summaryrefslogtreecommitdiff
path: root/src/mongo/db/concurrency/d_concurrency_test.cpp
blob: 1058d8a01630586ad2b22e8de3c0e596c5fdd987 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
/**
 *    Copyright (C) 2014 MongoDB Inc.
 *
 *    This program is free software: you can redistribute it and/or  modify
 *    it under the terms of the GNU Affero General Public License, version 3,
 *    as published by the Free Software Foundation.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU Affero General Public License for more details.
 *
 *    You should have received a copy of the GNU Affero General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the GNU Affero General Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kDefault

#include "mongo/platform/basic.h"

#include <string>
#include <vector>

#include "mongo/db/concurrency/d_concurrency.h"
#include "mongo/db/concurrency/lock_manager_test_help.h"
#include "mongo/stdx/functional.h"
#include "mongo/stdx/thread.h"
#include "mongo/unittest/unittest.h"
#include "mongo/util/debug_util.h"
#include "mongo/util/log.h"
#include "mongo/util/progress_meter.h"

namespace mongo {

extern bool _supportsDocLocking;

namespace {

const int kMaxPerfThreads = 16;    // max number of threads to use for lock perf
const int kMaxStressThreads = 32;  // max number of threads to use for lock stress
const int kMinPerfMillis = 30;     // min duration for reliable timing

/**
 * Temporarily forces setting of the docLockingSupported global for testing purposes.
 */
class ForceSupportsDocLocking {
public:
    explicit ForceSupportsDocLocking(bool supported) : _oldSupportsDocLocking(_supportsDocLocking) {
        _supportsDocLocking = supported;
    }

    ~ForceSupportsDocLocking() {
        _supportsDocLocking = _oldSupportsDocLocking;
    }

private:
    bool _oldSupportsDocLocking;
};

/**
 * Calls fn the given number of iterations, spread out over up to maxThreads threads.
 * The threadNr passed is an integer between 0 and maxThreads exclusive. Logs timing
 * statistics for for all power-of-two thread counts from 1 up to maxThreds.
 */
void perfTest(stdx::function<void(int threadNr)> fn, int maxThreads) {
    for (int numThreads = 1; numThreads <= maxThreads; numThreads *= 2) {
        std::vector<stdx::thread> threads;

        AtomicInt32 ready{0};
        AtomicInt64 elapsedNanos{0};
        AtomicInt64 timedIters{0};

        for (int threadId = 0; threadId < numThreads; threadId++)
            threads.emplace_back([&, threadId]() {
                // Busy-wait until everybody is ready
                ready.fetchAndAdd(1);
                while (ready.load() < numThreads) {
                }

                uint64_t micros = 0;
                int iters;
                // Ensure at least 16 iterations are done and at least 25 milliseconds is timed
                for (iters = 16; iters < (1 << 30) && micros < kMinPerfMillis * 1000; iters *= 2) {
                    // Measure the number of loops
                    Timer t;

                    for (int i = 0; i < iters; i++)
                        fn(threadId);

                    micros = t.micros();
                }

                elapsedNanos.fetchAndAdd(micros * 1000);
                timedIters.fetchAndAdd(iters);
            });

        for (auto& thread : threads)
            thread.join();

        log() << numThreads
              << " threads took: " << elapsedNanos.load() / static_cast<double>(timedIters.load())
              << " ns per call" << (kDebugBuild ? " (DEBUG BUILD!)" : "");
    }
}

TEST(DConcurrency, ResourceMutex) {
    Lock::ResourceMutex mtx("testMutex");
    DefaultLockerImpl locker1;
    DefaultLockerImpl locker2;
    DefaultLockerImpl locker3;

    struct State {
        void check(int n) {
            ASSERT_EQ(step.load(), n);
        }
        void finish(int n) {
            auto actual = step.fetchAndAdd(1);
            ASSERT_EQ(actual, n);
        }
        void waitFor(stdx::function<bool()> cond) {
            while (!cond())
                sleepmillis(0);
        }
        void waitFor(int n) {
            waitFor([this, n]() { return this->step.load() == n; });
        }
        AtomicInt32 step{0};
    } state;

    stdx::thread t1([&]() {
        // Step 0: Single thread acquires shared lock
        state.waitFor(0);
        Lock::SharedLock lk(&locker1, mtx);
        ASSERT(lk.isLocked());
        state.finish(0);

        // Step 4: Wait for t2 to regain its shared lock
        {
            // Check that TempRelease does not actually unlock anything
            Lock::TempRelease yield(&locker1);

            state.waitFor(4);
            state.waitFor([&locker2]() { return locker2.getWaitingResource().isValid(); });
            state.finish(4);
        }

        // Step 5: After t2 becomes blocked, unlock, yielding the mutex to t3
        lk.unlock();
        ASSERT(!lk.isLocked());
    });
    stdx::thread t2([&]() {
        // Step 1: Two threads acquire shared lock
        state.waitFor(1);
        Lock::SharedLock lk(&locker2, mtx);
        ASSERT(lk.isLocked());
        state.finish(1);

        // Step 2: Wait for t3 to attempt the exclusive lock
        state.waitFor([&locker3]() { return locker3.getWaitingResource().isValid(); });
        state.finish(2);

        // Step 3: Yield shared lock
        lk.unlock();
        ASSERT(!lk.isLocked());
        state.finish(3);

        // Step 4: Try to regain the shared lock // transfers control to t1
        lk.lock(MODE_IS);

        // Step 6: CHeck we actually got back the shared lock
        ASSERT(lk.isLocked());
        state.check(6);
    });
    stdx::thread t3([&]() {
        // Step 2: Third thread attempts to acquire exclusive lock
        state.waitFor(2);
        Lock::ExclusiveLock lk(&locker3, mtx);  // transfers control to t2

        // Step 5: Actually get the exclusive lock
        ASSERT(lk.isLocked());
        state.finish(5);
    });
    t1.join();
    t2.join();
    t3.join();
}

TEST(DConcurrency, GlobalRead) {
    MMAPV1LockerImpl ls;
    Lock::GlobalRead globalRead(&ls);
    ASSERT(ls.isR());
}

TEST(DConcurrency, GlobalWrite) {
    MMAPV1LockerImpl ls;
    Lock::GlobalWrite globalWrite(&ls);
    ASSERT(ls.isW());
}

TEST(DConcurrency, GlobalWriteAndGlobalRead) {
    MMAPV1LockerImpl ls;

    Lock::GlobalWrite globalWrite(&ls);
    ASSERT(ls.isW());

    {
        Lock::GlobalRead globalRead(&ls);
        ASSERT(ls.isW());
    }

    ASSERT(ls.isW());
}

TEST(DConcurrency, GlobalLockS_Timeout) {
    MMAPV1LockerImpl ls;
    Lock::GlobalLock globalWrite(&ls, MODE_X, 0);
    ASSERT(globalWrite.isLocked());

    {
        MMAPV1LockerImpl lsTry;
        Lock::GlobalLock globalReadTry(&lsTry, MODE_S, 1);
        ASSERT(!globalReadTry.isLocked());
    }
}

TEST(DConcurrency, GlobalLockX_Timeout) {
    MMAPV1LockerImpl ls;
    Lock::GlobalLock globalWrite(&ls, MODE_X, 0);
    ASSERT(globalWrite.isLocked());

    {
        MMAPV1LockerImpl lsTry;
        Lock::GlobalLock globalWriteTry(&lsTry, MODE_X, 1);
        ASSERT(!globalWriteTry.isLocked());
    }
}

TEST(DConcurrency, GlobalLockS_NoTimeoutDueToGlobalLockS) {
    MMAPV1LockerImpl ls;
    Lock::GlobalRead globalRead(&ls);

    MMAPV1LockerImpl lsTry;
    Lock::GlobalLock globalReadTry(&lsTry, MODE_S, 1);

    ASSERT(globalReadTry.isLocked());
}

TEST(DConcurrency, GlobalLockX_TimeoutDueToGlobalLockS) {
    MMAPV1LockerImpl ls;
    Lock::GlobalRead globalRead(&ls);

    MMAPV1LockerImpl lsTry;
    Lock::GlobalLock globalWriteTry(&lsTry, MODE_X, 1);

    ASSERT(!globalWriteTry.isLocked());
}

TEST(DConcurrency, GlobalLockS_TimeoutDueToGlobalLockX) {
    MMAPV1LockerImpl ls;
    Lock::GlobalWrite globalWrite(&ls);

    MMAPV1LockerImpl lsTry;
    Lock::GlobalLock globalReadTry(&lsTry, MODE_S, 1);

    ASSERT(!globalReadTry.isLocked());
}

TEST(DConcurrency, GlobalLockX_TimeoutDueToGlobalLockX) {
    MMAPV1LockerImpl ls;
    Lock::GlobalWrite globalWrite(&ls);

    MMAPV1LockerImpl lsTry;
    Lock::GlobalLock globalWriteTry(&lsTry, MODE_X, 1);

    ASSERT(!globalWriteTry.isLocked());
}

TEST(DConcurrency, TempReleaseGlobalWrite) {
    MMAPV1LockerImpl ls;
    Lock::GlobalWrite globalWrite(&ls);

    {
        Lock::TempRelease tempRelease(&ls);
        ASSERT(!ls.isLocked());
    }

    ASSERT(ls.isW());
}

TEST(DConcurrency, TempReleaseRecursive) {
    MMAPV1LockerImpl ls;
    Lock::GlobalWrite globalWrite(&ls);
    Lock::DBLock lk(&ls, "SomeDBName", MODE_X);

    {
        Lock::TempRelease tempRelease(&ls);
        ASSERT(ls.isW());
        ASSERT(ls.isDbLockedForMode("SomeDBName", MODE_X));
    }

    ASSERT(ls.isW());
}

TEST(DConcurrency, DBLockTakesS) {
    MMAPV1LockerImpl ls;

    Lock::DBLock dbRead(&ls, "db", MODE_S);

    const ResourceId resIdDb(RESOURCE_DATABASE, std::string("db"));
    ASSERT(ls.getLockMode(resIdDb) == MODE_S);
}

TEST(DConcurrency, DBLockTakesX) {
    MMAPV1LockerImpl ls;

    Lock::DBLock dbWrite(&ls, "db", MODE_X);

    const ResourceId resIdDb(RESOURCE_DATABASE, std::string("db"));
    ASSERT(ls.getLockMode(resIdDb) == MODE_X);
}

TEST(DConcurrency, DBLockTakesISForAdminIS) {
    DefaultLockerImpl ls;

    Lock::DBLock dbRead(&ls, "admin", MODE_IS);

    ASSERT(ls.getLockMode(resourceIdAdminDB) == MODE_IS);
}

TEST(DConcurrency, DBLockTakesSForAdminS) {
    DefaultLockerImpl ls;

    Lock::DBLock dbRead(&ls, "admin", MODE_S);

    ASSERT(ls.getLockMode(resourceIdAdminDB) == MODE_S);
}

TEST(DConcurrency, DBLockTakesXForAdminIX) {
    DefaultLockerImpl ls;

    Lock::DBLock dbWrite(&ls, "admin", MODE_IX);

    ASSERT(ls.getLockMode(resourceIdAdminDB) == MODE_X);
}

TEST(DConcurrency, DBLockTakesXForAdminX) {
    DefaultLockerImpl ls;

    Lock::DBLock dbWrite(&ls, "admin", MODE_X);

    ASSERT(ls.getLockMode(resourceIdAdminDB) == MODE_X);
}

TEST(DConcurrency, MultipleWriteDBLocksOnSameThread) {
    MMAPV1LockerImpl ls;

    Lock::DBLock r1(&ls, "db1", MODE_X);
    Lock::DBLock r2(&ls, "db1", MODE_X);

    ASSERT(ls.isDbLockedForMode("db1", MODE_X));
}

TEST(DConcurrency, MultipleConflictingDBLocksOnSameThread) {
    MMAPV1LockerImpl ls;

    Lock::DBLock r1(&ls, "db1", MODE_X);
    Lock::DBLock r2(&ls, "db1", MODE_S);

    ASSERT(ls.isDbLockedForMode("db1", MODE_X));
    ASSERT(ls.isDbLockedForMode("db1", MODE_S));
}

TEST(DConcurrency, IsDbLockedForSMode) {
    const std::string dbName("db");

    MMAPV1LockerImpl ls;

    Lock::DBLock dbLock(&ls, dbName, MODE_S);

    ASSERT(ls.isDbLockedForMode(dbName, MODE_IS));
    ASSERT(!ls.isDbLockedForMode(dbName, MODE_IX));
    ASSERT(ls.isDbLockedForMode(dbName, MODE_S));
    ASSERT(!ls.isDbLockedForMode(dbName, MODE_X));
}

TEST(DConcurrency, IsDbLockedForXMode) {
    const std::string dbName("db");

    MMAPV1LockerImpl ls;

    Lock::DBLock dbLock(&ls, dbName, MODE_X);

    ASSERT(ls.isDbLockedForMode(dbName, MODE_IS));
    ASSERT(ls.isDbLockedForMode(dbName, MODE_IX));
    ASSERT(ls.isDbLockedForMode(dbName, MODE_S));
    ASSERT(ls.isDbLockedForMode(dbName, MODE_X));
}

TEST(DConcurrency, IsCollectionLocked_DB_Locked_IS) {
    const std::string ns("db1.coll");

    MMAPV1LockerImpl ls;

    Lock::DBLock dbLock(&ls, "db1", MODE_IS);

    {
        Lock::CollectionLock collLock(&ls, ns, MODE_IS);

        ASSERT(ls.isCollectionLockedForMode(ns, MODE_IS));
        ASSERT(!ls.isCollectionLockedForMode(ns, MODE_IX));

        // TODO: This is TRUE because Lock::CollectionLock converts IS lock to S
        ASSERT(ls.isCollectionLockedForMode(ns, MODE_S));

        ASSERT(!ls.isCollectionLockedForMode(ns, MODE_X));
    }

    {
        Lock::CollectionLock collLock(&ls, ns, MODE_S);

        ASSERT(ls.isCollectionLockedForMode(ns, MODE_IS));
        ASSERT(!ls.isCollectionLockedForMode(ns, MODE_IX));
        ASSERT(ls.isCollectionLockedForMode(ns, MODE_S));
        ASSERT(!ls.isCollectionLockedForMode(ns, MODE_X));
    }
}

TEST(DConcurrency, IsCollectionLocked_DB_Locked_IX) {
    const std::string ns("db1.coll");

    MMAPV1LockerImpl ls;

    Lock::DBLock dbLock(&ls, "db1", MODE_IX);

    {
        Lock::CollectionLock collLock(&ls, ns, MODE_IX);

        // TODO: This is TRUE because Lock::CollectionLock converts IX lock to X
        ASSERT(ls.isCollectionLockedForMode(ns, MODE_IS));

        ASSERT(ls.isCollectionLockedForMode(ns, MODE_IX));
        ASSERT(ls.isCollectionLockedForMode(ns, MODE_S));
        ASSERT(ls.isCollectionLockedForMode(ns, MODE_X));
    }

    {
        Lock::CollectionLock collLock(&ls, ns, MODE_X);

        ASSERT(ls.isCollectionLockedForMode(ns, MODE_IS));
        ASSERT(ls.isCollectionLockedForMode(ns, MODE_IX));
        ASSERT(ls.isCollectionLockedForMode(ns, MODE_S));
        ASSERT(ls.isCollectionLockedForMode(ns, MODE_X));
    }
}

TEST(DConcurrency, Stress) {
    const int kNumIterations = 5000;

    ProgressMeter progressMeter(kNumIterations * kMaxStressThreads);
    std::array<DefaultLockerImpl, kMaxStressThreads> locker;

    AtomicInt32 ready{0};
    std::vector<stdx::thread> threads;

    for (int threadId = 0; threadId < kMaxStressThreads; threadId++)
        threads.emplace_back([&, threadId]() {
            // Busy-wait until everybody is ready
            ready.fetchAndAdd(1);
            while (ready.load() < kMaxStressThreads)
                ;

            for (int i = 0; i < kNumIterations; i++) {
                const bool sometimes = (std::rand() % 15 == 0);

                if (i % 7 == 0 && threadId == 0 /* Only one upgrader legal */) {
                    Lock::GlobalWrite w(&locker[threadId]);
                    if (i % 7 == 2) {
                        Lock::TempRelease t(&locker[threadId]);
                    }

                    ASSERT(locker[threadId].isW());
                } else if (i % 7 == 1) {
                    Lock::GlobalRead r(&locker[threadId]);
                    ASSERT(locker[threadId].isReadLocked());
                } else if (i % 7 == 2) {
                    Lock::GlobalWrite w(&locker[threadId]);
                    if (sometimes) {
                        Lock::TempRelease t(&locker[threadId]);
                    }

                    ASSERT(locker[threadId].isW());
                } else if (i % 7 == 3) {
                    Lock::GlobalWrite w(&locker[threadId]);
                    { Lock::TempRelease t(&locker[threadId]); }

                    Lock::GlobalRead r(&locker[threadId]);
                    if (sometimes) {
                        Lock::TempRelease t(&locker[threadId]);
                    }

                    ASSERT(locker[threadId].isW());
                } else if (i % 7 == 4) {
                    Lock::GlobalRead r(&locker[threadId]);
                    Lock::GlobalRead r2(&locker[threadId]);
                    ASSERT(locker[threadId].isReadLocked());
                } else if (i % 7 == 5) {
                    { Lock::DBLock r(&locker[threadId], "foo", MODE_S); }
                    { Lock::DBLock r(&locker[threadId], "bar", MODE_S); }
                } else if (i % 7 == 6) {
                    if (i > kNumIterations / 2) {
                        int q = i % 11;

                        if (q == 0) {
                            Lock::DBLock r(&locker[threadId], "foo", MODE_S);
                            ASSERT(locker[threadId].isDbLockedForMode("foo", MODE_S));

                            Lock::DBLock r2(&locker[threadId], "foo", MODE_S);
                            ASSERT(locker[threadId].isDbLockedForMode("foo", MODE_S));

                            Lock::DBLock r3(&locker[threadId], "local", MODE_S);
                            ASSERT(locker[threadId].isDbLockedForMode("foo", MODE_S));
                            ASSERT(locker[threadId].isDbLockedForMode("local", MODE_S));
                        } else if (q == 1) {
                            // test locking local only -- with no preceding lock
                            { Lock::DBLock x(&locker[threadId], "local", MODE_S); }

                            Lock::DBLock x(&locker[threadId], "local", MODE_X);

                            if (sometimes) {
                                Lock::TempRelease t(&locker[threadId]);
                            }
                        } else if (q == 2) {
                            { Lock::DBLock x(&locker[threadId], "admin", MODE_S); }
                            { Lock::DBLock x(&locker[threadId], "admin", MODE_X); }
                        } else if (q == 3) {
                            Lock::DBLock x(&locker[threadId], "foo", MODE_X);
                            Lock::DBLock y(&locker[threadId], "admin", MODE_S);
                        } else if (q == 4) {
                            Lock::DBLock x(&locker[threadId], "foo2", MODE_S);
                            Lock::DBLock y(&locker[threadId], "admin", MODE_S);
                        } else if (q == 5) {
                            Lock::DBLock x(&locker[threadId], "foo", MODE_IS);
                        } else if (q == 6) {
                            Lock::DBLock x(&locker[threadId], "foo", MODE_IX);
                            Lock::DBLock y(&locker[threadId], "local", MODE_IX);
                        } else {
                            Lock::DBLock w(&locker[threadId], "foo", MODE_X);

                            { Lock::TempRelease t(&locker[threadId]); }

                            Lock::DBLock r2(&locker[threadId], "foo", MODE_S);
                            Lock::DBLock r3(&locker[threadId], "local", MODE_S);
                        }
                    } else {
                        Lock::DBLock r(&locker[threadId], "foo", MODE_S);
                        Lock::DBLock r2(&locker[threadId], "foo", MODE_S);
                        Lock::DBLock r3(&locker[threadId], "local", MODE_S);
                    }
                }

                progressMeter.hit();
            }
        });

    for (auto& thread : threads)
        thread.join();

    {
        MMAPV1LockerImpl ls;
        Lock::GlobalWrite w(&ls);
    }

    {
        MMAPV1LockerImpl ls;
        Lock::GlobalRead r(&ls);
    }
}

TEST(DConcurrency, StressPartitioned) {
    const int kNumIterations = 5000;

    ProgressMeter progressMeter(kNumIterations * kMaxStressThreads);
    std::array<DefaultLockerImpl, kMaxStressThreads> locker;

    AtomicInt32 ready{0};
    std::vector<stdx::thread> threads;

    for (int threadId = 0; threadId < kMaxStressThreads; threadId++)
        threads.emplace_back([&, threadId]() {
            // Busy-wait until everybody is ready
            ready.fetchAndAdd(1);
            while (ready.load() < kMaxStressThreads)
                ;

            for (int i = 0; i < kNumIterations; i++) {
                if (threadId == 0) {
                    if (i % 100 == 0) {
                        Lock::GlobalWrite w(&locker[threadId]);
                        continue;
                    } else if (i % 100 == 1) {
                        Lock::GlobalRead w(&locker[threadId]);
                        continue;
                    }

                    // Intentional fall through
                }

                if (i % 2 == 0) {
                    Lock::DBLock x(&locker[threadId], "foo", MODE_IS);
                } else {
                    Lock::DBLock x(&locker[threadId], "foo", MODE_IX);
                    Lock::DBLock y(&locker[threadId], "local", MODE_IX);
                }

                progressMeter.hit();
            }
        });

    for (auto& thread : threads)
        thread.join();

    {
        MMAPV1LockerImpl ls;
        Lock::GlobalWrite w(&ls);
    }

    {
        MMAPV1LockerImpl ls;
        Lock::GlobalRead r(&ls);
    }
}

TEST(DConcurrency, ResourceMutexLabels) {
    Lock::ResourceMutex mutex("label");
    ASSERT(mutex.getName() == "label");
    Lock::ResourceMutex mutex2("label2");
    ASSERT(mutex2.getName() == "label2");
}


// These tests exercise single- and multi-threaded performance of uncontended lock acquisition. It
// is neither practical nor useful to run them on debug builds.

TEST(Locker, PerformanceStdMutex) {
    stdx::mutex mtx;
    perfTest([&](int threadId) { stdx::unique_lock<stdx::mutex> lk(mtx); }, kMaxPerfThreads);
}

TEST(Locker, PerformanceResourceMutexShared) {
    Lock::ResourceMutex mtx("testMutex");
    std::array<DefaultLockerImpl, kMaxPerfThreads> locker;
    perfTest([&](int threadId) { Lock::SharedLock lk(&locker[threadId], mtx); }, kMaxPerfThreads);
}

TEST(Locker, PerformanceResourceMutexExclusive) {
    Lock::ResourceMutex mtx("testMutex");
    std::array<DefaultLockerImpl, kMaxPerfThreads> locker;
    perfTest([&](int threadId) { Lock::ExclusiveLock lk(&locker[threadId], mtx); },
             kMaxPerfThreads);
}

TEST(Locker, PerformanceCollectionIntentSharedLock) {
    std::array<DefaultLockerImpl, kMaxPerfThreads> locker;
    ForceSupportsDocLocking supported(true);
    perfTest(
        [&](int threadId) {
            Lock::DBLock dlk(&locker[threadId], "test", MODE_IS);
            Lock::CollectionLock clk(&locker[threadId], "test.coll", MODE_IS);
        },
        kMaxPerfThreads);
}

TEST(Locker, PerformanceCollectionIntentExclusiveLock) {
    std::array<DefaultLockerImpl, kMaxPerfThreads> locker;
    ForceSupportsDocLocking supported(true);
    perfTest(
        [&](int threadId) {
            Lock::DBLock dlk(&locker[threadId], "test", MODE_IX);
            Lock::CollectionLock clk(&locker[threadId], "test.coll", MODE_IX);
        },
        kMaxPerfThreads);
}

TEST(Locker, PerformanceMMAPv1CollectionSharedLock) {
    std::array<MMAPV1LockerImpl, kMaxPerfThreads> locker;
    ForceSupportsDocLocking supported(false);
    perfTest(
        [&](int threadId) {
            Lock::DBLock dlk(&locker[threadId], "test", MODE_IS);
            Lock::CollectionLock clk(&locker[threadId], "test.coll", MODE_S);
        },
        kMaxPerfThreads);
}

TEST(Locker, PerformanceMMAPv1CollectionExclusive) {
    std::array<MMAPV1LockerImpl, kMaxPerfThreads> locker;
    ForceSupportsDocLocking supported(false);
    perfTest(
        [&](int threadId) {
            Lock::DBLock dlk(&locker[threadId], "test", MODE_IX);
            Lock::CollectionLock clk(&locker[threadId], "test.coll", MODE_X);
        },
        kMaxPerfThreads);
}

}  // namespace
}  // namespace mongo