1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
|
/*-
* Copyright (c) 2014-2017 MongoDB, Inc.
* Copyright (c) 2008-2014 WiredTiger, Inc.
* All rights reserved.
*
* See the file LICENSE for redistribution information.
*/
/*
* WT_CELL --
* Variable-length cell type.
*
* Pages containing variable-length keys or values data (the WT_PAGE_ROW_INT,
* WT_PAGE_ROW_LEAF, WT_PAGE_COL_INT and WT_PAGE_COL_VAR page types), have
* cells after the page header.
*
* There are 4 basic cell types: keys and data (each of which has an overflow
* form), deleted cells and off-page references. The cell is usually followed
* by additional data, varying by type: a key or data cell is followed by a set
* of bytes, an address cookie follows overflow or off-page cells.
*
* Deleted cells are place-holders for column-store files, where entries cannot
* be removed in order to preserve the record count.
*
* Here's the cell use by page type:
*
* WT_PAGE_ROW_INT (row-store internal page):
* Keys and offpage-reference pairs (a WT_CELL_KEY or WT_CELL_KEY_OVFL
* cell followed by a WT_CELL_ADDR_XXX cell).
*
* WT_PAGE_ROW_LEAF (row-store leaf page):
* Keys with optional data cells (a WT_CELL_KEY or WT_CELL_KEY_OVFL cell,
* normally followed by a WT_CELL_{VALUE,VALUE_COPY,VALUE_OVFL} cell).
*
* WT_PAGE_ROW_LEAF pages optionally prefix-compress keys, using a single
* byte count immediately following the cell.
*
* WT_PAGE_COL_INT (Column-store internal page):
* Off-page references (a WT_CELL_ADDR_XXX cell).
*
* WT_PAGE_COL_VAR (Column-store leaf page storing variable-length cells):
* Data cells (a WT_CELL_{VALUE,VALUE_COPY,VALUE_OVFL} cell), or deleted
* cells (a WT_CELL_DEL cell).
*
* Each cell starts with a descriptor byte:
*
* Bits 1 and 2 are reserved for "short" key and value cells (that is, a cell
* carrying data less than 64B, where we can store the data length in the cell
* descriptor byte):
* 0x00 Not a short key/data cell
* 0x01 Short key cell
* 0x10 Short key cell, with a following prefix-compression byte
* 0x11 Short value cell
* In these cases, the other 6 bits of the descriptor byte are the data length.
*
* Bit 3 marks an 8B packed, uint64_t value following the cell description byte.
* (A run-length counter or a record number for variable-length column store.)
*
* Bit 4 is unused.
*
* Bits 5-8 are cell "types".
*/
#define WT_CELL_KEY_SHORT 0x01 /* Short key */
#define WT_CELL_KEY_SHORT_PFX 0x02 /* Short key with prefix byte */
#define WT_CELL_VALUE_SHORT 0x03 /* Short data */
#define WT_CELL_SHORT_TYPE(v) ((v) & 0x03U)
#define WT_CELL_SHORT_MAX 63 /* Maximum short key/value */
#define WT_CELL_SHORT_SHIFT 2 /* Shift for short key/value */
#define WT_CELL_64V 0x04 /* Associated value */
/*
* We could use bit 4 as a single bit (similar to bit 3), or as a type bit in a
* backward compatible way by adding bit 4 to the type mask and adding new types
* that incorporate it.
*/
#define WT_CELL_UNUSED_BIT4 0x08 /* Unused */
/*
* WT_CELL_ADDR_INT is an internal block location, WT_CELL_ADDR_LEAF is a leaf
* block location, and WT_CELL_ADDR_LEAF_NO is a leaf block location where the
* page has no overflow items. (The goal is to speed up truncation as we don't
* have to read pages without overflow items in order to delete them. Note,
* WT_CELL_ADDR_LEAF_NO is not guaranteed to be set on every page without
* overflow items, the only guarantee is that if set, the page has no overflow
* items.)
*
* WT_CELL_VALUE_COPY is a reference to a previous cell on the page, supporting
* value dictionaries: if the two values are the same, we only store them once
* and have the second and subsequent use reference the original.
*/
#define WT_CELL_ADDR_DEL (0) /* Address: deleted */
#define WT_CELL_ADDR_INT (1 << 4) /* Address: internal */
#define WT_CELL_ADDR_LEAF (2 << 4) /* Address: leaf */
#define WT_CELL_ADDR_LEAF_NO (3 << 4) /* Address: leaf no overflow */
#define WT_CELL_DEL (4 << 4) /* Deleted value */
#define WT_CELL_KEY (5 << 4) /* Key */
#define WT_CELL_KEY_OVFL (6 << 4) /* Overflow key */
#define WT_CELL_KEY_OVFL_RM (12 << 4) /* Overflow key (removed) */
#define WT_CELL_KEY_PFX (7 << 4) /* Key with prefix byte */
#define WT_CELL_VALUE (8 << 4) /* Value */
#define WT_CELL_VALUE_COPY (9 << 4) /* Value copy */
#define WT_CELL_VALUE_OVFL (10 << 4) /* Overflow value */
#define WT_CELL_VALUE_OVFL_RM (11 << 4) /* Overflow value (removed) */
#define WT_CELL_TYPE_MASK (0x0fU << 4) /* Maximum 16 cell types */
#define WT_CELL_TYPE(v) ((v) & WT_CELL_TYPE_MASK)
/*
* When we aren't able to create a short key or value (and, in the case of a
* value, there's no associated RLE), the key or value is at least 64B, else
* we'd have been able to store it as a short cell. Decrement/Increment the
* size before storing it, in the hopes that relatively small key/value sizes
* will pack into a single byte instead of two bytes.
*/
#define WT_CELL_SIZE_ADJUST 64
/*
* WT_CELL --
* Variable-length, on-page cell header.
*/
struct __wt_cell {
/*
* Maximum of 16 bytes:
* 1: cell descriptor byte
* 1: prefix compression count
* 9: associated 64-bit value (uint64_t encoding, max 9 bytes)
* 5: data length (uint32_t encoding, max 5 bytes)
*
* This calculation is pessimistic: the prefix compression count and
* 64V value overlap, the 64V value and data length are optional.
*/
uint8_t __chunk[1 + 1 + WT_INTPACK64_MAXSIZE + WT_INTPACK32_MAXSIZE];
};
/*
* WT_CELL_UNPACK --
* Unpacked cell.
*/
struct __wt_cell_unpack {
WT_CELL *cell; /* Cell's disk image address */
uint64_t v; /* RLE count or recno */
/*
* !!!
* The size and __len fields are reasonably type size_t; don't change
* the type, performance drops significantly if they're type size_t.
*/
const void *data; /* Data */
uint32_t size; /* Data size */
uint32_t __len; /* Cell + data length (usually) */
uint8_t prefix; /* Cell prefix length */
uint8_t raw; /* Raw cell type (include "shorts") */
uint8_t type; /* Cell type */
uint8_t ovfl; /* boolean: cell is an overflow */
};
/*
* WT_CELL_FOREACH --
* Walk the cells on a page.
*/
#define WT_CELL_FOREACH(btree, dsk, cell, unpack, i) \
for ((cell) = \
WT_PAGE_HEADER_BYTE(btree, dsk), (i) = (dsk)->u.entries; \
(i) > 0; \
(cell) = (WT_CELL *)((uint8_t *)(cell) + (unpack)->__len), --(i))
/*
* __wt_cell_pack_addr --
* Pack an address cell.
*/
static inline size_t
__wt_cell_pack_addr(WT_CELL *cell, u_int cell_type, uint64_t recno, size_t size)
{
uint8_t *p;
p = cell->__chunk + 1;
if (recno == WT_RECNO_OOB)
cell->__chunk[0] = (uint8_t)cell_type; /* Type */
else {
cell->__chunk[0] = (uint8_t)(cell_type | WT_CELL_64V);
(void)__wt_vpack_uint(&p, 0, recno); /* Record number */
}
(void)__wt_vpack_uint(&p, 0, (uint64_t)size); /* Length */
return (WT_PTRDIFF(p, cell));
}
/*
* __wt_cell_pack_data --
* Set a data item's WT_CELL contents.
*/
static inline size_t
__wt_cell_pack_data(WT_CELL *cell, uint64_t rle, size_t size)
{
uint8_t byte, *p;
/*
* Short data cells without run-length encoding have 6 bits of data
* length in the descriptor byte.
*/
if (rle < 2 && size <= WT_CELL_SHORT_MAX) {
byte = (uint8_t)size; /* Type + length */
cell->__chunk[0] = (uint8_t)
((byte << WT_CELL_SHORT_SHIFT) | WT_CELL_VALUE_SHORT);
return (1);
}
p = cell->__chunk + 1;
if (rle < 2) {
size -= WT_CELL_SIZE_ADJUST;
cell->__chunk[0] = WT_CELL_VALUE; /* Type */
} else {
cell->__chunk[0] = WT_CELL_VALUE | WT_CELL_64V;
(void)__wt_vpack_uint(&p, 0, rle); /* RLE */
}
(void)__wt_vpack_uint(&p, 0, (uint64_t)size); /* Length */
return (WT_PTRDIFF(p, cell));
}
/*
* __wt_cell_pack_data_match --
* Return if two items would have identical WT_CELLs (except for any RLE).
*/
static inline int
__wt_cell_pack_data_match(
WT_CELL *page_cell, WT_CELL *val_cell, const uint8_t *val_data,
bool *matchp)
{
const uint8_t *a, *b;
uint64_t av, bv;
bool rle;
*matchp = 0; /* Default to no-match */
/*
* This is a special-purpose function used by reconciliation to support
* dictionary lookups. We're passed an on-page cell and a created cell
* plus a chunk of data we're about to write on the page, and we return
* if they would match on the page. The column-store comparison ignores
* the RLE because the copied cell will have its own RLE.
*/
a = (uint8_t *)page_cell;
b = (uint8_t *)val_cell;
if (WT_CELL_SHORT_TYPE(a[0]) == WT_CELL_VALUE_SHORT) {
av = a[0] >> WT_CELL_SHORT_SHIFT;
++a;
} else if (WT_CELL_TYPE(a[0]) == WT_CELL_VALUE) {
rle = (a[0] & WT_CELL_64V) != 0; /* Skip any RLE */
++a;
if (rle)
WT_RET(__wt_vunpack_uint(&a, 0, &av));
WT_RET(__wt_vunpack_uint(&a, 0, &av)); /* Length */
} else
return (0);
if (WT_CELL_SHORT_TYPE(b[0]) == WT_CELL_VALUE_SHORT) {
bv = b[0] >> WT_CELL_SHORT_SHIFT;
++b;
} else if (WT_CELL_TYPE(b[0]) == WT_CELL_VALUE) {
rle = (b[0] & WT_CELL_64V) != 0; /* Skip any RLE */
++b;
if (rle)
WT_RET(__wt_vunpack_uint(&b, 0, &bv));
WT_RET(__wt_vunpack_uint(&b, 0, &bv)); /* Length */
} else
return (0);
if (av == bv)
*matchp = memcmp(a, val_data, av) == 0;
return (0);
}
/*
* __wt_cell_pack_copy --
* Write a copy value cell.
*/
static inline size_t
__wt_cell_pack_copy(WT_CELL *cell, uint64_t rle, uint64_t v)
{
uint8_t *p;
p = cell->__chunk + 1;
if (rle < 2) /* Type */
cell->__chunk[0] = WT_CELL_VALUE_COPY;
else { /* Type */
cell->__chunk[0] = WT_CELL_VALUE_COPY | WT_CELL_64V;
(void)__wt_vpack_uint(&p, 0, rle); /* RLE */
}
(void)__wt_vpack_uint(&p, 0, v); /* Copy offset */
return (WT_PTRDIFF(p, cell));
}
/*
* __wt_cell_pack_del --
* Write a deleted value cell.
*/
static inline size_t
__wt_cell_pack_del(WT_CELL *cell, uint64_t rle)
{
uint8_t *p;
p = cell->__chunk + 1;
if (rle < 2) { /* Type */
cell->__chunk[0] = WT_CELL_DEL;
return (1);
}
/* Type */
cell->__chunk[0] = WT_CELL_DEL | WT_CELL_64V;
(void)__wt_vpack_uint(&p, 0, rle); /* RLE */
return (WT_PTRDIFF(p, cell));
}
/*
* __wt_cell_pack_int_key --
* Set a row-store internal page key's WT_CELL contents.
*/
static inline size_t
__wt_cell_pack_int_key(WT_CELL *cell, size_t size)
{
uint8_t byte, *p;
/* Short keys have 6 bits of data length in the descriptor byte. */
if (size <= WT_CELL_SHORT_MAX) {
byte = (uint8_t)size;
cell->__chunk[0] = (uint8_t)
((byte << WT_CELL_SHORT_SHIFT) | WT_CELL_KEY_SHORT);
return (1);
}
cell->__chunk[0] = WT_CELL_KEY; /* Type */
p = cell->__chunk + 1;
size -= WT_CELL_SIZE_ADJUST;
(void)__wt_vpack_uint(&p, 0, (uint64_t)size); /* Length */
return (WT_PTRDIFF(p, cell));
}
/*
* __wt_cell_pack_leaf_key --
* Set a row-store leaf page key's WT_CELL contents.
*/
static inline size_t
__wt_cell_pack_leaf_key(WT_CELL *cell, uint8_t prefix, size_t size)
{
uint8_t byte, *p;
/* Short keys have 6 bits of data length in the descriptor byte. */
if (size <= WT_CELL_SHORT_MAX) {
if (prefix == 0) {
byte = (uint8_t)size; /* Type + length */
cell->__chunk[0] = (uint8_t)
((byte << WT_CELL_SHORT_SHIFT) | WT_CELL_KEY_SHORT);
return (1);
}
byte = (uint8_t)size; /* Type + length */
cell->__chunk[0] = (uint8_t)
((byte << WT_CELL_SHORT_SHIFT) | WT_CELL_KEY_SHORT_PFX);
cell->__chunk[1] = prefix; /* Prefix */
return (2);
}
if (prefix == 0) {
cell->__chunk[0] = WT_CELL_KEY; /* Type */
p = cell->__chunk + 1;
} else {
cell->__chunk[0] = WT_CELL_KEY_PFX; /* Type */
cell->__chunk[1] = prefix; /* Prefix */
p = cell->__chunk + 2;
}
size -= WT_CELL_SIZE_ADJUST;
(void)__wt_vpack_uint(&p, 0, (uint64_t)size); /* Length */
return (WT_PTRDIFF(p, cell));
}
/*
* __wt_cell_pack_ovfl --
* Pack an overflow cell.
*/
static inline size_t
__wt_cell_pack_ovfl(WT_CELL *cell, uint8_t type, uint64_t rle, size_t size)
{
uint8_t *p;
p = cell->__chunk + 1;
if (rle < 2) /* Type */
cell->__chunk[0] = type;
else {
cell->__chunk[0] = type | WT_CELL_64V;
(void)__wt_vpack_uint(&p, 0, rle); /* RLE */
}
(void)__wt_vpack_uint(&p, 0, (uint64_t)size); /* Length */
return (WT_PTRDIFF(p, cell));
}
/*
* __wt_cell_rle --
* Return the cell's RLE value.
*/
static inline uint64_t
__wt_cell_rle(WT_CELL_UNPACK *unpack)
{
/*
* Any item with only 1 occurrence is stored with an RLE of 0, that is,
* without any RLE at all. This code is a single place to handle that
* correction, for simplicity.
*/
return (unpack->v < 2 ? 1 : unpack->v);
}
/*
* __wt_cell_total_len --
* Return the cell's total length, including data.
*/
static inline size_t
__wt_cell_total_len(WT_CELL_UNPACK *unpack)
{
/*
* The length field is specially named because it's dangerous to use it:
* it represents the length of the current cell (normally used for the
* loop that walks through cells on the page), but occasionally we want
* to copy a cell directly from the page, and what we need is the cell's
* total length. The problem is dictionary-copy cells, because in that
* case, the __len field is the length of the current cell, not the cell
* for which we're returning data. To use the __len field, you must be
* sure you're not looking at a copy cell.
*/
return (unpack->__len);
}
/*
* __wt_cell_type --
* Return the cell's type (collapsing special types).
*/
static inline u_int
__wt_cell_type(WT_CELL *cell)
{
u_int type;
switch (WT_CELL_SHORT_TYPE(cell->__chunk[0])) {
case WT_CELL_KEY_SHORT:
case WT_CELL_KEY_SHORT_PFX:
return (WT_CELL_KEY);
case WT_CELL_VALUE_SHORT:
return (WT_CELL_VALUE);
}
switch (type = WT_CELL_TYPE(cell->__chunk[0])) {
case WT_CELL_KEY_PFX:
return (WT_CELL_KEY);
case WT_CELL_KEY_OVFL_RM:
return (WT_CELL_KEY_OVFL);
case WT_CELL_VALUE_OVFL_RM:
return (WT_CELL_VALUE_OVFL);
}
return (type);
}
/*
* __wt_cell_type_raw --
* Return the cell's type.
*/
static inline u_int
__wt_cell_type_raw(WT_CELL *cell)
{
return (WT_CELL_SHORT_TYPE(cell->__chunk[0]) == 0 ?
WT_CELL_TYPE(cell->__chunk[0]) :
WT_CELL_SHORT_TYPE(cell->__chunk[0]));
}
/*
* __wt_cell_type_reset --
* Reset the cell's type.
*/
static inline void
__wt_cell_type_reset(
WT_SESSION_IMPL *session, WT_CELL *cell, u_int old_type, u_int new_type)
{
/*
* For all current callers of this function, this should happen once
* and only once, assert we're setting what we think we're setting.
*/
WT_ASSERT(session, old_type == 0 || old_type == __wt_cell_type(cell));
WT_UNUSED(old_type);
cell->__chunk[0] =
(cell->__chunk[0] & ~WT_CELL_TYPE_MASK) | WT_CELL_TYPE(new_type);
}
/*
* __wt_cell_leaf_value_parse --
* Return the cell if it's a row-store leaf page value, otherwise return
* NULL.
*/
static inline WT_CELL *
__wt_cell_leaf_value_parse(WT_PAGE *page, WT_CELL *cell)
{
/*
* This function exists so there's a place for this comment.
*
* Row-store leaf pages may have a single data cell between each key, or
* keys may be adjacent (when the data cell is empty).
*
* One special case: if the last key on a page is a key without a value,
* don't walk off the end of the page: the size of the underlying disk
* image is exact, which means the end of the last cell on the page plus
* the length of the cell should be the byte immediately after the page
* disk image.
*
* !!!
* This line of code is really a call to __wt_off_page, but we know the
* cell we're given will either be on the page or past the end of page,
* so it's a simpler check. (I wouldn't bother, but the real problem is
* we can't call __wt_off_page directly, it's in btree.i which requires
* this file be included first.)
*/
if (cell >= (WT_CELL *)((uint8_t *)page->dsk + page->dsk->mem_size))
return (NULL);
switch (__wt_cell_type_raw(cell)) {
case WT_CELL_KEY:
case WT_CELL_KEY_OVFL:
case WT_CELL_KEY_OVFL_RM:
case WT_CELL_KEY_PFX:
case WT_CELL_KEY_SHORT:
case WT_CELL_KEY_SHORT_PFX:
return (NULL);
default:
return (cell);
}
}
/*
* __wt_cell_unpack_safe --
* Unpack a WT_CELL into a structure during verification.
*/
static inline int
__wt_cell_unpack_safe(
WT_CELL *cell, WT_CELL_UNPACK *unpack, const void *start, const void *end)
{
struct {
uint32_t len;
uint64_t v;
} copy;
uint64_t v;
const uint8_t *p;
copy.len = 0;
copy.v = 0; /* -Werror=maybe-uninitialized */
/*
* The verification code specifies start/end arguments, pointers to the
* start of the page and to 1 past the end-of-page. In which case, make
* sure all reads are inside the page image. If an error occurs, return
* an error code but don't output messages, our caller handles that.
*/
#define WT_CELL_LEN_CHK(t, len) do { \
if (start != NULL && \
((uint8_t *)(t) < (uint8_t *)start || \
(((uint8_t *)(t)) + (len)) > (uint8_t *)end)) \
return (WT_ERROR); \
} while (0)
restart:
/*
* This path is performance critical for read-only trees, we're parsing
* on-page structures. For that reason we don't clear the unpacked cell
* structure (although that would be simpler), instead we make sure we
* initialize all structure elements either here or in the immediately
* following switch.
*/
WT_CELL_LEN_CHK(cell, 0);
unpack->cell = cell;
unpack->v = 0;
unpack->raw = (uint8_t)__wt_cell_type_raw(cell);
unpack->type = (uint8_t)__wt_cell_type(cell);
unpack->ovfl = 0;
/*
* Handle cells with neither an RLE count or data length: short key/data
* cells have 6 bits of data length in the descriptor byte.
*/
switch (unpack->raw) {
case WT_CELL_KEY_SHORT_PFX:
WT_CELL_LEN_CHK(cell, 1); /* skip prefix */
unpack->prefix = cell->__chunk[1];
unpack->data = cell->__chunk + 2;
unpack->size = cell->__chunk[0] >> WT_CELL_SHORT_SHIFT;
unpack->__len = 2 + unpack->size;
goto done;
case WT_CELL_KEY_SHORT:
case WT_CELL_VALUE_SHORT:
unpack->prefix = 0;
unpack->data = cell->__chunk + 1;
unpack->size = cell->__chunk[0] >> WT_CELL_SHORT_SHIFT;
unpack->__len = 1 + unpack->size;
goto done;
}
unpack->prefix = 0;
unpack->data = NULL;
unpack->size = 0;
unpack->__len = 0;
p = (uint8_t *)cell + 1; /* skip cell */
/*
* Check for a prefix byte that optionally follows the cell descriptor
* byte on row-store leaf pages.
*/
if (unpack->raw == WT_CELL_KEY_PFX) {
++p; /* skip prefix */
WT_CELL_LEN_CHK(p, 0);
unpack->prefix = cell->__chunk[1];
}
/*
* Check for an RLE count or record number that optionally follows the
* cell descriptor byte on column-store variable-length pages.
*/
if (cell->__chunk[0] & WT_CELL_64V) /* skip value */
WT_RET(__wt_vunpack_uint(
&p, end == NULL ? 0 : WT_PTRDIFF(end, p), &unpack->v));
/*
* Handle special actions for a few different cell types and set the
* data length (deleted cells are fixed-size without length bytes,
* almost everything else has data length bytes).
*/
switch (unpack->raw) {
case WT_CELL_VALUE_COPY:
/*
* The cell is followed by an offset to a cell written earlier
* in the page. Save/restore the length and RLE of this cell,
* we need the length to step through the set of cells on the
* page and this RLE is probably different from the RLE of the
* earlier cell.
*/
WT_RET(__wt_vunpack_uint(
&p, end == NULL ? 0 : WT_PTRDIFF(end, p), &v));
copy.len = WT_PTRDIFF32(p, cell);
copy.v = unpack->v;
cell = (WT_CELL *)((uint8_t *)cell - v);
goto restart;
case WT_CELL_KEY_OVFL:
case WT_CELL_KEY_OVFL_RM:
case WT_CELL_VALUE_OVFL:
case WT_CELL_VALUE_OVFL_RM:
/*
* Set overflow flag.
*/
unpack->ovfl = 1;
/* FALLTHROUGH */
case WT_CELL_ADDR_DEL:
case WT_CELL_ADDR_INT:
case WT_CELL_ADDR_LEAF:
case WT_CELL_ADDR_LEAF_NO:
case WT_CELL_KEY:
case WT_CELL_KEY_PFX:
case WT_CELL_VALUE:
/*
* The cell is followed by a 4B data length and a chunk of
* data.
*/
WT_RET(__wt_vunpack_uint(
&p, end == NULL ? 0 : WT_PTRDIFF(end, p), &v));
if (unpack->raw == WT_CELL_KEY ||
unpack->raw == WT_CELL_KEY_PFX ||
(unpack->raw == WT_CELL_VALUE && unpack->v == 0))
v += WT_CELL_SIZE_ADJUST;
unpack->data = p;
unpack->size = (uint32_t)v;
unpack->__len = WT_PTRDIFF32(p + unpack->size, cell);
break;
case WT_CELL_DEL:
unpack->__len = WT_PTRDIFF32(p, cell);
break;
default:
return (WT_ERROR); /* Unknown cell type. */
}
/*
* Check the original cell against the full cell length (this is a
* diagnostic as well, we may be copying the cell from the page and
* we need the right length).
*/
done: WT_CELL_LEN_CHK(cell, unpack->__len);
if (copy.len != 0) {
unpack->raw = WT_CELL_VALUE_COPY;
unpack->__len = copy.len;
unpack->v = copy.v;
}
return (0);
}
/*
* __wt_cell_unpack --
* Unpack a WT_CELL into a structure.
*/
static inline void
__wt_cell_unpack(WT_CELL *cell, WT_CELL_UNPACK *unpack)
{
(void)__wt_cell_unpack_safe(cell, unpack, NULL, NULL);
}
/*
* __cell_data_ref --
* Set a buffer to reference the data from an unpacked cell.
*/
static inline int
__cell_data_ref(WT_SESSION_IMPL *session,
WT_PAGE *page, int page_type, WT_CELL_UNPACK *unpack, WT_ITEM *store)
{
WT_BTREE *btree;
void *huffman;
btree = S2BT(session);
/* Reference the cell's data, optionally decode it. */
switch (unpack->type) {
case WT_CELL_KEY:
store->data = unpack->data;
store->size = unpack->size;
if (page_type == WT_PAGE_ROW_INT)
return (0);
huffman = btree->huffman_key;
break;
case WT_CELL_VALUE:
store->data = unpack->data;
store->size = unpack->size;
huffman = btree->huffman_value;
break;
case WT_CELL_KEY_OVFL:
WT_RET(__wt_ovfl_read(session, page, unpack, store));
if (page_type == WT_PAGE_ROW_INT)
return (0);
huffman = btree->huffman_key;
break;
case WT_CELL_VALUE_OVFL:
WT_RET(__wt_ovfl_read(session, page, unpack, store));
huffman = btree->huffman_value;
break;
WT_ILLEGAL_VALUE(session);
}
return (huffman == NULL ? 0 :
__wt_huffman_decode(
session, huffman, store->data, store->size, store));
}
/*
* __wt_dsk_cell_data_ref --
* Set a buffer to reference the data from an unpacked cell.
*
* There are two versions because of WT_CELL_VALUE_OVFL_RM type cells. When an
* overflow item is deleted, its backing blocks are removed; if there are still
* running transactions that might need to see the overflow item, we cache a
* copy of the item and reset the item's cell to WT_CELL_VALUE_OVFL_RM. If we
* find a WT_CELL_VALUE_OVFL_RM cell when reading an overflow item, we use the
* page reference to look aside into the cache. So, calling the "dsk" version
* of the function declares the cell cannot be of type WT_CELL_VALUE_OVFL_RM,
* and calling the "page" version means it might be.
*/
static inline int
__wt_dsk_cell_data_ref(WT_SESSION_IMPL *session,
int page_type, WT_CELL_UNPACK *unpack, WT_ITEM *store)
{
WT_ASSERT(session,
__wt_cell_type_raw(unpack->cell) != WT_CELL_VALUE_OVFL_RM);
return (__cell_data_ref(session, NULL, page_type, unpack, store));
}
/*
* __wt_page_cell_data_ref --
* Set a buffer to reference the data from an unpacked cell.
*/
static inline int
__wt_page_cell_data_ref(WT_SESSION_IMPL *session,
WT_PAGE *page, WT_CELL_UNPACK *unpack, WT_ITEM *store)
{
return (__cell_data_ref(session, page, page->type, unpack, store));
}
/*
* __wt_cell_data_copy --
* Copy the data from an unpacked cell into a buffer.
*/
static inline int
__wt_cell_data_copy(WT_SESSION_IMPL *session,
int page_type, WT_CELL_UNPACK *unpack, WT_ITEM *store)
{
/*
* We have routines to both copy and reference a cell's information. In
* most cases, all we need is a reference and we prefer that, especially
* when returning key/value items. In a few we need a real copy: call
* the standard reference function and get a reference. In some cases,
* a copy will be made (for example, when reading an overflow item from
* the underlying object. If that happens, we're done, otherwise make
* a copy.
*
* We don't require two versions of this function, no callers need to
* handle WT_CELL_VALUE_OVFL_RM cells.
*/
WT_RET(__wt_dsk_cell_data_ref(session, page_type, unpack, store));
if (!WT_DATA_IN_ITEM(store))
WT_RET(__wt_buf_set(session, store, store->data, store->size));
return (0);
}
|