1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
|
/**
* Copyright (C) 2018-present MongoDB, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the Server Side Public License, version 1,
* as published by MongoDB, Inc.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Server Side Public License for more details.
*
* You should have received a copy of the Server Side Public License
* along with this program. If not, see
* <http://www.mongodb.com/licensing/server-side-public-license>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the Server Side Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#pragma once
#include <cstddef>
#include <memory>
#include <tuple>
#include <type_traits>
namespace mongo {
namespace clonable_ptr_detail {
// This is the default `CloneFactory` conforming to `mongo::concept::CloneFactory` for
// `clonable_ptr`.
template <typename Clonable>
struct CloneFactory {
auto operator()(const Clonable& c) const -> decltype(c.clone()) {
return c.clone();
}
};
// TODO: Move some of these traits detection structs to a template metaprogramming header.
template <typename T>
struct detect_clone_factory_type_member_impl {
struct Fallback {
struct clone_factory_type {};
};
struct Derived : T, Fallback {};
using Yes = char[2];
using No = char[1];
template <typename U>
static No& test(typename U::clone_factory_type*);
template <typename U>
static Yes& test(U*);
static constexpr bool value = sizeof(test<Derived>(nullptr)) == sizeof(Yes);
using type = typename std::integral_constant<bool, value>::type;
};
template <typename T>
struct detect_clone_factory_type_member : std::conditional<std::is_class<T>::value,
detect_clone_factory_type_member_impl<T>,
std::false_type>::type {};
template <typename T, bool has_clone_factory_member = detect_clone_factory_type_member<T>::value>
struct clonable_traits_impl;
template <typename T>
struct clonable_traits_impl<T, false> {
using clone_factory_type = CloneFactory<T>;
};
template <typename T>
struct clonable_traits_impl<T, true> {
using clone_factory_type = typename T::clone_factory_type;
};
} // namespace clonable_ptr_detail
/**
* The 'clonable_traits' class is a specializable traits class for clonable-like types. By
* specializing this traits class for a type it is possible to change the global default
* `CloneFactory` type for a specific type. Types which conform to `mongo::concept::Clonable`
* will get a default `CloneFactory` type whch invokes their specific `Clonable::clone` function. A
* specialization can be used to make a type use a different clone factory function. A type `T` may
* specify `T::clone_factory_type` instead of specializing this traits type.
*/
template <typename T>
struct clonable_traits : clonable_ptr_detail::clonable_traits_impl<T> {};
/**
* The `clonable_ptr` represents a value-like type held at a distance. The `clonable_ptr` class is
* a smart-pointer type which functions like a `std::unique_ptr` with the added ability to create
* new copies of the pointee on copy construction. The default CloneFactory assumes that `T` is a
* type which models the Concept `mongo::concept::Clonable`. The supplied type may supply an
* alternative default `CloneFactory` type by either of two means:
*
* * `T` may define a member `T::clone_factory_type` which conforms to
* `mongo::concept::CloneFactory`
* * `T` may have an accompanying specialization of `mongo::clonable_traits< T >` which
* defines `clonable_factory_type`.
*
* NOTE: The `CloneFactory` type is permitted to be stateful, but must be copy constructible and
* copy assignable.
* NOTE: The `CloneFactory` member does NOT participate in value comparisons for a `clonable_ptr`,
* even when it has state.
*
* `T`: The type of the object being managed.
* `CloneFactory`: A type which models the Concept `mongo::concept::CloneFactory`.
* `UniquePtr`: A type which models the Concept `mongo::concept::UniquePtr`
*/
template <typename T,
typename CloneFactory = typename clonable_traits<T>::clone_factory_type,
template <typename, typename...> class UniquePtr = std::unique_ptr>
class clonable_ptr {
private:
// `std::tuple` is used to avoid allocating storage for `cloneFactory` if it is a non-storage
// type.
std::tuple<CloneFactory, UniquePtr<T>> data;
inline const CloneFactory& cloneFactory() const {
return std::get<0>(data);
}
inline const UniquePtr<T>& ptr() const {
return std::get<1>(data);
}
inline UniquePtr<T>& ptr() {
return std::get<1>(data);
}
inline const auto& _makeEqualityLens() const noexcept {
return this->ptr();
}
inline const auto& _makeStrictWeakOrderLens() const noexcept {
return this->ptr();
}
static inline UniquePtr<T> clone_with_factory_impl(const T& copy, const CloneFactory& factory) {
return UniquePtr<T>{factory(copy)};
}
template <typename Pointerlike>
static inline UniquePtr<T> clone_with_factory(Pointerlike&& copy, const CloneFactory& factory) {
if (!copy)
return nullptr;
return clone_with_factory_impl(*copy, factory);
}
struct internal_construction {};
explicit inline clonable_ptr(UniquePtr<T>&& p,
const CloneFactory* const f,
const internal_construction&)
: data(*f, std::move(p)) {}
explicit inline clonable_ptr(UniquePtr<T>&& p, CloneFactory&& f, const internal_construction&)
: data(std::move(f), std::move(p)) {}
public:
/*! Destroys this pointer. Functions like `std::unique_ptr`. */
inline ~clonable_ptr() noexcept = default;
/*! Moves a value, by pointer. Functions like `std::unique_ptr`. */
inline clonable_ptr(clonable_ptr&&) noexcept(
noexcept(CloneFactory{std::declval<CloneFactory>()}) &&
noexcept(UniquePtr<T>{std::declval<UniquePtr<T>>()})) = default;
/*! Moves a value, by pointer. Functions like `std::unique_ptr`. */
inline clonable_ptr& operator=(clonable_ptr&&) &
noexcept(noexcept(std::declval<CloneFactory>() = std::declval<CloneFactory>()) &&
noexcept(std::declval<UniquePtr<T>>() = std::declval<UniquePtr<T>>())) = default;
/*!
* Constructs a pointer referring to a new copy of an original value. The old object owned by
* `*this` will be deleted, and `*this` will manage a new copy of `copy`, as created by
* `copy->clone()`. If `copy` is not managing anything (its internal pointer is `nullptr`),
* then this new copy will also be nullptr.
*
* POST: `copy != nullptr ? copy != *this : copy == *this` -- If `copy` stores a pointer to a
* value, then `*this` will have an independent pointer. If `copy` stores `nullptr`, then
* `*this` will also store `nullptr`.
*
* `copy`: The original value to copy.
* THROWS: Any exceptions thrown by `cloneFactory( *copy )`.
* TODO: Consider adding a noexcept deduction specifier to this copy operation.
*/
inline clonable_ptr(const clonable_ptr& copy)
: data{copy.cloneFactory(), clone_with_factory(copy, copy.cloneFactory())} {}
/*!
* Constructs a pointer referring to a new copy of an original value. The old object owned by
* `*this` will be deleted, and `*this` will manage a new copy of `copy`, as created by
* `copy->clone()`. If `copy` is not managing anything (its internal pointer is `nullptr`),
* then this new copy will also be nullptr.
*
* POST: `copy != nullptr ? copy != *this : copy == *this` -- If `copy` stores a pointer to a
* value, then `*this` will have an independent pointer. If `copy` stores `nullptr`, then
* `*this` will also store `nullptr`.
*
* NOTE: The `CloneFactory` will be copied from the `copy` poiner, by default.
*
* `copy`: The original value to copy.
* `factory`: The factory to use for cloning. Defaults to the source's factory.
* THROWS: Any exceptions thrown by `factory( *copy )`.
* TODO: Consider adding a noexcept deduction specifier to this copy operation.
*/
inline clonable_ptr(const clonable_ptr& copy, const CloneFactory& factory)
: data{factory, clone_with_factory(copy, factory)} {}
/*!
* Changes the value of this pointer, by creating a new object having the same value as `copy`.
* The old object owned by `*this` will be deleted, and `*this` will manage a new copy of
* `copy`, as created by `copy->clone()`. If `copy` is not managing anything (its internal
* pointer is `nullptr`), then this new copy will also be nullptr.
*
* NOTE: This operation cannot be conducted on an xvalue or prvalue instance. (This prevents
* silliness such as: `func_returning_ptr()= some_other_func_returning_ptr();`)
*
* NOTE: `copy`'s `CloneFactory` will be used to copy.
*
* POST: `copy != nullptr ? copy != *this : copy == *this` -- If `copy` stores a pointer to a
* value, then `*this` will have an independent pointer. If `copy` stores `nullptr`, then
* `*this` will also store `nullptr`.
*
* `copy`: The value to make a copy of.
* RETURNS: A reference to this pointer, after modification.
* TODO: Consider adding a noexcept deduction specifier to this copy operation.
*/
inline clonable_ptr& operator=(const clonable_ptr& copy) & {
return *this = clonable_ptr{copy};
}
// Maintenance note: The two enable_if overloads of `clonable_ptr( std::nullptr_t )` are
// necessary, due to the fact that `std::nullptr_t` is capable of implicit conversion to a
// built-in pointer type. If the stateful form being deleted causes the `nullptr` to convert,
// this could cause binding to another ctor which may be undesired.
/*!
* `nullptr` construct a clonable pointer (to `nullptr`), if the `CloneFactory` type is
* stateless.
* The value will be a pointer to nothing, with a default `CloneFactory`.
* NOTE: This constructor is only available for types with a stateless `CloneFactory` type.
*/
template <typename CloneFactory_ = CloneFactory>
inline clonable_ptr(
typename std::enable_if<std::is_empty<CloneFactory_>::value, std::nullptr_t>::type) {}
/*!
* Disable `nullptr` construction of clonable pointer (to `nullptr`), if the `CloneFactory` type
* is stateful.
* NOTE: This constructor is disabled for types with a stateless `CloneFactory` type.
*/
template <typename CloneFactory_ = CloneFactory>
inline clonable_ptr(
typename std::enable_if<!std::is_empty<CloneFactory_>::value, std::nullptr_t>::type) =
delete;
/*!
* Constructs a pointer to nothing, with a default `CloneFactory`.
* This function is unavailable when `CloneFactory` is stateful.
*/
template <typename CloneFactory_ = CloneFactory,
typename = typename std::enable_if<std::is_empty<CloneFactory_>::value>::type>
explicit inline clonable_ptr() noexcept {}
/*! Constructs a pointer to nothing, with the specified `CloneFactory`. */
explicit inline clonable_ptr(CloneFactory factory) : data{factory, nullptr} {}
/*!
* Constructs a `clonable_ptr` which owns `p`, initializing the stored pointer with `p`.
* This function is unavailable when `CloneFactory` is stateful.
* `p`: The pointer to take ownership of.
*/
template <typename CloneFactory_ = CloneFactory>
explicit inline clonable_ptr(
typename std::enable_if<std::is_empty<CloneFactory_>::value, T* const>::type p)
: clonable_ptr(UniquePtr<T>{p}) {}
/*!
* Disable single-argument construction of clonable pointer (with a raw pointer), if the
* `CloneFactory` type is stateful.
* NOTE: This constructor is disabled for types with a stateless `CloneFactory` type.
*/
template <typename CloneFactory_ = CloneFactory>
explicit inline clonable_ptr(
typename std::enable_if<!std::is_empty<CloneFactory_>::value, T* const>::type) = delete;
// The reason that we have two overloads for clone factory is to ensure that we avoid as many
// exception-unsafe uses as possible. The const-lvalue-reference variant in conjunction with
// the rvalue-reference variant lets us separate the cases of "constructed in place" from
// "passed from a local". In the latter case, we can't make our type any safer, since the
// timing of the construction of the local and the timing of the `new` on the raw pointer are
// out of our control. At least we prevent an accidental use which SEEMS exception safe but
// isn't -- hopefully highlighting exception unsafe code, by making it more explicit. In the
// former, "constructed in place", case, we are able to successfully move construct without
// exception problems, if it's nothrow move constructible. If it isn't we flag a compiler
// error. In this case, too, we prevent accidental use which SEEMS exception safe and hopefully
// will similarly highlight exception unsafe code.
/*!
* Constructs a `clonable_ptr` which owns `p`, initializing the stored pointer with `p`. The
* `factory` parameter will be used as the `CloneFactory`
* `p`: The pointer to take ownership of.
* `factory`: The clone factory to use in future copies.
* NOTE: It is not recommended to use this constructor, as the following is not exception safe
* code:
* ~~~
* std::function<T* ()> cloner= [](const T& p){ return p; };
* auto getCloner= [=]{ return cloner; };
* clonable_ptr<T, std::function<T* ()>> bad{new T, getCloner()}; // BAD IDEA!!!
* ~~~
* Even if the above could be made exception safe, there are other more complicated use cases
* which would not be exception safe. (The above is not exception safe, because the `new T`
* expression can be evaluated before the `getCloner()` expression is evaluated. `getCloner()`
* is allowed to throw, thus leaving `new T` to be abandoned.
*/
explicit inline clonable_ptr(T* const p, const CloneFactory& factory)
: clonable_ptr{UniquePtr<T>{p}, std::addressof(factory), internal_construction{}} {}
/*!
* We forbid construction of a `clonable_ptr` from an unmanaged pointer, when specifying
* a cloning function -- regardless of whether the `CloneFactory` is stateful or not.
* NOTE: We have disabled this constructor, as the following is not exception safe
* code:
* ~~~
* clonable_ptr<T, std::function<T* ()>> bad{new T, [](const T& p){ return p; }}; // BAD IDEA!!!
* ~~~
* Even if the above could be made exception safe, there are other more complicated use cases
* which would not be exception safe. (The above is not exception safe, because the `new T`
* expression can be evaluated before the lambda expression is evaluated and converted to a
* `std::function`. The `std::function` constructor is allowed to throw, thus leaving `new T`
* to be abandoned. More complicated cases are completely hidden from `clonable_ptr`'s
* inspection, thus making this constructor too dangerous to exist.
*/
explicit inline clonable_ptr(T* const p, CloneFactory&& factory) = delete;
/*!
* Constructs a `nullptr` valued clonable pointer, with a specified `CloneFactory`, `factory`.
*/
explicit inline clonable_ptr(std::nullptr_t, CloneFactory&& factory)
: clonable_ptr{UniquePtr<T>{nullptr}, std::move(factory), internal_construction{}} {}
/*!
* Constructs a `clonable_ptr` by transferring ownership from `p` to `*this`. A default
* `CloneFactory` will be provided for future copies.
* `p`: The pointer to take ownership of.
* NOTE: This constructor allows for implicit conversion from a `UniquePtr` (xvalue) object.
* NOTE: This constructor is unavailable when `CloneFactory` is stateful.
* NOTE: This usage should be preferred over the raw-pointer construction forms, when using
* factories as constructor arguments, as in the following exception safe code:
* ~~~
* clonable_ptr<T, std::function<T* ()>> good{std::make_unique<T>(),
* [](const T& p){ return p; }}; // GOOD IDEA!!!
* ~~~
*/
template <typename CloneFactory_ = CloneFactory,
typename Derived,
typename = typename std::enable_if<std::is_empty<CloneFactory_>::value>::type>
inline clonable_ptr(UniquePtr<Derived> p) : data{CloneFactory{}, std::move(p)} {}
/*!
* Constructs a `clonable_ptr` by transferring ownership from `p` to `*this`. The `factory`
* parameter will be used as the `CloneFactory` for future copies.
* NOTE: This constructor allows for implicit conversion from a `UniquePtr` (xvalue) object.
* `p`: The pointer to take ownership of.
* `factory`: The clone factory to use in future copies.
* NOTE: This usage should be preferred over the raw-pointer construction forms, when using
* factories as constructor arguments, as in the following exception safe code:
* ~~~
* clonable_ptr<T, std::function<T* ()>> good{std::make_unique<T>(),
* [](const T& p){ return p; }}; // GOOD IDEA!!!
* ~~~
*/
template <typename Derived>
inline clonable_ptr(UniquePtr<Derived> p, CloneFactory factory)
: data{std::move(factory), std::move(p)} {}
/*!
* Changes the value of this pointer, by creating a new object having the same value as `copy`.
* The old object owned by `*this` will be deleted, and `*this` will manage a new copy of
* `copy`, as created by `copy->clone()`. If `copy` is not managing anything (its internal
* pointer is `nullptr`), then this new copy will also be nullptr.
*
* NOTE: This operation cannot be performed on an xvalue or prvalue instance. (This prevents
* silliness such as: `func_returning_ptr()= some_other_func_returning_ptr();`)
*
* NOTE: `copy`'s `CloneFactory` will be used to copy.
*
* POST: `copy != nullptr ? copy != *this : copy == *this` -- If `copy` stores a pointer to a
* value, then `*this` will have an independent pointer. If `copy` stores `nullptr`, then
* `*this` will also store `nullptr`.
*
* `copy`: The value to make a copy of.
* RETURNS: A reference to this pointer, after modification.
*/
inline clonable_ptr& operator=(UniquePtr<T> copy) & {
return *this = std::move(clonable_ptr{std::move(copy), this->cloneFactory()});
}
template <typename Derived>
inline clonable_ptr& operator=(UniquePtr<Derived> copy) & {
return *this = std::move(clonable_ptr{std::move(copy), this->cloneFactory()});
}
/*!
* Change the `CloneFactory` for `*this` to `factory`.
* NOTE: This operation cannot be performed on an xvalue or prvalue instance. (This prevents
* silliness such as: `func_returning_ptr().setCloneFactory( factory );`.)
*/
template <typename FactoryType>
inline void setCloneFactory(FactoryType&& factory) & {
this->cloneFactory() = std::forward<FactoryType>(factory);
}
/*!
* Dereferences the pointer owned by `*this`.
* NOTE: The behavior is undefined if `this->get() == nullptr`.
* RETURNS: The object owned by `*this`, equivalent to `*get()`.
*/
inline auto& operator*() const {
return *this->ptr();
}
/*!
* Dereferences the pointer owned by `*this`.
* NOTE: The behavior is undefined if `this->get() == nullptr`.
* RETURNS: A pointer to the object owned by `*this`, equivalent to `get()`.
*/
inline auto* operator-> () const {
return this->ptr().operator->();
}
/*!
* Returns `true` if `*this` owns a pointer to a value, and `false` otherwise.
* RETURNS: A value equivalent to `static_cast< bool >( this->get() )`.
*/
explicit inline operator bool() const noexcept {
return this->ptr().get();
}
/*!
* Converts `*this` to a `UniquePtr< T >` by transferring ownership. This function will retire
* ownership of the pointer owned by `*this`. This is a safe operation, as this function cannot
* be called from an lvalue context -- rvalue operations are used to represent transfer of
* ownership semantics.
*
* NOTE: This function is only applicable in `rvalue` contexts.
* NOTE: This function has transfer of ownership semantics.
*
* RETURNS: A `UniquePtr< T >` which owns the pointer formerly managed by `*this`.
*/
inline operator UniquePtr<T>() && {
return std::move(this->ptr());
}
/*! Provides a constant `UniquePtr< T >` view of the object owned by `*this`. */
inline operator const UniquePtr<T>&() const& {
return this->ptr();
}
/*! Provides a mutable `UniquePtr< T >` view of the object owned by `*this`. */
inline operator UniquePtr<T>&() & {
return this->ptr();
}
/*! Provides a C-style `T *` pointer to the object owned by `*this`. */
inline T* get() const {
return this->ptr().get();
}
inline void reset() & noexcept {
this->ptr().reset();
}
inline void reset(T* const p) & {
this->ptr().reset(p);
}
// Equality
inline friend bool operator==(const clonable_ptr& lhs, const clonable_ptr& rhs) {
return lhs._makeEqualityLens() == rhs._makeEqualityLens();
}
template <template <typename, typename...> class U, typename... UArgs>
inline friend bool operator==(const U<T, UArgs...>& lhs, const clonable_ptr& rhs) {
return lhs == rhs._makeEqualityLens();
}
template <template <typename, typename...> class U, typename... UArgs>
inline friend bool operator==(const clonable_ptr& lhs, const U<T, UArgs...>& rhs) {
return lhs._makeEqualityLens() == rhs;
}
inline friend bool operator==(const std::nullptr_t& lhs, const clonable_ptr& rhs) {
return lhs == rhs._makeEqualityLens();
}
inline friend bool operator==(const clonable_ptr& lhs, const std::nullptr_t& rhs) {
return lhs._makeEqualityLens() == rhs;
}
// Strict weak order
inline friend bool operator<(const clonable_ptr& lhs, const clonable_ptr& rhs) {
return lhs._makeStrictWeakOrderLens() < rhs._makeStrictWeakOrderLens();
}
template <template <typename, typename...> class U, typename... UArgs>
inline friend bool operator<(const U<T, UArgs...>& lhs, const clonable_ptr& rhs) {
return lhs < rhs._makeStrictWeakOrderLens();
}
template <template <typename, typename...> class U, typename... UArgs>
inline friend bool operator<(const clonable_ptr& lhs, const U<T, UArgs...>& rhs) {
return lhs._makeStrictWeakOrderLens() < rhs;
}
inline friend bool operator<(const std::nullptr_t& lhs, const clonable_ptr& rhs) {
return lhs < rhs._makeStrictWeakOrderLens();
}
inline friend bool operator<(const clonable_ptr& lhs, const std::nullptr_t& rhs) {
return lhs._makeStrictWeakOrderLens() < rhs;
}
};
// Inequality
template <typename C, typename F, template <typename, typename...> class U>
inline bool operator!=(const clonable_ptr<C, F, U>& lhs, const clonable_ptr<C, F, U>& rhs) {
return !(lhs == rhs);
}
template <typename C, typename F, template <typename, typename...> class U, typename... UArgs>
inline bool operator!=(const U<C, UArgs...>& lhs, const clonable_ptr<C, F, U>& rhs) {
return !(lhs == rhs);
}
template <typename C, typename F, template <typename, typename...> class U, typename... UArgs>
inline bool operator!=(const clonable_ptr<C, F, U>& lhs, const U<C, UArgs...>& rhs) {
return !(lhs == rhs);
}
template <typename C, typename F, template <typename, typename...> class U>
inline bool operator!=(const std::nullptr_t& lhs, const clonable_ptr<C, F, U>& rhs) {
return !(lhs == rhs);
}
template <typename C, typename F, template <typename, typename...> class U>
inline bool operator!=(const clonable_ptr<C, F, U>& lhs, const std::nullptr_t& rhs) {
return !(lhs == rhs);
}
// Greater than
template <typename C, typename F, template <typename, typename...> class U>
inline bool operator>(const clonable_ptr<C, F, U>& lhs, const clonable_ptr<C, F, U>& rhs) {
return rhs < lhs;
}
template <typename C, typename F, template <typename, typename...> class U, typename... UArgs>
inline bool operator>(const U<C, UArgs...>& lhs, const clonable_ptr<C, F, U>& rhs) {
return rhs < lhs;
}
template <typename C, typename F, template <typename, typename...> class U, typename... UArgs>
inline bool operator>(const clonable_ptr<C, F, U>& lhs, const U<C, UArgs...>& rhs) {
return rhs < lhs;
}
template <typename C, typename F, template <typename, typename...> class U>
inline bool operator>(const std::nullptr_t& lhs, const clonable_ptr<C, F, U>& rhs) {
return rhs < lhs;
}
template <typename C, typename F, template <typename, typename...> class U>
inline bool operator>(const clonable_ptr<C, F, U>& lhs, const std::nullptr_t& rhs) {
return rhs < lhs;
}
// Equal or Less
template <typename C, typename F, template <typename, typename...> class U>
inline bool operator<=(const clonable_ptr<C, F, U>& lhs, const clonable_ptr<C, F, U>& rhs) {
return !(lhs > rhs);
}
template <typename C, typename F, template <typename, typename...> class U, typename... UArgs>
inline bool operator<=(const U<C, UArgs...>& lhs, const clonable_ptr<C, F, U>& rhs) {
return !(lhs > rhs);
}
template <typename C, typename F, template <typename, typename...> class U, typename... UArgs>
inline bool operator<=(const clonable_ptr<C, F, U>& lhs, const U<C, UArgs...>& rhs) {
return !(lhs > rhs);
}
template <typename C, typename F, template <typename, typename...> class U>
inline bool operator<=(const std::nullptr_t& lhs, const clonable_ptr<C, F, U>& rhs) {
return !(lhs > rhs);
}
template <typename C, typename F, template <typename, typename...> class U>
inline bool operator<=(const clonable_ptr<C, F, U>& lhs, const std::nullptr_t& rhs) {
return !(lhs > rhs);
}
// Equal or greater
template <typename C, typename F, template <typename, typename...> class U>
inline bool operator>=(const clonable_ptr<C, F, U>& lhs, const clonable_ptr<C, F, U>& rhs) {
return !(lhs < rhs);
}
template <typename C, typename F, template <typename, typename...> class U, typename... UArgs>
inline bool operator>=(const U<C, UArgs...>& lhs, const clonable_ptr<C, F, U>& rhs) {
return !(lhs < rhs);
}
template <typename C, typename F, template <typename, typename...> class U, typename... UArgs>
inline bool operator>=(const clonable_ptr<C, F, U>& lhs, const U<C, UArgs...>& rhs) {
return !(lhs < rhs);
}
template <typename C, typename F, template <typename, typename...> class U>
inline bool operator>=(const std::nullptr_t& lhs, const clonable_ptr<C, F, U>& rhs) {
return !(lhs < rhs);
}
template <typename C, typename F, template <typename, typename...> class U>
inline bool operator>=(const clonable_ptr<C, F, U>& lhs, const std::nullptr_t& rhs) {
return !(lhs < rhs);
}
} // namespace mongo
|