
 */
static inline void
__wt_get_addr(
    WT_PAGE *page, WT_REF *ref, const uint8_t **addrp, uint32_t *sizep)
{
	WT_CELL_UNPACK *unpack, _unpack;

	unpack = &_unpack;

	/*
	 * If NULL, there is no location.
	 * If off-page, the pointer references a WT_ADDR structure.
	 * If on-page, the pointer references a cell.
	 */
	if (ref->addr == NULL) {
		*addrp = NULL;
		*sizep = 0;
	} else if (__wt_off_page(page, ref->addr)) {
		*addrp = ((WT_ADDR *)(ref->addr))->addr;
		*sizep = ((WT_ADDR *)(ref->addr))->size;
	} else {
		__wt_cell_unpack(ref->addr, unpack);
		*addrp = unpack->data;
		*sizep = unpack->size;
	}
}

/*
 * __wt_page_release --
 *	Release a reference to a page.
 */
static inline int
__wt_page_release(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	/*
	 * Discard our hazard pointer.  Ignore pages we don't have and the root
	 * page, which sticks in memory, regardless.
	 */
	return (page == NULL ||
	    WT_PAGE_IS_ROOT(page) ? 0 : __wt_hazard_clear(session, page));
}

/*
 * __wt_page_swap_func --
 *	Swap one page's hazard pointer for another one when hazard pointer
 * coupling up/down the tree.
 */
static inline int
__wt_page_swap_func(
    WT_SESSION_IMPL *session, WT_PAGE *out, WT_PAGE *in, WT_REF *inref
#ifdef HAVE_DIAGNOSTIC
    , const char *file, int line
#endif
    )
{
	WT_DECL_RET;
	int acquired;

	/*
	 * This function is here to simplify the error handling during hazard
	 * pointer coupling so we never leave a hazard pointer dangling.  The
	 * assumption is we're holding a hazard pointer on "out", and want to
	 * read page "in", acquiring a hazard pointer on it, then release page
	 * "out" and its hazard pointer.  If something fails, discard it all.
	 */
	ret = __wt_page_in_func(session, in, inref
#ifdef HAVE_DIAGNOSTIC
	    , file, line
#endif
	    );
	acquired = ret == 0;
	WT_TRET(__wt_page_release(session, out));

	if (ret != 0 && acquired)
		WT_TRET(__wt_page_release(session, inref->page));
	return (ret);
}

/*
 * __wt_page_hazard_check --
 *	Return if there's a hazard pointer to the page in the system.
 */
static inline WT_HAZARD *
__wt_page_hazard_check(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_CONNECTION_IMPL *conn;
	WT_HAZARD *hp;
	WT_SESSION_IMPL *s;
	uint32_t i, hazard_size, session_cnt;

	conn = S2C(session);

	/*
	 * No lock is required because the session array is fixed size, but it
	 * may contain inactive entries.  We must review any active session
	 * that might contain a hazard pointer, so insert a barrier before
	 * reading the active session count.  That way, no matter what sessions
	 * come or go, we'll check the slots for all of the sessions that could
	 * have been active when we started our check.
	 */
	WT_ORDERED_READ(session_cnt, conn->session_cnt);
	for (s = conn->sessions, i = 0; i < session_cnt; ++s, ++i) {
		if (!s->active)
			continue;
		WT_ORDERED_READ(hazard_size, s->hazard_size);
		for (hp = s->hazard; hp < s->hazard + hazard_size; ++hp)
			if (hp->page == page)
				return (hp);
	}
	return (NULL);
}

/*
 * __wt_skip_choose_depth --
 *	Randomly choose a depth for a skiplist insert.
 */
static inline u_int
__wt_skip_choose_depth(void)
{
	u_int d;

	for (d = 1; d < WT_SKIP_MAXDEPTH &&
	    __wt_random() < WT_SKIP_PROBABILITY; d++)
		;
	return (d);
}

/*
 * __wt_btree_memsize --
 *      Access the size of an in-memory tree with a single leaf page.
 */
static inline int
__wt_btree_memsize(
    WT_SESSION_IMPL *session, uint32_t *memsizep)
{
	WT_BTREE *btree;
	WT_PAGE *child;

	btree = session->btree;
	/*
	 * Only return success if:
	 * - We have a valid btree
	 * - The btree has only a single leaf page
	 * - The single leaf page is in memory
	 */
	if (btree == NULL || btree->root_page->entries != 1 ||
	    btree->root_page->u.intl.t->page == NULL) {
		*memsizep = 0;
		return (WT_ERROR);
	}

	child = btree->root_page->u.intl.t->page;

	*memsizep = child->memory_footprint;
	return (0);
}

/*
 * __wt_btree_lex_compare --
 *	Lexicographic comparison routine.
 *
 * Returns:
 *	< 0 if user_item is lexicographically < tree_item
 *	= 0 if user_item is lexicographically = tree_item
 *	> 0 if user_item is lexicographically > tree_item
 *
 * We use the names "user" and "tree" so it's clear which the application is
 * looking at when we call its comparison func.
 */
static inline int
__wt_btree_lex_compare(const WT_ITEM *user_item, const WT_ITEM *tree_item)
{
	const uint8_t *userp, *treep;
	uint32_t len, usz, tsz;

	usz = user_item->size;
	tsz = tree_item->size;
	len = WT_MIN(usz, tsz);

	for (userp = user_item->data, treep = tree_item->data;
	    len > 0;
	    --len, ++userp, ++treep)
		if (*userp != *treep)
			return (*userp < *treep ? -1 : 1);

	/* Contents are equal up to the smallest length. */
	return ((usz == tsz) ? 0 : (usz < tsz) ? -1 : 1);
}

#define	WT_BTREE_CMP(s, bt, k1, k2, cmp)				\
	(((bt)->collator == NULL) ?					\
	(((cmp) = __wt_btree_lex_compare((k1), (k2))), 0) :		\
	(bt)->collator->compare((bt)->collator, &(s)->iface,		\
	    (k1), (k2), &(cmp)))