1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
|
/**
* Copyright (C) 2018-present MongoDB, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the Server Side Public License, version 1,
* as published by MongoDB, Inc.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Server Side Public License for more details.
*
* You should have received a copy of the Server Side Public License
* along with this program. If not, see
* <http://www.mongodb.com/licensing/server-side-public-license>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the Server Side Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#pragma once
#include <array>
#include <memory>
#include <string>
#include <vector>
#include "mongo/base/secure_allocator.h"
#include "mongo/base/status.h"
#include "mongo/crypto/sha1_block.h"
#include "mongo/db/jsobj.h"
#include "mongo/platform/random.h"
#include "mongo/util/assert_util.h"
namespace mongo {
namespace scram {
constexpr auto kServerKeyConst = "Server Key"_sd;
constexpr auto kClientKeyConst = "Client Key"_sd;
constexpr auto kIterationCountFieldName = "iterationCount"_sd;
constexpr auto kSaltFieldName = "salt"_sd;
constexpr auto kStoredKeyFieldName = "storedKey"_sd;
constexpr auto kServerKeyFieldName = "serverKey"_sd;
const int kIterationCountMinimum = 4096;
/* The precursors necessary to perform the computation which produces SCRAMSecrets.
* These are the original password, its salt, and the number of times it must be
* hashed to produce the SaltedPassword used to generate the rest of the SCRAMSecrets.
*/
template <typename HashBlock>
class Presecrets {
public:
Presecrets(std::string password, std::vector<std::uint8_t> salt, size_t iterationCount)
: _password(std::move(password)), _salt(std::move(salt)), _iterationCount(iterationCount) {
uassert(17450, "invalid salt length provided", _salt.size() == saltLength());
uassert(50662, "invalid iteration count", _iterationCount >= kIterationCountMinimum);
}
HashBlock generateSaltedPassword() const noexcept {
// saltedPassword = Hi(hashedPassword, salt)
// Reserve a HashBlock::kHashLength block for the initial key.
// We use saltLength() salts, and reserve the extra for a suffix mandated by RFC5802.
std::array<std::uint8_t, HashBlock::kHashLength> startKey;
std::copy(_salt.cbegin(), _salt.cend(), startKey.begin());
startKey[_salt.size() + 0] = 0;
startKey[_salt.size() + 1] = 0;
startKey[_salt.size() + 2] = 0;
startKey[_salt.size() + 3] = 1;
// U1 = HMAC(input, salt + 0001)
auto output =
HashBlock::computeHmac(reinterpret_cast<const unsigned char*>(_password.c_str()),
_password.size(),
startKey.data(),
startKey.size());
auto intermediate = output;
// intermediateDigest contains Ui and output contains the accumulated XOR:ed result
invariant(_iterationCount >= kIterationCountMinimum);
for (size_t i = 1; i < _iterationCount; ++i) {
intermediate =
HashBlock::computeHmac(reinterpret_cast<const unsigned char*>(_password.c_str()),
_password.size(),
intermediate.data(),
intermediate.size());
output.xorInline(intermediate);
}
return output;
}
static std::vector<std::uint8_t> generateSecureRandomSalt() {
// Express salt length as a number of quad words, rounded up.
constexpr auto qwords = (saltLength() + sizeof(std::int64_t) - 1) / sizeof(std::int64_t);
std::array<std::int64_t, qwords> userSalt;
std::unique_ptr<SecureRandom> sr(SecureRandom::create());
std::generate(userSalt.begin(), userSalt.end(), [&sr] { return sr->nextInt64(); });
return std::vector<std::uint8_t>(reinterpret_cast<std::uint8_t*>(userSalt.data()),
reinterpret_cast<std::uint8_t*>(userSalt.data()) +
saltLength());
}
private:
template <typename T>
friend bool operator==(const Presecrets<T>&, const Presecrets<T>&);
auto equalityLens() const {
return std::tie(_password, _salt, _iterationCount);
}
static constexpr auto saltLength() -> decltype(HashBlock::kHashLength) {
return HashBlock::kHashLength - 4;
}
std::string _password;
std::vector<std::uint8_t> _salt;
size_t _iterationCount;
};
template <typename T>
bool operator==(const Presecrets<T>& lhs, const Presecrets<T>& rhs) {
return lhs.equalityLens() == rhs.equalityLens();
}
template <typename T>
bool operator!=(const Presecrets<T>& lhs, const Presecrets<T>& rhs) {
return !(lhs == rhs);
}
template <typename HashBlock>
struct SecretsHolder {
HashBlock clientKey;
HashBlock storedKey;
HashBlock serverKey;
};
template <typename HashBlock>
class LockedSecretsPolicy {
public:
LockedSecretsPolicy() = default;
const SecretsHolder<HashBlock>* operator->() const {
return &(*_holder);
}
SecretsHolder<HashBlock>* operator->() {
return &(*_holder);
}
private:
using SecureSecrets = SecureAllocatorAuthDomain::SecureHandle<SecretsHolder<HashBlock>>;
SecureSecrets _holder;
};
template <typename HashBlock>
class UnlockedSecretsPolicy {
public:
UnlockedSecretsPolicy() = default;
const SecretsHolder<HashBlock>* operator->() const {
return &_holder;
}
SecretsHolder<HashBlock>* operator->() {
return &_holder;
}
private:
SecretsHolder<HashBlock> _holder;
};
/* Stores all of the keys, generated from a password, needed for a client or server to perform a
* SCRAM handshake.
* These keys are reference counted, and allocated using the SecureAllocator.
* May be unpopulated. SCRAMSecrets created via the default constructor are unpopulated.
* The behavior is undefined if the accessors are called when unpopulated.
*/
template <typename HashBlock, template <typename> class MemoryPolicy = LockedSecretsPolicy>
class Secrets {
public:
Secrets() = default;
Secrets(StringData client, StringData stored, StringData server)
: _ptr(std::make_shared<MemoryPolicy<HashBlock>>()) {
if (!client.empty()) {
(*_ptr)->clientKey = uassertStatusOK(HashBlock::fromBuffer(
reinterpret_cast<const unsigned char*>(client.rawData()), client.size()));
}
(*_ptr)->storedKey = uassertStatusOK(HashBlock::fromBuffer(
reinterpret_cast<const unsigned char*>(stored.rawData()), stored.size()));
(*_ptr)->serverKey = uassertStatusOK(HashBlock::fromBuffer(
reinterpret_cast<const unsigned char*>(server.rawData()), stored.size()));
}
Secrets(const HashBlock& saltedPassword) : _ptr(std::make_shared<MemoryPolicy<HashBlock>>()) {
// ClientKey := HMAC(saltedPassword, "Client Key")
(*_ptr)->clientKey = (HashBlock::computeHmac(
saltedPassword.data(),
saltedPassword.size(),
reinterpret_cast<const unsigned char*>(kClientKeyConst.rawData()),
kClientKeyConst.size()));
// StoredKey := H(clientKey)
(*_ptr)->storedKey = HashBlock::computeHash(clientKey().data(), clientKey().size());
// ServerKey := HMAC(SaltedPassword, "Server Key")
(*_ptr)->serverKey = HashBlock::computeHmac(
saltedPassword.data(),
saltedPassword.size(),
reinterpret_cast<const unsigned char*>(kServerKeyConst.rawData()),
kServerKeyConst.size());
}
Secrets(const Presecrets<HashBlock>& presecrets)
: Secrets(presecrets.generateSaltedPassword()) {}
std::string generateClientProof(StringData authMessage) const {
// ClientProof := HMAC(StoredKey, AuthMessage) ^ ClientKey
auto proof =
HashBlock::computeHmac(storedKey().data(),
storedKey().size(),
reinterpret_cast<const unsigned char*>(authMessage.rawData()),
authMessage.size());
proof.xorInline(clientKey());
return proof.toString();
}
bool verifyClientProof(StringData authMessage, StringData proof) const {
// ClientKey := HMAC(StoredKey, AuthMessage) ^ ClientProof
auto key =
HashBlock::computeHmac(storedKey().data(),
storedKey().size(),
reinterpret_cast<const unsigned char*>(authMessage.rawData()),
authMessage.size());
key.xorInline(uassertStatusOK(HashBlock::fromBuffer(
reinterpret_cast<const uint8_t*>(proof.rawData()), proof.size())));
// StoredKey := H(ClientKey)
auto exp = HashBlock::computeHash(key.data(), key.size());
if ((exp.size() != HashBlock::kHashLength) ||
(storedKey().size() != HashBlock::kHashLength)) {
return false;
}
return consttimeMemEqual(reinterpret_cast<const unsigned char*>(exp.data()),
storedKey().data(),
HashBlock::kHashLength);
}
std::string generateServerSignature(StringData authMessage) const {
// ServerSignature := HMAC(ServerKey, AuthMessage)
return HashBlock::computeHmac(serverKey().data(),
serverKey().size(),
reinterpret_cast<const unsigned char*>(authMessage.rawData()),
authMessage.size())
.toString();
}
bool verifyServerSignature(StringData authMessage, StringData sig) const {
// ServerSignature := HMAC(ServerKey, AuthMessage)
const auto exp =
HashBlock::computeHmac(serverKey().data(),
serverKey().size(),
reinterpret_cast<const unsigned char*>(authMessage.rawData()),
authMessage.size());
if ((sig.size() != HashBlock::kHashLength) || (exp.size() != HashBlock::kHashLength)) {
return false;
}
return consttimeMemEqual(reinterpret_cast<const unsigned char*>(sig.rawData()),
reinterpret_cast<const unsigned char*>(exp.data()),
HashBlock::kHashLength);
}
static BSONObj generateCredentials(std::string password, int iterationCount) {
auto salt = Presecrets<HashBlock>::generateSecureRandomSalt();
return generateCredentials(salt, password, iterationCount);
}
static BSONObj generateCredentials(const std::vector<uint8_t>& salt,
const std::string& password,
int iterationCount) {
Secrets<HashBlock, MemoryPolicy> secrets(
Presecrets<HashBlock>(password, salt, iterationCount));
const auto encodedSalt =
base64::encode(reinterpret_cast<const char*>(salt.data()), salt.size());
return BSON(kIterationCountFieldName
<< iterationCount << kSaltFieldName << encodedSalt << kStoredKeyFieldName
<< secrets.storedKey().toString() << kServerKeyFieldName
<< secrets.serverKey().toString());
}
const HashBlock& clientKey() const {
auto& ret = (*_ptr)->clientKey;
uassert(
ErrorCodes::BadValue, "Invalid SCRAM client key", ret.size() == HashBlock::kHashLength);
return ret;
}
const HashBlock& storedKey() const {
auto& ret = (*_ptr)->storedKey;
uassert(
ErrorCodes::BadValue, "Invalid SCRAM stored key", ret.size() == HashBlock::kHashLength);
return ret;
}
const HashBlock& serverKey() const {
auto& ret = (*_ptr)->serverKey;
uassert(
ErrorCodes::BadValue, "Invalid SCRAM server key", ret.size() == HashBlock::kHashLength);
return ret;
}
operator bool() const {
return (bool)_ptr;
}
private:
std::shared_ptr<MemoryPolicy<HashBlock>> _ptr;
};
} // namespace scram
} // namespace mongo
|