summaryrefslogtreecommitdiff
path: root/src/include/btree.i
blob: e0102a1151167e8f415068b95cbfc2462a4df7d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
/*-
 * Copyright (c) 2014-2016 MongoDB, Inc.
 * Copyright (c) 2008-2014 WiredTiger, Inc.
 *	All rights reserved.
 *
 * See the file LICENSE for redistribution information.
 */

/*
 * __wt_ref_is_root --
 *	Return if the page reference is for the root page.
 */
static inline bool
__wt_ref_is_root(WT_REF *ref)
{
	return (ref->home == NULL);
}

/*
 * __wt_page_is_empty --
 *	Return if the page is empty.
 */
static inline bool
__wt_page_is_empty(WT_PAGE *page)
{
	return (page->modify != NULL &&
	    page->modify->rec_result == WT_PM_REC_EMPTY);
}

/*
 * __wt_page_is_modified --
 *	Return if the page is dirty.
 */
static inline bool
__wt_page_is_modified(WT_PAGE *page)
{
	return (page->modify != NULL && page->modify->write_gen != 0);
}

/*
 * __wt_btree_block_free --
 *	Helper function to free a block from the current tree.
 */
static inline int
__wt_btree_block_free(
    WT_SESSION_IMPL *session, const uint8_t *addr, size_t addr_size)
{
	WT_BM *bm;
	WT_BTREE *btree;

	btree = S2BT(session);
	bm = btree->bm;

	return (bm->free(bm, session, addr, addr_size));
}

/*
 * __wt_cache_page_inmem_incr --
 *	Increment a page's memory footprint in the cache.
 */
static inline void
__wt_cache_page_inmem_incr(WT_SESSION_IMPL *session, WT_PAGE *page, size_t size)
{
	WT_CACHE *cache;

	WT_ASSERT(session, size < WT_EXABYTE);

	cache = S2C(session)->cache;
	(void)__wt_atomic_add64(&cache->bytes_inmem, size);
	(void)__wt_atomic_addsize(&page->memory_footprint, size);
	if (__wt_page_is_modified(page)) {
		(void)__wt_atomic_add64(&cache->bytes_dirty, size);
		(void)__wt_atomic_addsize(&page->modify->bytes_dirty, size);
	}
	/* Track internal and overflow size in cache. */
	if (WT_PAGE_IS_INTERNAL(page))
		(void)__wt_atomic_add64(&cache->bytes_internal, size);
	else if (page->type == WT_PAGE_OVFL)
		(void)__wt_atomic_add64(&cache->bytes_overflow, size);
}

/*
 * __wt_cache_decr_check_size --
 *	Decrement a size_t cache value and check for underflow.
 */
static inline void
__wt_cache_decr_check_size(
    WT_SESSION_IMPL *session, size_t *vp, size_t v, const char *fld)
{
	if (__wt_atomic_subsize(vp, v) < WT_EXABYTE)
		return;

#ifdef HAVE_DIAGNOSTIC
	(void)__wt_atomic_addsize(vp, v);

	{
	static bool first = true;

	if (!first)
		return;
	__wt_errx(session, "%s underflow: decrementing %" WT_SIZET_FMT, fld, v);
	first = false;
	}
#else
	WT_UNUSED(fld);
	WT_UNUSED(session);
#endif
}

/*
 * __wt_cache_decr_check_uint64 --
 *	Decrement a uint64_t cache value and check for underflow.
 */
static inline void
__wt_cache_decr_check_uint64(
    WT_SESSION_IMPL *session, uint64_t *vp, size_t v, const char *fld)
{
	if (__wt_atomic_sub64(vp, v) < WT_EXABYTE)
		return;

#ifdef HAVE_DIAGNOSTIC
	(void)__wt_atomic_add64(vp, v);

	{
	static bool first = true;

	if (!first)
		return;
	__wt_errx(session, "%s underflow: decrementing %" WT_SIZET_FMT, fld, v);
	first = false;
	}
#else
	WT_UNUSED(fld);
	WT_UNUSED(session);
#endif
}

/*
 * __wt_cache_page_byte_dirty_decr --
 *	Decrement the page's dirty byte count, guarding from underflow.
 */
static inline void
__wt_cache_page_byte_dirty_decr(
    WT_SESSION_IMPL *session, WT_PAGE *page, size_t size)
{
	WT_CACHE *cache;
	size_t decr, orig;
	int i;

	cache = S2C(session)->cache;

	/*
	 * We don't have exclusive access and there are ways of decrementing the
	 * page's dirty byte count by a too-large value. For example:
	 *	T1: __wt_cache_page_inmem_incr(page, size)
	 *		page is clean, don't increment dirty byte count
	 *	T2: mark page dirty
	 *	T1: __wt_cache_page_inmem_decr(page, size)
	 *		page is dirty, decrement dirty byte count
	 * and, of course, the reverse where the page is dirty at the increment
	 * and clean at the decrement.
	 *
	 * The page's dirty-byte value always reflects bytes represented in the
	 * cache's dirty-byte count, decrement the page/cache as much as we can
	 * without underflow. If we can't decrement the dirty byte counts after
	 * few tries, give up: the cache's value will be wrong, but consistent,
	 * and we'll fix it the next time this page is marked clean, or evicted.
	 */
	for (i = 0; i < 5; ++i) {
		/*
		 * Take care to read the dirty-byte count only once in case
		 * we're racing with updates.
		 */
		orig = page->modify->bytes_dirty;
		decr = WT_MIN(size, orig);
		if (__wt_atomic_cassize(
		    &page->modify->bytes_dirty, orig, orig - decr)) {
			__wt_cache_decr_check_uint64(session,
			    &cache->bytes_dirty, decr, "WT_CACHE.bytes_dirty");
			break;
		}
	}
}

/*
 * __wt_cache_page_inmem_decr --
 *	Decrement a page's memory footprint in the cache.
 */
static inline void
__wt_cache_page_inmem_decr(WT_SESSION_IMPL *session, WT_PAGE *page, size_t size)
{
	WT_CACHE *cache;

	cache = S2C(session)->cache;

	WT_ASSERT(session, size < WT_EXABYTE);

	__wt_cache_decr_check_uint64(
	    session, &cache->bytes_inmem, size, "WT_CACHE.bytes_inmem");
	__wt_cache_decr_check_size(
	    session, &page->memory_footprint, size, "WT_PAGE.memory_footprint");
	if (__wt_page_is_modified(page))
		__wt_cache_page_byte_dirty_decr(session, page, size);
	/* Track internal and overflow size in cache. */
	if (WT_PAGE_IS_INTERNAL(page))
		__wt_cache_decr_check_uint64(session,
		    &cache->bytes_internal, size, "WT_CACHE.bytes_internal");
	else if (page->type == WT_PAGE_OVFL)
		__wt_cache_decr_check_uint64(session,
		    &cache->bytes_overflow, size, "WT_CACHE.bytes_overflow");
}

/*
 * __wt_cache_dirty_incr --
 *	Page switch from clean to dirty: increment the cache dirty page/byte
 * counts.
 */
static inline void
__wt_cache_dirty_incr(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_CACHE *cache;
	size_t size;

	cache = S2C(session)->cache;
	(void)__wt_atomic_add64(&cache->pages_dirty, 1);

	/*
	 * Take care to read the memory_footprint once in case we are racing
	 * with updates.
	 */
	size = page->memory_footprint;
	(void)__wt_atomic_add64(&cache->bytes_dirty, size);
	(void)__wt_atomic_addsize(&page->modify->bytes_dirty, size);
}

/*
 * __wt_cache_dirty_decr --
 *	Page switch from dirty to clean: decrement the cache dirty page/byte
 * counts.
 */
static inline void
__wt_cache_dirty_decr(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_CACHE *cache;
	WT_PAGE_MODIFY *modify;

	cache = S2C(session)->cache;

	if (cache->pages_dirty < 1) {
		__wt_errx(session,
		   "cache eviction dirty-page decrement failed: dirty page"
		   "count went negative");
		cache->pages_dirty = 0;
	} else
		(void)__wt_atomic_sub64(&cache->pages_dirty, 1);

	modify = page->modify;
	if (modify != NULL && modify->bytes_dirty != 0)
		__wt_cache_page_byte_dirty_decr(
		    session, page, modify->bytes_dirty);
}

/*
 * __wt_cache_page_evict --
 *	Evict pages from the cache.
 */
static inline void
__wt_cache_page_evict(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_CACHE *cache;
	WT_PAGE_MODIFY *modify;

	cache = S2C(session)->cache;
	modify = page->modify;

	/* Update the bytes in-memory to reflect the eviction. */
	__wt_cache_decr_check_uint64(session,
	    &cache->bytes_inmem,
	    page->memory_footprint, "WT_CACHE.bytes_inmem");

	/* Update the bytes_internal value to reflect the eviction */
	if (WT_PAGE_IS_INTERNAL(page))
		__wt_cache_decr_check_uint64(session,
		    &cache->bytes_internal,
		    page->memory_footprint, "WT_CACHE.bytes_internal");

	/* Update the cache's dirty-byte count. */
	if (modify != NULL && modify->bytes_dirty != 0) {
		if (cache->bytes_dirty < modify->bytes_dirty) {
			__wt_errx(session,
			   "cache eviction dirty-bytes decrement failed: "
			   "dirty byte count went negative");
			cache->bytes_dirty = 0;
		} else
			__wt_cache_decr_check_uint64(session,
			    &cache->bytes_dirty,
			    modify->bytes_dirty, "WT_CACHE.bytes_dirty");
	}

	/* Update pages and bytes evicted. */
	(void)__wt_atomic_add64(&cache->bytes_evict, page->memory_footprint);
	(void)__wt_atomic_add64(&cache->pages_evict, 1);
}

/*
 * __wt_update_list_memsize --
 *      The size in memory of a list of updates.
 */
static inline size_t
__wt_update_list_memsize(WT_UPDATE *upd)
{
	size_t upd_size;

	for (upd_size = 0; upd != NULL; upd = upd->next)
		upd_size += WT_UPDATE_MEMSIZE(upd);

	return (upd_size);
}

/*
 * __wt_page_evict_soon --
 *      Set a page to be evicted as soon as possible.
 */
static inline void
__wt_page_evict_soon(WT_PAGE *page)
{
	page->read_gen = WT_READGEN_OLDEST;
}

/*
 * __wt_page_modify_init --
 *	A page is about to be modified, allocate the modification structure.
 */
static inline int
__wt_page_modify_init(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	return (page->modify == NULL ?
	    __wt_page_modify_alloc(session, page) : 0);
}

/*
 * __wt_page_only_modify_set --
 *	Mark the page (but only the page) dirty.
 */
static inline void
__wt_page_only_modify_set(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	uint64_t last_running;

	WT_ASSERT(session, !F_ISSET(session->dhandle, WT_DHANDLE_DEAD));

	last_running = 0;
	if (page->modify->write_gen == 0)
		last_running = S2C(session)->txn_global.last_running;

	/*
	 * We depend on atomic-add being a write barrier, that is, a barrier to
	 * ensure all changes to the page are flushed before updating the page
	 * write generation and/or marking the tree dirty, otherwise checkpoints
	 * and/or page reconciliation might be looking at a clean page/tree.
	 *
	 * Every time the page transitions from clean to dirty, update the cache
	 * and transactional information.
	 */
	if (__wt_atomic_add32(&page->modify->write_gen, 1) == 1) {
		__wt_cache_dirty_incr(session, page);

		/*
		 * We won the race to dirty the page, but another thread could
		 * have committed in the meantime, and the last_running field
		 * been updated past it.  That is all very unlikely, but not
		 * impossible, so we take care to read the global state before
		 * the atomic increment.
		 *
		 * If the page was dirty on entry, then last_running == 0. The
		 * page could have become clean since then, if reconciliation
		 * completed. In that case, we leave the previous value for
		 * first_dirty_txn rather than potentially racing to update it,
		 * at worst, we'll unnecessarily write a page in a checkpoint.
		 */
		if (last_running != 0)
			page->modify->first_dirty_txn = last_running;
	}

	/* Check if this is the largest transaction ID to update the page. */
	if (WT_TXNID_LT(page->modify->update_txn, session->txn.id))
		page->modify->update_txn = session->txn.id;
}

/*
 * __wt_page_modify_clear --
 *	Clean a modified page.
 */
static inline void
__wt_page_modify_clear(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	/*
	 * The page must be held exclusive when this call is made, this call
	 * can only be used when the page is owned by a single thread.
	 *
	 * Allow the call to be made on clean pages.
	 */
	if (__wt_page_is_modified(page)) {
		page->modify->write_gen = 0;
		__wt_cache_dirty_decr(session, page);
	}
}

/*
 * __wt_page_modify_set --
 *	Mark the page and tree dirty.
 */
static inline void
__wt_page_modify_set(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	/*
	 * Mark the tree dirty (even if the page is already marked dirty), newly
	 * created pages to support "empty" files are dirty, but the file isn't
	 * marked dirty until there's a real change needing to be written. Test
	 * before setting the dirty flag, it's a hot cache line.
	 *
	 * The tree's modified flag is cleared by the checkpoint thread: set it
	 * and insert a barrier before dirtying the page.  (I don't think it's
	 * a problem if the tree is marked dirty with all the pages clean, it
	 * might result in an extra checkpoint that doesn't do any work but it
	 * shouldn't cause problems; regardless, let's play it safe.)
	 */
	if (S2BT(session)->modified == 0) {
		/* Assert we never dirty a checkpoint handle. */
		WT_ASSERT(session, session->dhandle->checkpoint == NULL);

		S2BT(session)->modified = 1;
		WT_FULL_BARRIER();
	}

	__wt_page_only_modify_set(session, page);
}

/*
 * __wt_page_parent_modify_set --
 *	Mark the parent page, and optionally the tree, dirty.
 */
static inline int
__wt_page_parent_modify_set(
    WT_SESSION_IMPL *session, WT_REF *ref, bool page_only)
{
	WT_PAGE *parent;

	/*
	 * This function exists as a place to stash this comment.  There are a
	 * few places where we need to dirty a page's parent.  The trick is the
	 * page's parent might split at any point, and the page parent might be
	 * the wrong parent at any particular time.  We ignore this and dirty
	 * whatever page the page's reference structure points to.  This is safe
	 * because if we're pointing to the wrong parent, that parent must have
	 * split, deepening the tree, which implies marking the original parent
	 * and all of the newly-created children as dirty.  In other words, if
	 * we have the wrong parent page, everything was marked dirty already.
	 */
	parent = ref->home;
	WT_RET(__wt_page_modify_init(session, parent));
	if (page_only)
		__wt_page_only_modify_set(session, parent);
	else
		__wt_page_modify_set(session, parent);
	return (0);
}

/*
 * __wt_off_page --
 *	Return if a pointer references off-page data.
 */
static inline bool
__wt_off_page(WT_PAGE *page, const void *p)
{
	/*
	 * There may be no underlying page, in which case the reference is
	 * off-page by definition.
	 */
	return (page->dsk == NULL ||
	    p < (void *)page->dsk ||
	    p >= (void *)((uint8_t *)page->dsk + page->dsk->mem_size));
}

/*
 * __wt_ref_addr_free --
 *	Free the address in a reference, if necessary.
 */
static inline void
__wt_ref_addr_free(WT_SESSION_IMPL *session, WT_REF *ref)
{
	if (ref->addr == NULL)
		return;

	if (ref->home == NULL || __wt_off_page(ref->home, ref->addr)) {
		__wt_free(session, ((WT_ADDR *)ref->addr)->addr);
		__wt_free(session, ref->addr);
	}
	ref->addr = NULL;
}

/*
 * __wt_ref_key --
 *	Return a reference to a row-store internal page key as cheaply as
 * possible.
 */
static inline void
__wt_ref_key(WT_PAGE *page, WT_REF *ref, void *keyp, size_t *sizep)
{
	uintptr_t v;

	/*
	 * An internal page key is in one of two places: if we instantiated the
	 * key (for example, when reading the page), WT_REF.ref_ikey references
	 * a WT_IKEY structure, otherwise WT_REF.ref_ikey references an on-page
	 * key offset/length pair.
	 *
	 * Now the magic: allocated memory must be aligned to store any standard
	 * type, and we expect some standard type to require at least quad-byte
	 * alignment, so allocated memory should have some clear low-order bits.
	 * On-page objects consist of an offset/length pair: the maximum page
	 * size currently fits into 29 bits, so we use the low-order bits of the
	 * pointer to mark the other bits of the pointer as encoding the key's
	 * location and length.  This breaks if allocated memory isn't aligned,
	 * of course.
	 *
	 * In this specific case, we use bit 0x01 to mark an on-page key, else
	 * it's a WT_IKEY reference.  The bit pattern for internal row-store
	 * on-page keys is:
	 *	32 bits		key length
	 *	31 bits		page offset of the key's bytes,
	 *	 1 bits		flags
	 */
#define	WT_IK_FLAG			0x01
#define	WT_IK_ENCODE_KEY_LEN(v)		((uintptr_t)(v) << 32)
#define	WT_IK_DECODE_KEY_LEN(v)		((v) >> 32)
#define	WT_IK_ENCODE_KEY_OFFSET(v)	((uintptr_t)(v) << 1)
#define	WT_IK_DECODE_KEY_OFFSET(v)	(((v) & 0xFFFFFFFF) >> 1)
	v = (uintptr_t)ref->ref_ikey;
	if (v & WT_IK_FLAG) {
		*(void **)keyp =
		    WT_PAGE_REF_OFFSET(page, WT_IK_DECODE_KEY_OFFSET(v));
		*sizep = WT_IK_DECODE_KEY_LEN(v);
	} else {
		*(void **)keyp = WT_IKEY_DATA(ref->ref_ikey);
		*sizep = ((WT_IKEY *)ref->ref_ikey)->size;
	}
}

/*
 * __wt_ref_key_onpage_set --
 *	Set a WT_REF to reference an on-page key.
 */
static inline void
__wt_ref_key_onpage_set(WT_PAGE *page, WT_REF *ref, WT_CELL_UNPACK *unpack)
{
	uintptr_t v;

	/*
	 * See the comment in __wt_ref_key for an explanation of the magic.
	 */
	v = WT_IK_ENCODE_KEY_LEN(unpack->size) |
	    WT_IK_ENCODE_KEY_OFFSET(WT_PAGE_DISK_OFFSET(page, unpack->data)) |
	    WT_IK_FLAG;
	ref->ref_ikey = (void *)v;
}

/*
 * __wt_ref_key_instantiated --
 *	Return if a WT_REF key is instantiated.
 */
static inline WT_IKEY *
__wt_ref_key_instantiated(WT_REF *ref)
{
	uintptr_t v;

	/*
	 * See the comment in __wt_ref_key for an explanation of the magic.
	 */
	v = (uintptr_t)ref->ref_ikey;
	return (v & WT_IK_FLAG ? NULL : ref->ref_ikey);
}

/*
 * __wt_ref_key_clear --
 *	Clear a WT_REF key.
 */
static inline void
__wt_ref_key_clear(WT_REF *ref)
{
	/*
	 * The key union has 2 8B fields; this is equivalent to:
	 *
	 *	ref->ref_recno = WT_RECNO_OOB;
	 *	ref->ref_ikey = NULL;
	 */
	ref->ref_recno = 0;
}

/*
 * __wt_row_leaf_key_info --
 *	Return a row-store leaf page key referenced by a WT_ROW if it can be
 * had without unpacking a cell, and information about the cell, if the key
 * isn't cheaply available.
 */
static inline bool
__wt_row_leaf_key_info(WT_PAGE *page, void *copy,
    WT_IKEY **ikeyp, WT_CELL **cellp, void *datap, size_t *sizep)
{
	WT_IKEY *ikey;
	uintptr_t v;

	v = (uintptr_t)copy;

	/*
	 * A row-store leaf page key is in one of two places: if instantiated,
	 * the WT_ROW pointer references a WT_IKEY structure, otherwise, it
	 * references an on-page offset.  Further, on-page keys are in one of
	 * two states: if the key is a simple key (not an overflow key, prefix
	 * compressed or Huffman encoded, all of which are likely), the key's
	 * offset/size is encoded in the pointer.  Otherwise, the offset is to
	 * the key's on-page cell.
	 *
	 * Now the magic: allocated memory must be aligned to store any standard
	 * type, and we expect some standard type to require at least quad-byte
	 * alignment, so allocated memory should have some clear low-order bits.
	 * On-page objects consist of an offset/length pair: the maximum page
	 * size currently fits into 29 bits, so we use the low-order bits of the
	 * pointer to mark the other bits of the pointer as encoding the key's
	 * location and length.  This breaks if allocated memory isn't aligned,
	 * of course.
	 *
	 * In this specific case, we use bit 0x01 to mark an on-page cell, bit
	 * 0x02 to mark an on-page key, 0x03 to mark an on-page key/value pair,
	 * otherwise it's a WT_IKEY reference. The bit pattern for on-page cells
	 * is:
	 *	29 bits		page offset of the key's cell,
	 *	 2 bits		flags
	 *
	 * The bit pattern for on-page keys is:
	 *	32 bits		key length,
	 *	29 bits		page offset of the key's bytes,
	 *	 2 bits		flags
	 *
	 * But, while that allows us to skip decoding simple key cells, we also
	 * want to skip decoding the value cell in the case where the value cell
	 * is also simple/short.  We use bit 0x03 to mark an encoded on-page key
	 * and value pair.  The bit pattern for on-page key/value pairs is:
	 *	 9 bits		key length,
	 *	13 bits		value length,
	 *	20 bits		page offset of the key's bytes,
	 *	20 bits		page offset of the value's bytes,
	 *	 2 bits		flags
	 *
	 * These bit patterns are in-memory only, of course, so can be modified
	 * (we could even tune for specific workloads).  Generally, the fields
	 * are larger than the anticipated values being stored (512B keys, 8KB
	 * values, 1MB pages), hopefully that won't be necessary.
	 *
	 * This function returns a list of things about the key (instantiation
	 * reference, cell reference and key/length pair).  Our callers know
	 * the order in which we look things up and the information returned;
	 * for example, the cell will never be returned if we are working with
	 * an on-page key.
	 */
#define	WT_CELL_FLAG			0x01
#define	WT_CELL_ENCODE_OFFSET(v)	((uintptr_t)(v) << 2)
#define	WT_CELL_DECODE_OFFSET(v)	(((v) & 0xFFFFFFFF) >> 2)

#define	WT_K_FLAG			0x02
#define	WT_K_ENCODE_KEY_LEN(v)		((uintptr_t)(v) << 32)
#define	WT_K_DECODE_KEY_LEN(v)		((v) >> 32)
#define	WT_K_ENCODE_KEY_OFFSET(v)	((uintptr_t)(v) << 2)
#define	WT_K_DECODE_KEY_OFFSET(v)	(((v) & 0xFFFFFFFF) >> 2)

#define	WT_KV_FLAG			0x03
#define	WT_KV_ENCODE_KEY_LEN(v)		((uintptr_t)(v) << 55)
#define	WT_KV_DECODE_KEY_LEN(v)		((v) >> 55)
#define	WT_KV_MAX_KEY_LEN		(0x200 - 1)
#define	WT_KV_ENCODE_VALUE_LEN(v)	((uintptr_t)(v) << 42)
#define	WT_KV_DECODE_VALUE_LEN(v)	(((v) & 0x007FFC0000000000) >> 42)
#define	WT_KV_MAX_VALUE_LEN		(0x2000 - 1)
#define	WT_KV_ENCODE_KEY_OFFSET(v)	((uintptr_t)(v) << 22)
#define	WT_KV_DECODE_KEY_OFFSET(v)	(((v) & 0x000003FFFFC00000) >> 22)
#define	WT_KV_MAX_KEY_OFFSET		(0x100000 - 1)
#define	WT_KV_ENCODE_VALUE_OFFSET(v)	((uintptr_t)(v) << 2)
#define	WT_KV_DECODE_VALUE_OFFSET(v)	(((v) & 0x00000000003FFFFC) >> 2)
#define	WT_KV_MAX_VALUE_OFFSET		(0x100000 - 1)
	switch (v & 0x03) {
	case WT_CELL_FLAG:
		/* On-page cell: no instantiated key. */
		if (ikeyp != NULL)
			*ikeyp = NULL;
		if (cellp != NULL)
			*cellp =
			    WT_PAGE_REF_OFFSET(page, WT_CELL_DECODE_OFFSET(v));
		return (false);
	case WT_K_FLAG:
		/* Encoded key: no instantiated key, no cell. */
		if (cellp != NULL)
			*cellp = NULL;
		if (ikeyp != NULL)
			*ikeyp = NULL;
		if (datap != NULL) {
			*(void **)datap =
			    WT_PAGE_REF_OFFSET(page, WT_K_DECODE_KEY_OFFSET(v));
			*sizep = WT_K_DECODE_KEY_LEN(v);
			return (true);
		}
		return (false);
	case WT_KV_FLAG:
		/* Encoded key/value pair: no instantiated key, no cell. */
		if (cellp != NULL)
			*cellp = NULL;
		if (ikeyp != NULL)
			*ikeyp = NULL;
		if (datap != NULL) {
			*(void **)datap = WT_PAGE_REF_OFFSET(
			    page, WT_KV_DECODE_KEY_OFFSET(v));
			*sizep = WT_KV_DECODE_KEY_LEN(v);
			return (true);
		}
		return (false);

	}

	/* Instantiated key. */
	ikey = copy;
	if (ikeyp != NULL)
		*ikeyp = copy;
	if (cellp != NULL)
		*cellp = WT_PAGE_REF_OFFSET(page, ikey->cell_offset);
	if (datap != NULL) {
		*(void **)datap = WT_IKEY_DATA(ikey);
		*sizep = ikey->size;
		return (true);
	}
	return (false);
}

/*
 * __wt_row_leaf_key_set_cell --
 *	Set a WT_ROW to reference an on-page row-store leaf cell.
 */
static inline void
__wt_row_leaf_key_set_cell(WT_PAGE *page, WT_ROW *rip, WT_CELL *cell)
{
	uintptr_t v;

	/*
	 * See the comment in __wt_row_leaf_key_info for an explanation of the
	 * magic.
	 */
	v = WT_CELL_ENCODE_OFFSET(WT_PAGE_DISK_OFFSET(page, cell)) |
	    WT_CELL_FLAG;
	WT_ROW_KEY_SET(rip, v);
}

/*
 * __wt_row_leaf_key_set --
 *	Set a WT_ROW to reference an on-page row-store leaf key.
 */
static inline void
__wt_row_leaf_key_set(WT_PAGE *page, WT_ROW *rip, WT_CELL_UNPACK *unpack)
{
	uintptr_t v;

	/*
	 * See the comment in __wt_row_leaf_key_info for an explanation of the
	 * magic.
	 */
	v = WT_K_ENCODE_KEY_LEN(unpack->size) |
	    WT_K_ENCODE_KEY_OFFSET(WT_PAGE_DISK_OFFSET(page, unpack->data)) |
	    WT_K_FLAG;
	WT_ROW_KEY_SET(rip, v);
}

/*
 * __wt_row_leaf_value_set --
 *	Set a WT_ROW to reference an on-page row-store leaf value.
 */
static inline void
__wt_row_leaf_value_set(WT_PAGE *page, WT_ROW *rip, WT_CELL_UNPACK *unpack)
{
	uintptr_t key_len, key_offset, value_offset, v;

	v = (uintptr_t)WT_ROW_KEY_COPY(rip);

	/*
	 * See the comment in __wt_row_leaf_key_info for an explanation of the
	 * magic.
	 */
	if (!(v & WT_K_FLAG))			/* Already an encoded key */
		return;

	key_len = WT_K_DECODE_KEY_LEN(v);	/* Key length */
	if (key_len > WT_KV_MAX_KEY_LEN)
		return;
	if (unpack->size > WT_KV_MAX_VALUE_LEN)	/* Value length */
		return;

	key_offset = WT_K_DECODE_KEY_OFFSET(v);	/* Page offsets */
	if (key_offset > WT_KV_MAX_KEY_OFFSET)
		return;
	value_offset = WT_PAGE_DISK_OFFSET(page, unpack->data);
	if (value_offset > WT_KV_MAX_VALUE_OFFSET)
		return;

	v = WT_KV_ENCODE_KEY_LEN(key_len) |
	    WT_KV_ENCODE_VALUE_LEN(unpack->size) |
	    WT_KV_ENCODE_KEY_OFFSET(key_offset) |
	    WT_KV_ENCODE_VALUE_OFFSET(value_offset) | WT_KV_FLAG;
	WT_ROW_KEY_SET(rip, v);
}

/*
 * __wt_row_leaf_key --
 *	Set a buffer to reference a row-store leaf page key as cheaply as
 * possible.
 */
static inline int
__wt_row_leaf_key(WT_SESSION_IMPL *session,
    WT_PAGE *page, WT_ROW *rip, WT_ITEM *key, bool instantiate)
{
	void *copy;

	/*
	 * A front-end for __wt_row_leaf_key_work, here to inline fast paths.
	 *
	 * The row-store key can change underfoot; explicitly take a copy.
	 */
	copy = WT_ROW_KEY_COPY(rip);

	/*
	 * All we handle here are on-page keys (which should be a common case),
	 * and instantiated keys (which start out rare, but become more common
	 * as a leaf page is searched, instantiating prefix-compressed keys).
	 */
	if (__wt_row_leaf_key_info(
	    page, copy, NULL, NULL, &key->data, &key->size))
		return (0);

	/*
	 * The alternative is an on-page cell with some kind of compressed or
	 * overflow key that's never been instantiated.  Call the underlying
	 * worker function to figure it out.
	 */
	return (__wt_row_leaf_key_work(session, page, rip, key, instantiate));
}

/*
 * __wt_cursor_row_leaf_key --
 *	Set a buffer to reference a cursor-referenced row-store leaf page key.
 */
static inline int
__wt_cursor_row_leaf_key(WT_CURSOR_BTREE *cbt, WT_ITEM *key)
{
	WT_PAGE *page;
	WT_ROW *rip;
	WT_SESSION_IMPL *session;

	/*
	 * If the cursor references a WT_INSERT item, take the key from there,
	 * else take the key from the original page.
	 */
	if (cbt->ins == NULL) {
		session = (WT_SESSION_IMPL *)cbt->iface.session;
		page = cbt->ref->page;
		rip = &page->u.row.d[cbt->slot];
		WT_RET(__wt_row_leaf_key(session, page, rip, key, false));
	} else {
		key->data = WT_INSERT_KEY(cbt->ins);
		key->size = WT_INSERT_KEY_SIZE(cbt->ins);
	}
	return (0);
}

/*
 * __wt_row_leaf_value_cell --
 *	Return a pointer to the value cell for a row-store leaf page key, or
 * NULL if there isn't one.
 */
static inline WT_CELL *
__wt_row_leaf_value_cell(WT_PAGE *page, WT_ROW *rip, WT_CELL_UNPACK *kpack)
{
	WT_CELL *kcell, *vcell;
	WT_CELL_UNPACK unpack;
	void *copy, *key;
	size_t size;

	/* If we already have an unpacked key cell, use it. */
	if (kpack != NULL)
		vcell = (WT_CELL *)
		    ((uint8_t *)kpack->cell + __wt_cell_total_len(kpack));
	else {
		/*
		 * The row-store key can change underfoot; explicitly take a
		 * copy.
		 */
		copy = WT_ROW_KEY_COPY(rip);

		/*
		 * Figure out where the key is, step past it to the value cell.
		 * The test for a cell not being set tells us that we have an
		 * on-page key, otherwise we're looking at an instantiated key
		 * or on-page cell, both of which require an unpack of the key's
		 * cell to find the value cell that follows.
		 */
		if (__wt_row_leaf_key_info(
		    page, copy, NULL, &kcell, &key, &size) && kcell == NULL)
			vcell = (WT_CELL *)((uint8_t *)key + size);
		else {
			__wt_cell_unpack(kcell, &unpack);
			vcell = (WT_CELL *)((uint8_t *)
			    unpack.cell + __wt_cell_total_len(&unpack));
		}
	}

	return (__wt_cell_leaf_value_parse(page, vcell));
}

/*
 * __wt_row_leaf_value --
 *	Return the value for a row-store leaf page encoded key/value pair.
 */
static inline bool
__wt_row_leaf_value(WT_PAGE *page, WT_ROW *rip, WT_ITEM *value)
{
	uintptr_t v;

	/* The row-store key can change underfoot; explicitly take a copy. */
	v = (uintptr_t)WT_ROW_KEY_COPY(rip);

	/*
	 * See the comment in __wt_row_leaf_key_info for an explanation of the
	 * magic.
	 */
	if ((v & 0x03) == WT_KV_FLAG) {
		value->data =
		    WT_PAGE_REF_OFFSET(page, WT_KV_DECODE_VALUE_OFFSET(v));
		value->size = WT_KV_DECODE_VALUE_LEN(v);
		return (true);
	}
	return (false);
}

/*
 * __wt_ref_info --
 *	Return the addr/size and type triplet for a reference.
 */
static inline void
__wt_ref_info(WT_REF *ref, const uint8_t **addrp, size_t *sizep, u_int *typep)
{
	WT_ADDR *addr;
	WT_CELL_UNPACK *unpack, _unpack;

	addr = ref->addr;
	unpack = &_unpack;

	/*
	 * If NULL, there is no location.
	 * If off-page, the pointer references a WT_ADDR structure.
	 * If on-page, the pointer references a cell.
	 *
	 * The type is of a limited set: internal, leaf or no-overflow leaf.
	 */
	if (addr == NULL) {
		*addrp = NULL;
		*sizep = 0;
		if (typep != NULL)
			*typep = 0;
	} else if (__wt_off_page(ref->home, addr)) {
		*addrp = addr->addr;
		*sizep = addr->size;
		if (typep != NULL)
			switch (addr->type) {
			case WT_ADDR_INT:
				*typep = WT_CELL_ADDR_INT;
				break;
			case WT_ADDR_LEAF:
				*typep = WT_CELL_ADDR_LEAF;
				break;
			case WT_ADDR_LEAF_NO:
				*typep = WT_CELL_ADDR_LEAF_NO;
				break;
			default:
				*typep = 0;
				break;
			}
	} else {
		__wt_cell_unpack((WT_CELL *)addr, unpack);
		*addrp = unpack->data;
		*sizep = unpack->size;
		if (typep != NULL)
			*typep = unpack->type;
	}
}

/*
 * __wt_ref_block_free --
 *	Free the on-disk block for a reference and clear the address.
 */
static inline int
__wt_ref_block_free(WT_SESSION_IMPL *session, WT_REF *ref)
{
	const uint8_t *addr;
	size_t addr_size;

	if (ref->addr == NULL)
		return (0);

	__wt_ref_info(ref, &addr, &addr_size, NULL);
	WT_RET(__wt_btree_block_free(session, addr, addr_size));

	/* Clear the address (so we don't free it twice). */
	__wt_ref_addr_free(session, ref);
	return (0);
}

/*
 * __wt_leaf_page_can_split --
 *	Check whether a page can be split in memory.
 */
static inline bool
__wt_leaf_page_can_split(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_BTREE *btree;
	WT_INSERT_HEAD *ins_head;
	WT_INSERT *ins;
	size_t size;
	int count;

	btree = S2BT(session);

	/*
	 * Only split a page once, otherwise workloads that update in the middle
	 * of the page could continually split without benefit.
	 */
	if (F_ISSET_ATOMIC(page, WT_PAGE_SPLIT_INSERT))
		return (false);

	/*
	 * Check for pages with append-only workloads. A common application
	 * pattern is to have multiple threads frantically appending to the
	 * tree. We want to reconcile and evict this page, but we'd like to
	 * do it without making the appending threads wait. See if it's worth
	 * doing a split to let the threads continue before doing eviction.
	 *
	 * Ignore anything other than large, dirty leaf pages. We depend on the
	 * page being dirty for correctness (the page must be reconciled again
	 * before being evicted after the split, information from a previous
	 * reconciliation will be wrong, so we can't evict immediately).
	 */
	if (page->memory_footprint < btree->splitmempage)
		return (false);
	if (WT_PAGE_IS_INTERNAL(page))
		return (false);
	if (!__wt_page_is_modified(page))
		return (false);

	/*
	 * There is no point doing an in-memory split unless there is a lot of
	 * data in the last skiplist on the page.  Split if there are enough
	 * items and the skiplist does not fit within a single disk page.
	 *
	 * Rather than scanning the whole list, walk a higher level, which
	 * gives a sample of the items -- at level 0 we have all the items, at
	 * level 1 we have 1/4 and at level 2 we have 1/16th.  If we see more
	 * than 30 items and more data than would fit in a disk page, split.
	 */
#define	WT_MIN_SPLIT_DEPTH	2
#define	WT_MIN_SPLIT_COUNT	30
#define	WT_MIN_SPLIT_MULTIPLIER 16      /* At level 2, we see 1/16th entries */

	ins_head = page->type == WT_PAGE_ROW_LEAF ?
	    (page->pg_row_entries == 0 ?
	    WT_ROW_INSERT_SMALLEST(page) :
	    WT_ROW_INSERT_SLOT(page, page->pg_row_entries - 1)) :
	    WT_COL_APPEND(page);
	if (ins_head == NULL)
		return (false);
	for (count = 0, size = 0, ins = ins_head->head[WT_MIN_SPLIT_DEPTH];
	    ins != NULL; ins = ins->next[WT_MIN_SPLIT_DEPTH]) {
		count += WT_MIN_SPLIT_MULTIPLIER;
		size += WT_MIN_SPLIT_MULTIPLIER *
		    (WT_INSERT_KEY_SIZE(ins) + WT_UPDATE_MEMSIZE(ins->upd));
		if (count > WT_MIN_SPLIT_COUNT &&
		    size > (size_t)btree->maxleafpage) {
			WT_STAT_FAST_CONN_INCR(session, cache_inmem_splittable);
			WT_STAT_FAST_DATA_INCR(session, cache_inmem_splittable);
			return (true);
		}
	}
	return (false);
}

/*
 * __wt_page_can_evict --
 *	Check whether a page can be evicted.
 */
static inline bool
__wt_page_can_evict(WT_SESSION_IMPL *session, WT_REF *ref, bool *inmem_splitp)
{
	WT_BTREE *btree;
	WT_PAGE *page;
	WT_PAGE_MODIFY *mod;
	bool modified;

	if (inmem_splitp != NULL)
		*inmem_splitp = false;

	btree = S2BT(session);
	page = ref->page;
	mod = page->modify;

	/* Pages that have never been modified can always be evicted. */
	if (mod == NULL)
		return (true);

	/*
	 * Check for in-memory splits before other eviction tests. If the page
	 * should split in-memory, return success immediately and skip more
	 * detailed eviction tests. We don't need further tests since the page
	 * won't be written or discarded from the cache.
	 */
	if (__wt_leaf_page_can_split(session, page)) {
		if (inmem_splitp != NULL)
			*inmem_splitp = true;
		return (true);
	}

	modified = __wt_page_is_modified(page);

	/*
	 * If the file is being checkpointed, we can't evict dirty pages:
	 * if we write a page and free the previous version of the page, that
	 * previous version might be referenced by an internal page already
	 * been written in the checkpoint, leaving the checkpoint inconsistent.
	 */
	if (btree->checkpointing != WT_CKPT_OFF && modified) {
		WT_STAT_FAST_CONN_INCR(session, cache_eviction_checkpoint);
		WT_STAT_FAST_DATA_INCR(session, cache_eviction_checkpoint);
		return (false);
	}

	/*
	 * We can't evict clean, multiblock row-store pages where the parent's
	 * key for the page is an overflow item, because the split into the
	 * parent frees the backing blocks for any no-longer-used overflow keys,
	 * which will corrupt the checkpoint's block management.
	 */
	if (btree->checkpointing != WT_CKPT_OFF &&
	    F_ISSET_ATOMIC(ref->home, WT_PAGE_OVERFLOW_KEYS))
		return (false);

	/*
	 * If a split created new internal pages, those newly created internal
	 * pages cannot be evicted until all threads are known to have exited
	 * the original parent page's index, because evicting an internal page
	 * discards its WT_REF array, and a thread traversing the original
	 * parent page index might see a freed WT_REF.
	 */
	if (WT_PAGE_IS_INTERNAL(page) &&
	    F_ISSET_ATOMIC(page, WT_PAGE_SPLIT_BLOCK))
		return (false);

	/*
	 * If the oldest transaction hasn't changed since the last time
	 * this page was written, it's unlikely we can make progress.
	 * Similarly, if the most recent update on the page is not yet
	 * globally visible, eviction will fail.  These heuristics
	 * attempt to avoid repeated attempts to evict the same page.
	 */
	if (modified &&
	    !F_ISSET(S2C(session)->cache, WT_CACHE_STUCK) &&
	    (mod->last_oldest_id == __wt_txn_oldest_id(session) ||
	    !__wt_txn_visible_all(session, mod->update_txn)))
		return (false);

	return (true);
}

/*
 * __wt_page_release_evict --
 *	Release a reference to a page, and attempt to immediately evict it.
 */
static inline int
__wt_page_release_evict(WT_SESSION_IMPL *session, WT_REF *ref)
{
	WT_BTREE *btree;
	WT_DECL_RET;
	WT_PAGE *page;
	bool locked, too_big;

	btree = S2BT(session);
	page = ref->page;

	/*
	 * Take some care with order of operations: if we release the hazard
	 * reference without first locking the page, it could be evicted in
	 * between.
	 */
	locked = __wt_atomic_casv32(
	    &ref->state, WT_REF_MEM, WT_REF_LOCKED) ? true : false;
	if ((ret = __wt_hazard_clear(session, page)) != 0 || !locked) {
		if (locked)
			ref->state = WT_REF_MEM;
		return (ret == 0 ? EBUSY : ret);
	}

	(void)__wt_atomic_addv32(&btree->evict_busy, 1);

	too_big = page->memory_footprint > btree->maxmempage;
	if ((ret = __wt_evict(session, ref, false)) == 0) {
		if (too_big)
			WT_STAT_FAST_CONN_INCR(session, cache_eviction_force);
		else
			/*
			 * If the page isn't too big, we are evicting it because
			 * it had a chain of deleted entries that make traversal
			 * expensive.
			 */
			WT_STAT_FAST_CONN_INCR(
			    session, cache_eviction_force_delete);
	} else
		WT_STAT_FAST_CONN_INCR(session, cache_eviction_force_fail);

	(void)__wt_atomic_subv32(&btree->evict_busy, 1);

	return (ret);
}

/*
 * __wt_page_release --
 *	Release a reference to a page.
 */
static inline int
__wt_page_release(WT_SESSION_IMPL *session, WT_REF *ref, uint32_t flags)
{
	WT_BTREE *btree;
	WT_PAGE *page;

	btree = S2BT(session);

	/*
	 * Discard our hazard pointer.  Ignore pages we don't have and the root
	 * page, which sticks in memory, regardless.
	 */
	if (ref == NULL || ref->page == NULL || __wt_ref_is_root(ref))
		return (0);

	/*
	 * If hazard pointers aren't necessary for this file, we can't be
	 * evicting, we're done.
	 */
	if (F_ISSET(btree, WT_BTREE_IN_MEMORY))
		return (0);

	/*
	 * Attempt to evict pages with the special "oldest" read generation.
	 * This is set for pages that grow larger than the configured
	 * memory_page_max setting, when we see many deleted items, and when we
	 * are attempting to scan without trashing the cache.
	 *
	 * Fast checks if eviction is disabled for this handle, operation or
	 * tree, then perform a general check if eviction will be possible.
	 */
	page = ref->page;
	if (page->read_gen != WT_READGEN_OLDEST ||
	    LF_ISSET(WT_READ_NO_EVICT) ||
	    F_ISSET(session, WT_SESSION_NO_EVICTION) ||
	    F_ISSET(btree, WT_BTREE_NO_EVICTION) ||
	    !__wt_page_can_evict(session, ref, NULL))
		return (__wt_hazard_clear(session, page));

	WT_RET_BUSY_OK(__wt_page_release_evict(session, ref));
	return (0);
}

/*
 * __wt_page_swap_func --
 *	Swap one page's hazard pointer for another one when hazard pointer
 * coupling up/down the tree.
 */
static inline int
__wt_page_swap_func(
    WT_SESSION_IMPL *session, WT_REF *held, WT_REF *want, uint32_t flags
#ifdef HAVE_DIAGNOSTIC
    , const char *file, int line
#endif
    )
{
	WT_DECL_RET;
	bool acquired;

	/*
	 * This function is here to simplify the error handling during hazard
	 * pointer coupling so we never leave a hazard pointer dangling.  The
	 * assumption is we're holding a hazard pointer on "held", and want to
	 * acquire a hazard pointer on "want", releasing the hazard pointer on
	 * "held" when we're done.
	 *
	 * When walking the tree, we sometimes swap to the same page. Fast-path
	 * that to avoid thinking about error handling.
	 */
	if (held == want)
		return (0);

	/* Get the wanted page. */
	ret = __wt_page_in_func(session, want, flags
#ifdef HAVE_DIAGNOSTIC
	    , file, line
#endif
	    );

	/*
	 * Expected failures: page not found or restart. Our callers list the
	 * errors they're expecting to handle.
	 */
	if (LF_ISSET(WT_READ_NOTFOUND_OK) && ret == WT_NOTFOUND)
		return (WT_NOTFOUND);
	if (LF_ISSET(WT_READ_RESTART_OK) && ret == WT_RESTART)
		return (WT_RESTART);

	/* Discard the original held page on either success or error. */
	acquired = ret == 0;
	WT_TRET(__wt_page_release(session, held, flags));

	/* Fast-path expected success. */
	if (ret == 0)
		return (0);

	/*
	 * If there was an error at any point that our caller isn't prepared to
	 * handle, discard any page we acquired.
	 */
	if (acquired)
		WT_TRET(__wt_page_release(session, want, flags));

	/*
	 * If we're returning an error, don't let it be one our caller expects
	 * to handle as returned by page-in: the expectation includes the held
	 * page not having been released, and that's not the case.
	 */
	if (LF_ISSET(WT_READ_NOTFOUND_OK) && ret == WT_NOTFOUND)
		return (EINVAL);
	if (LF_ISSET(WT_READ_RESTART_OK) && ret == WT_RESTART)
		return (EINVAL);

	return (ret);
}

/*
 * __wt_page_hazard_check --
 *	Return if there's a hazard pointer to the page in the system.
 */
static inline WT_HAZARD *
__wt_page_hazard_check(WT_SESSION_IMPL *session, WT_PAGE *page)
{
	WT_CONNECTION_IMPL *conn;
	WT_HAZARD *hp;
	WT_SESSION_IMPL *s;
	uint32_t i, j, hazard_size, max, session_cnt;

	conn = S2C(session);

	/*
	 * No lock is required because the session array is fixed size, but it
	 * may contain inactive entries.  We must review any active session
	 * that might contain a hazard pointer, so insert a barrier before
	 * reading the active session count.  That way, no matter what sessions
	 * come or go, we'll check the slots for all of the sessions that could
	 * have been active when we started our check.
	 */
	WT_STAT_FAST_CONN_INCR(session, cache_hazard_checks);
	WT_ORDERED_READ(session_cnt, conn->session_cnt);
	for (s = conn->sessions, i = 0, j = 0, max = 0;
	    i < session_cnt; ++s, ++i) {
		if (!s->active)
			continue;
		WT_ORDERED_READ(hazard_size, s->hazard_size);
		if (s->hazard_size > max) {
			max = s->hazard_size;
			WT_STAT_FAST_CONN_SET(session,
			    cache_hazard_max, max);
		}
		for (hp = s->hazard; hp < s->hazard + hazard_size; ++hp) {
			++j;
			if (hp->page == page) {
				WT_STAT_FAST_CONN_INCRV(session,
				    cache_hazard_walks, j);
				return (hp);
			}
		}
	}
	WT_STAT_FAST_CONN_INCRV(session, cache_hazard_walks, j);
	return (NULL);
}

/*
 * __wt_skip_choose_depth --
 *	Randomly choose a depth for a skiplist insert.
 */
static inline u_int
__wt_skip_choose_depth(WT_SESSION_IMPL *session)
{
	u_int d;

	for (d = 1; d < WT_SKIP_MAXDEPTH &&
	    __wt_random(&session->rnd) < WT_SKIP_PROBABILITY; d++)
		;
	return (d);
}

/*
 * __wt_btree_lsm_over_size --
 *	Return if the size of an in-memory tree with a single leaf page is over
 * a specified maximum.  If called on anything other than a simple tree with a
 * single leaf page, returns true so our LSM caller will switch to a new tree.
 */
static inline bool
__wt_btree_lsm_over_size(WT_SESSION_IMPL *session, uint64_t maxsize)
{
	WT_BTREE *btree;
	WT_PAGE *child, *root;
	WT_PAGE_INDEX *pindex;
	WT_REF *first;

	btree = S2BT(session);
	root = btree->root.page;

	/* Check for a non-existent tree. */
	if (root == NULL)
		return (false);

	/* A tree that can be evicted always requires a switch. */
	if (!F_ISSET(btree, WT_BTREE_NO_EVICTION))
		return (true);

	/* Check for a tree with a single leaf page. */
	WT_INTL_INDEX_GET(session, root, pindex);
	if (pindex->entries != 1)		/* > 1 child page, switch */
		return (true);

	first = pindex->index[0];
	if (first->state != WT_REF_MEM)		/* no child page, ignore */
		return (false);

	/*
	 * We're reaching down into the page without a hazard pointer, but
	 * that's OK because we know that no-eviction is set and so the page
	 * cannot disappear.
	 */
	child = first->page;
	if (child->type != WT_PAGE_ROW_LEAF)	/* not a single leaf page */
		return (true);

	return (child->memory_footprint > maxsize);
}

/*
 * __wt_split_descent_race --
 *	Return if we raced with an internal page split when descending the tree.
 */
static inline bool
__wt_split_descent_race(
    WT_SESSION_IMPL *session, WT_REF *ref, WT_PAGE_INDEX *saved_pindex)
{
	WT_PAGE_INDEX *pindex;

	/* No test when starting the descent (there's no home to check). */
	if (__wt_ref_is_root(ref))
		return (false);

	/*
	 * A place to hang this comment...
	 *
	 * There's a page-split race when we walk the tree: if we're splitting
	 * an internal page into its parent, we update the parent's page index
	 * before updating the split page's page index, and it's not an atomic
	 * update. A thread can read the parent page's original page index and
	 * then read the split page's replacement index.
	 *
	 * Because internal page splits work by truncating the original page to
	 * the initial part of the original page, the result of this race is we
	 * will have a search key that points past the end of the current page.
	 * This is only an issue when we search past the end of the page, if we
	 * find a WT_REF in the page with the namespace we're searching for, we
	 * don't care if the WT_REF moved or not while we were searching, we
	 * have the correct page.
	 *
	 * For example, imagine an internal page with 3 child pages, with the
	 * namespaces a-f, g-h and i-j; the first child page splits. The parent
	 * starts out with the following page-index:
	 *
	 *	| ... | a | g | i | ... |
	 *
	 * which changes to this:
	 *
	 *	| ... | a | c | e | g | i | ... |
	 *
	 * The child starts out with the following page-index:
	 *
	 *	| a | b | c | d | e | f |
	 *
	 * which changes to this:
	 *
	 *	| a | b |
	 *
	 * The thread searches the original parent page index for the key "cat",
	 * it couples to the "a" child page; if it uses the replacement child
	 * page index, it will search past the end of the page and couple to the
	 * "b" page, which is wrong.
	 *
	 * To detect the problem, we remember the parent page's page index used
	 * to descend the tree. Whenever we search past the end of a page, we
	 * check to see if the parent's page index has changed since our use of
	 * it during descent. As the problem only appears if we read the split
	 * page's replacement index, the parent page's index must already have
	 * changed, ensuring we detect the problem.
	 *
	 * It's possible for the opposite race to happen (a thread could read
	 * the parent page's replacement page index and then read the split
	 * page's original index). This isn't a problem because internal splits
	 * work by truncating the split page, so the split page search is for
	 * content the split page retains after the split, and we ignore this
	 * race.
	 */
	WT_INTL_INDEX_GET(session, ref->home, pindex);
	return (pindex != saved_pindex);
}