summaryrefslogtreecommitdiff
path: root/src/include/btree.i
blob: 42b6663f7c51658cd15aa9c0009f1b34a3b80115 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
/*-
 * Copyright (c) 2008-2014 WiredTiger, Inc.
 *	All rights reserved.
 *
 * See the file LICENSE for redistribution information.
 */

/*
 * __wt_page_is_modified --
 *	Return if the page is dirty.
 */
static inline int
__wt_page_is_modified(WT_PAGE *page)
{
	return (page->modify != NULL && page->modify->write_gen != 0 ? 1 : 0);
}

/*
 * Estimate the per-allocation overhead.  All implementations of malloc / free
 * have some kind of header and pad for alignment.  We can't know for sure what
 * that adds up to, but this is an estimate based on some measurements of heap
 * size versus bytes in use.
 */
#define	WT_ALLOC_OVERHEAD	32

/*
 * __wt_cache_page_inmem_incr --
 *	Increment a page's memory footprint in the cache.
 */
static inline void
__wt_cache_page_inmem_incr(WT_SESSION_IMPL *session, WT_PAGE *page, size_t size)
{
	WT_CACHE *cache;

	size += WT_ALLOC_OVERHEAD;

	cache = S2C(session)->cache;
	(void)WT_ATOMIC_ADD(cache->bytes_inmem, size);
	(void)WT_ATOMIC_ADD(page->memory_footprint, size);
	if (__wt_page_is_modified(page)) {
		(void)WT_ATOMIC_ADD(cache->bytes_dirty, size);
		(void)WT_ATOMIC_ADD(page->modify->bytes_dirty, size);
	}
}

/*
 * __wt_cache_page_inmem_decr --
 *	Decrement a page's memory footprint in the cache.
 */
static inline void
__wt_cache_page_inmem_decr(WT_SESSION_IMPL *session, WT_PAGE *page, size_t size)
{
	WT_CACHE *cache;

	size += WT_ALLOC_OVERHEAD;

	cache = S2C(session)->cache;
	(void)WT_ATOMIC_SUB(cache->bytes_inmem, size);
	(void)WT_ATOMIC_SUB(page->memory_footprint, size);
	if (__wt_page_is_modified(page)) {
		(void)WT_ATOMIC_SUB(cache->bytes_dirty, size);
		(void)WT_ATOMIC_SUB(page->modify->bytes_dirty, size);
	}
}

/*
 * __wt_cache_dirty_incr --
 *	Increment the cache dirty page/byte counts.
 */
static inline void
__wt_cache_dirty_incr(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_CACHE *cache;
	size_t size;

	cache = S2C(session)->cache;
	(void)WT_ATOMIC_ADD(cache->pages_dirty, 1);

	/*
	 * Take care to read the memory_footprint once in case we are racing
	 * with updates.
	 */
	size = page->memory_footprint;
	(void)WT_ATOMIC_ADD(cache->bytes_dirty, size);
	(void)WT_ATOMIC_ADD(page->modify->bytes_dirty, size);
}

/*
 * __wt_cache_dirty_decr --
 *	Decrement the cache dirty page/byte counts.
 */
static inline void
__wt_cache_dirty_decr(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_CACHE *cache;
	size_t size;

	cache = S2C(session)->cache;

	if (cache->pages_dirty < 1) {
		(void)__wt_errx(session,
		   "cache dirty decrement failed: cache dirty page count went "
		   "negative");
		cache->pages_dirty = 0;
	} else
		(void)WT_ATOMIC_SUB(cache->pages_dirty, 1);

	/*
	 * It is possible to decrement the footprint of the page without making
	 * the page dirty (for example when freeing an obsolete update list),
	 * so the footprint could change between read and decrement, and we
	 * might attempt to decrement by a different amount than the bytes held
	 * by the page.
	 *
	 * We catch that by maintaining a per-page dirty size, and fixing the
	 * cache stats if that is non-zero when the page is discarded.
	 *
	 * Also take care that the global size doesn't go negative.  This may
	 * lead to small accounting errors (particularly on the last page of the
	 * last file in a checkpoint), but that will come out in the wash when
	 * the page is evicted.
	 */
	size = WT_MIN(page->memory_footprint, cache->bytes_dirty);
	(void)WT_ATOMIC_SUB(cache->bytes_dirty, size);
	(void)WT_ATOMIC_SUB(page->modify->bytes_dirty, size);
}

/*
 * __wt_cache_page_evict --
 *	Evict pages from the cache.
 */
static inline void
__wt_cache_page_evict(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_CACHE *cache;
	WT_PAGE_MODIFY *mod;

	cache = S2C(session)->cache;
	mod = page->modify;

	/*
	 * In rare cases, we may race tracking a page's dirty footprint.
	 * If so, we will get here with a non-zero dirty_size in the page, and
	 * we can fix the global stats.
	 */
	if (mod != NULL && mod->bytes_dirty != 0)
		(void)WT_ATOMIC_SUB(cache->bytes_dirty, mod->bytes_dirty);

	WT_ASSERT(session, page->memory_footprint != 0);
	(void)WT_ATOMIC_ADD(cache->bytes_evict, page->memory_footprint);
	page->memory_footprint = 0;

	(void)WT_ATOMIC_ADD(cache->pages_evict, 1);
}

static inline uint64_t
__wt_cache_read_gen(WT_SESSION_IMPL *session)
{
	return (S2C(session)->cache->read_gen);
}

static inline uint64_t
__wt_cache_read_gen_set(WT_SESSION_IMPL *session)
{
	/*
	 * We return read-generations from the future (where "the future" is
	 * measured by increments of the global read generation).  The reason
	 * is because when acquiring a new hazard pointer for a page, we can
	 * check its read generation, and if the read generation isn't less
	 * than the current global generation, we don't bother updating the
	 * page.  In other words, the goal is to avoid some number of updates
	 * immediately after each update we have to make.
	 */
	return (++S2C(session)->cache->read_gen + WT_READ_GEN_STEP);
}

/*
 * __wt_cache_pages_inuse --
 *	Return the number of pages in use.
 */
static inline uint64_t
__wt_cache_pages_inuse(WT_CACHE *cache)
{
	return (cache->pages_inmem - cache->pages_evict);
}

/*
 * __wt_cache_bytes_inuse --
 *	Return the number of bytes in use.
 */
static inline uint64_t
__wt_cache_bytes_inuse(WT_CACHE *cache)
{
	return (cache->bytes_inmem - cache->bytes_evict);
}

/*
 * __wt_page_modify_init --
 *	A page is about to be modified, allocate the modification structure.
 */
static inline int
__wt_page_modify_init(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_CONNECTION_IMPL *conn;
	WT_PAGE_MODIFY *modify;

	if (page->modify != NULL)
		return (0);

	conn = S2C(session);

	WT_RET(__wt_calloc_def(session, 1, &modify));

	/*
	 * Select a spinlock for the page; let the barrier immediately below
	 * keep things from racing too badly.
	 */
	modify->page_lock = ++conn->page_lock_cnt % WT_PAGE_LOCKS(conn);

	/*
	 * Multiple threads of control may be searching and deciding to modify
	 * a page.  If our modify structure is used, update the page's memory
	 * footprint, else discard the modify structure, another thread did the
	 * work.
	 */
	if (WT_ATOMIC_CAS(page->modify, NULL, modify))
		__wt_cache_page_inmem_incr(session, page, sizeof(*modify));
	else
		__wt_free(session, modify);
	return (0);
}

/*
 * __wt_page_only_modify_set --
 *	Mark the page (but only the page) dirty.
 */
static inline void
__wt_page_only_modify_set(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	/*
	 * We depend on atomic-add being a write barrier, that is, a barrier to
	 * ensure all changes to the page are flushed before updating the page
	 * write generation and/or marking the tree dirty, otherwise checkpoints
	 * and/or page reconciliation might be looking at a clean page/tree.
	 *
	 * Every time the page transitions from clean to dirty, update the cache
	 * and transactional information.
	 */
	if (WT_ATOMIC_ADD(page->modify->write_gen, 1) == 1) {
		__wt_cache_dirty_incr(session, page);

		/*
		 * The page can never end up with changes older than the oldest
		 * running transaction.
		 */
		if (F_ISSET(&session->txn, TXN_RUNNING))
			page->modify->disk_snap_min = session->txn.snap_min;
	}

	/* Check if this is the largest transaction ID to update the page. */
	if (TXNID_LT(page->modify->update_txn, session->txn.id))
		page->modify->update_txn = session->txn.id;
}

/*
 * __wt_page_modify_set --
 *	Mark the page and tree dirty.
 */
static inline void
__wt_page_modify_set(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	/*
	 * Mark the tree dirty (even if the page is already marked dirty, newly
	 * created pages to support "empty" files are dirty, but the file isn't
	 * marked dirty until there's a real change needing to be written. Test
	 * before setting the dirty flag, it's a hot cache line.
	 *
	 * The tree's modified flag is cleared by the checkpoint thread: set it
	 * and insert a barrier before dirtying the page.  (I don't think it's
	 * a problem if the tree is marked dirty with all the pages clean, it
	 * might result in an extra checkpoint that doesn't do any work but it
	 * shouldn't cause problems; regardless, let's play it safe.)
	 */
	if (S2BT(session)->modified == 0) {
		S2BT(session)->modified = 1;
		WT_FULL_BARRIER();
	}

	__wt_page_only_modify_set(session, page);
}

/*
 * __wt_off_page --
 *	Return if a pointer references off-page data.
 */
static inline int
__wt_off_page(WT_PAGE *page, const void *p)
{
	/*
	 * There may be no underlying page, in which case the reference is
	 * off-page by definition.
	 */
	return (page->dsk == NULL ||
	    p < (void *)page->dsk ||
	    p >= (void *)((uint8_t *)page->dsk + page->dsk->mem_size));
}

/*
 * __wt_ref_key --
 *	Return a reference to a row-store internal page key as cheaply as
 * possible.
 */
static inline void
__wt_ref_key(WT_PAGE *page, WT_REF *ref, void *keyp, size_t *sizep)
{
	/*
	 * An internal page key is in one of two places: if we instantiated the
	 * key (for example, when reading the page), WT_REF.key.ikey references
	 * a WT_IKEY structure, otherwise, WT_REF.key.pkey references an on-page
	 * key.
	 *
	 * Now the magic: Any allocated memory will have a low-order bit of 0
	 * (the return from malloc must be aligned to store any standard type,
	 * and we assume there's always going to be a standard type requiring
	 * even-byte alignment).  An on-page key consists of an offset/length
	 * pair.  We can fit the maximum page size into 31 bits, so we use the
	 * low-order bit in the on-page value to flag the next 31 bits as a
	 * page offset and the other 32 bits as the key's length, not a WT_IKEY
	 * pointer.  This breaks if allocation chunks aren't even-byte aligned
	 * or pointers and uint64_t's don't always map their low-order bits to
	 * the same location.
	 */
	if (ref->key.pkey & 0x01) {
		*(void **)keyp =
		    WT_PAGE_REF_OFFSET(page, (ref->key.pkey & 0xFFFFFFFF) >> 1);
		*sizep = ref->key.pkey >> 32;
	} else {
		*(void **)keyp = WT_IKEY_DATA(ref->key.ikey);
		*sizep = ((WT_IKEY *)ref->key.ikey)->size;
	}
}

/*
 * __wt_ref_key_onpage_set --
 *	Set a WT_REF to reference an on-page key.
 */
static inline void
__wt_ref_key_onpage_set(WT_PAGE *page, WT_REF *ref, WT_CELL_UNPACK *unpack)
{
	/*
	 * See the comment in __wt_ref_key for an explanation of the magic.
	 */
	ref->key.pkey =
	    (uint64_t)unpack->size << 32 |
	    (uint32_t)WT_PAGE_DISK_OFFSET(page, unpack->data) << 1 |
	    0x01;
}

/*
 * __wt_ref_key_instantiated --
 *	Return an instantiated key from a WT_REF.
 */
static inline WT_IKEY *
__wt_ref_key_instantiated(WT_REF *ref)
{
	/*
	 * See the comment in __wt_ref_key for an explanation of the magic.
	 */
	return (ref->key.pkey & 0x01 ? NULL : ref->key.ikey);
}

/*
 * __wt_ref_key_clear --
 *	Clear a WT_REF key.
 */
static inline void
__wt_ref_key_clear(WT_REF *ref)
{
	/* The key union has 3 fields, all of which are 8B. */
	ref->key.recno = 0;
}

/*
 * __wt_row_leaf_key --
 *	Set a buffer to reference a row-store leaf page key as cheaply as
 * possible.
 */
static inline int
__wt_row_leaf_key(WT_SESSION_IMPL *session,
    WT_PAGE *page, WT_ROW *rip, WT_ITEM *key, int instantiate)
{
	WT_BTREE *btree;
	WT_IKEY *ikey;
	WT_CELL_UNPACK unpack;

	btree = S2BT(session);

	/*
	 * A subset of __wt_row_leaf_key_work, that is, calling that function
	 * should give you the same results as calling this one; this function
	 * exists to inline fast-path checks for already instantiated keys and
	 * on-page uncompressed keys.
	 */
retry:	ikey = WT_ROW_KEY_COPY(rip);

	/*
	 * Key copied.
	 * If the key has been instantiated for any reason, off-page, use it.
	 */
	if (__wt_off_page(page, ikey)) {
		key->data = WT_IKEY_DATA(ikey);
		key->size = ikey->size;
		return (0);
	}

	/* If the key isn't compressed or an overflow, take it from the page. */
	if (btree->huffman_key == NULL) {
		__wt_cell_unpack((WT_CELL *)ikey, &unpack);
		if (unpack.type == WT_CELL_KEY && unpack.prefix == 0) {
			key->data = unpack.data;
			key->size = unpack.size;
			return (0);
		}
	}

	/*
	 * We have to build the key (it's never been instantiated, and it's some
	 * kind of compressed or overflow key).
	 *
	 * Magic: the row-store leaf page search loop calls us to instantiate
	 * keys, and it's not prepared to handle memory being allocated in the
	 * key's WT_ITEM.  Call __wt_row_leaf_key_work to instantiate the key
	 * with no buffer reference, then retry to pick up a simple reference
	 * to the instantiated key.
	 */
	if (instantiate) {
		WT_RET(__wt_row_leaf_key_work(session, page, rip, NULL, 1));
		goto retry;
	}

	/*
	 * If instantiate wasn't set, our caller is prepared to handle memory
	 * allocations in the key's WT_ITEM, pass the key.
	 */
	return (__wt_row_leaf_key_work(session, page, rip, key, 0));
}

/*
 * __wt_row_leaf_value --
 *	Return a pointer to the value cell for a row-store leaf page key, or
 * NULL if there isn't one.
 */
static inline WT_CELL *
__wt_row_leaf_value(WT_PAGE *page, WT_ROW *rip)
{
	WT_CELL *cell;
	WT_CELL_UNPACK unpack;

	cell = WT_ROW_KEY_COPY(rip);

	/*
	 * Key copied.
	 *
	 * Cell now either references a WT_IKEY structure with a cell offset,
	 * or references the on-page key WT_CELL.  Both can be processed
	 * regardless of what other threads are doing.  If it's the former,
	 * use it to get the latter.
	 */
	if (__wt_off_page(page, cell))
		cell = WT_PAGE_REF_OFFSET(page, ((WT_IKEY *)cell)->cell_offset);

	/* Unpack the key cell, then return its associated value cell. */
	__wt_cell_unpack(cell, &unpack);
	cell = (WT_CELL *)((uint8_t *)cell + __wt_cell_total_len(&unpack));
	return (__wt_cell_leaf_value_parse(page, cell));
}

/*
 * __wt_ref_info --
 *	Return the addr/size and type triplet for a reference.
 */
static inline int
__wt_ref_info(WT_SESSION_IMPL *session, WT_PAGE *page,
    WT_REF *ref, const uint8_t **addrp, size_t *sizep, u_int *typep)
{
	WT_ADDR *addr;
	WT_CELL_UNPACK *unpack, _unpack;

	addr = ref->addr;
	unpack = &_unpack;

	/*
	 * If NULL, there is no location.
	 * If off-page, the pointer references a WT_ADDR structure.
	 * If on-page, the pointer references a cell.
	 *
	 * The type is of a limited set: internal, leaf or no-overflow leaf.
	 */
	if (addr == NULL) {
		*addrp = NULL;
		*sizep = 0;
		if (typep != NULL)
			*typep = 0;
	} else if (__wt_off_page(page, addr)) {
		*addrp = addr->addr;
		*sizep = addr->size;
		if (typep != NULL)
			switch (addr->type) {
			case WT_ADDR_INT:
				*typep = WT_CELL_ADDR_INT;
				break;
			case WT_ADDR_LEAF:
				*typep = WT_CELL_ADDR_LEAF;
				break;
			case WT_ADDR_LEAF_NO:
				*typep = WT_CELL_ADDR_LEAF_NO;
				break;
			WT_ILLEGAL_VALUE(session);
			}
	} else {
		__wt_cell_unpack((WT_CELL *)addr, unpack);
		*addrp = unpack->data;
		*sizep = unpack->size;
		if (typep != NULL)
			*typep = unpack->type;
	}
	return (0);
}

/*
 * __wt_page_release --
 *	Release a reference to a page.
 */
static inline int
__wt_page_release(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_DECL_RET;

	/*
	 * Discard our hazard pointer.  Ignore pages we don't have and the root
	 * page, which sticks in memory, regardless.
	 */
	if (page == NULL || WT_PAGE_IS_ROOT(page))
		return (0);

	/*
	 * Try to immediately evict pages if they have the special "oldest"
	 * read generation and we have some chance of succeeding.
	 */
	if (!WT_TXN_ACTIVE(&session->txn) &&
	    (page->modify == NULL ||
	    !F_ISSET(page->modify, WT_PM_REC_SPLIT_MERGE)) &&
	    page->read_gen == WT_READ_GEN_OLDEST &&
	    WT_ATOMIC_CAS(page->ref->state, WT_REF_MEM, WT_REF_LOCKED)) {
		if ((ret = __wt_hazard_clear(session, page)) != 0) {
			page->ref->state = WT_REF_MEM;
			return (ret);
		}

		ret = __wt_evict_page(session, page);
		if (ret == 0)
			WT_STAT_FAST_CONN_INCR(session, cache_eviction_force);
		else
			WT_STAT_FAST_CONN_INCR(
			    session, cache_eviction_force_fail);
		if (ret == EBUSY)
			ret = 0;
		return (ret);
	}

	return (__wt_hazard_clear(session, page));
}

/*
 * __wt_page_swap_func --
 *	Swap one page's hazard pointer for another one when hazard pointer
 * coupling up/down the tree.
 */
static inline int
__wt_page_swap_func(
    WT_SESSION_IMPL *session, WT_PAGE *out, WT_PAGE *in, WT_REF *inref
#ifdef HAVE_DIAGNOSTIC
    , const char *file, int line
#endif
    )
{
	WT_DECL_RET;
	int acquired;

	/*
	 * This function is here to simplify the error handling during hazard
	 * pointer coupling so we never leave a hazard pointer dangling.  The
	 * assumption is we're holding a hazard pointer on "out", and want to
	 * read page "in", acquiring a hazard pointer on it, then release page
	 * "out" and its hazard pointer.  If something fails, discard it all.
	 */
	ret = __wt_page_in_func(session, in, inref
#ifdef HAVE_DIAGNOSTIC
	    , file, line
#endif
	    );
	acquired = ret == 0;
	WT_TRET(__wt_page_release(session, out));

	if (ret != 0 && acquired)
		WT_TRET(__wt_page_release(session, inref->page));
	return (ret);
}

/*
 * __wt_page_hazard_check --
 *	Return if there's a hazard pointer to the page in the system.
 */
static inline WT_HAZARD *
__wt_page_hazard_check(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_CONNECTION_IMPL *conn;
	WT_HAZARD *hp;
	WT_SESSION_IMPL *s;
	uint32_t i, hazard_size, session_cnt;

	conn = S2C(session);

	/*
	 * No lock is required because the session array is fixed size, but it
	 * may contain inactive entries.  We must review any active session
	 * that might contain a hazard pointer, so insert a barrier before
	 * reading the active session count.  That way, no matter what sessions
	 * come or go, we'll check the slots for all of the sessions that could
	 * have been active when we started our check.
	 */
	WT_ORDERED_READ(session_cnt, conn->session_cnt);
	for (s = conn->sessions, i = 0; i < session_cnt; ++s, ++i) {
		if (!s->active)
			continue;
		WT_ORDERED_READ(hazard_size, s->hazard_size);
		for (hp = s->hazard; hp < s->hazard + hazard_size; ++hp)
			if (hp->page == page)
				return (hp);
	}
	return (NULL);
}

/*
 * __wt_eviction_force_check --
 *	Check if a page matches the criteria for forced eviction.
 */
static inline int
__wt_eviction_force_check(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_BTREE *btree;

	btree = S2BT(session);

	/* Pages are usually small enough, check that first. */
	if (page->memory_footprint < btree->maxmempage)
		return (0);

	/* Leaf pages only. */
	if (page->type != WT_PAGE_COL_FIX &&
	    page->type != WT_PAGE_COL_VAR &&
	    page->type != WT_PAGE_ROW_LEAF)
		return (0);

	/* Eviction may be turned off, although that's rare. */
	if (F_ISSET(btree, WT_BTREE_NO_EVICTION))
		return (0);

	/*
	 * It's hard to imagine a page with a huge memory footprint that has
	 * never been modified, but check to be sure.
	 */
	if (page->modify == NULL)
		return (0);

	return (1);
}

/*
 * __wt_eviction_force --
 *      Check if the current transaction permits forced eviction of a page.
 */
static inline int
__wt_eviction_force_txn_check(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_TXN_STATE *txn_state;

	/*
	 * Only try if there is a chance of success.  If the page has already
	 * been split and this transaction is already pinning the oldest ID so
	 * that the page can't be evicted, it has to complete before eviction
	 * can succeed.
	 */
	txn_state = &S2C(session)->txn_global.states[session->id];
	if (!F_ISSET_ATOMIC(page, WT_PAGE_WAS_SPLIT) ||
	    txn_state->snap_min == WT_TXN_NONE ||
	    TXNID_LT(page->modify->update_txn, txn_state->snap_min))
		return (1);

	return (0);
}

/*
 * __wt_eviction_force --
 *      Forcefully evict a page, if possible.
 */
static inline int
__wt_eviction_force(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	/*
	 * Check if eviction or splitting has a chance of succeeding, otherwise
	 * stall to give other transactions a chance to complete.
	 */
	__wt_txn_update_oldest(session);
	if (!F_ISSET_ATOMIC(page, WT_PAGE_WAS_SPLIT) ||
	    __wt_txn_visible_all(session, page->modify->update_txn)) {
		page->read_gen = WT_READ_GEN_OLDEST;
		WT_RET(__wt_page_release(session, page));
	} else {
		WT_RET(__wt_page_release(session, page));
		__wt_sleep(0, 10000);
	}

	return (0);
}

/*
 * __wt_skip_choose_depth --
 *	Randomly choose a depth for a skiplist insert.
 */
static inline u_int
__wt_skip_choose_depth(void)
{
	u_int d;

	for (d = 1; d < WT_SKIP_MAXDEPTH &&
	    __wt_random() < WT_SKIP_PROBABILITY; d++)
		;
	return (d);
}

/*
 * __wt_btree_size_overflow --
 *	Check if the size of an in-memory tree with a single leaf page is over
 * a specified maximum.  If called on anything other than a simple tree with a
 * single leaf page, returns true so the calling code will switch to a new tree.
 */
static inline int
__wt_btree_size_overflow(WT_SESSION_IMPL *session, uint64_t maxsize)
{
	WT_BTREE *btree;
	WT_PAGE *child, *root;

	btree = S2BT(session);
	root = btree->root_page;

	if (root == NULL || (child = root->u.intl.t->page) == NULL)
		return (0);

	/* Make sure this is a simple tree, or LSM should switch. */
	if (!F_ISSET(btree, WT_BTREE_NO_EVICTION) ||
	    root->entries != 1 ||
	    root->u.intl.t->state != WT_REF_MEM ||
	    child->type != WT_PAGE_ROW_LEAF)
		return (1);

	return (child->memory_footprint > maxsize);
}

/*
 * __wt_lex_compare --
 *	Lexicographic comparison routine.
 *
 * Returns:
 *	< 0 if user_item is lexicographically < tree_item
 *	= 0 if user_item is lexicographically = tree_item
 *	> 0 if user_item is lexicographically > tree_item
 *
 * We use the names "user" and "tree" so it's clear in the btree code which
 * the application is looking at when we call its comparison func.
 */
static inline int
__wt_lex_compare(const WT_ITEM *user_item, const WT_ITEM *tree_item)
{
	const uint8_t *userp, *treep;
	size_t len, usz, tsz;

	usz = user_item->size;
	tsz = tree_item->size;
	len = WT_MIN(usz, tsz);

	for (userp = user_item->data, treep = tree_item->data;
	    len > 0;
	    --len, ++userp, ++treep)
		if (*userp != *treep)
			return (*userp < *treep ? -1 : 1);

	/* Contents are equal up to the smallest length. */
	return ((usz == tsz) ? 0 : (usz < tsz) ? -1 : 1);
}

#define	WT_LEX_CMP(s, collator, k1, k2, cmp)				\
	((collator) == NULL ?						\
	(((cmp) = __wt_lex_compare((k1), (k2))), 0) :			\
	(collator)->compare(collator, &(s)->iface, (k1), (k2), &(cmp)))

/*
 * __wt_lex_compare_skip --
 *	Lexicographic comparison routine, but skipping leading bytes.
 *
 * Returns:
 *	< 0 if user_item is lexicographically < tree_item
 *	= 0 if user_item is lexicographically = tree_item
 *	> 0 if user_item is lexicographically > tree_item
 *
 * We use the names "user" and "tree" so it's clear in the btree code which
 * the application is looking at when we call its comparison func.
 */
static inline int
__wt_lex_compare_skip(
    const WT_ITEM *user_item, const WT_ITEM *tree_item, size_t *matchp)
{
	const uint8_t *userp, *treep;
	size_t len, usz, tsz;

	usz = user_item->size;
	tsz = tree_item->size;
	len = WT_MIN(usz, tsz) - *matchp;

	for (userp = (uint8_t *)user_item->data + *matchp,
	    treep = (uint8_t *)tree_item->data + *matchp;
	    len > 0;
	    --len, ++userp, ++treep, ++*matchp)
		if (*userp != *treep)
			return (*userp < *treep ? -1 : 1);

	/* Contents are equal up to the smallest length. */
	return ((usz == tsz) ? 0 : (usz < tsz) ? -1 : 1);
}

#define	WT_LEX_CMP_SKIP(s, collator, k1, k2, cmp, matchp)		\
	((collator) == NULL ?						\
	(((cmp) = __wt_lex_compare_skip((k1), (k2), matchp)), 0) :	\
	(collator)->compare(collator, &(s)->iface, (k1), (k2), &(cmp)))

/*
 * __wt_btree_mergeable --
 *      Determines whether the given page is a candidate for merging.
 */
static inline int
__wt_btree_mergeable(WT_PAGE *page)
{
	if (WT_PAGE_IS_ROOT(page) ||
	    page->modify == NULL ||
	    !F_ISSET(page->modify, WT_PM_REC_SPLIT_MERGE))
		return (0);

	return (!WT_PAGE_IS_ROOT(page->parent));
}