summaryrefslogtreecommitdiff
path: root/src/mongo/db/cursor_manager.cpp
blob: a4b5712965fe9a67c938e31a25be389d817f7d5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
/**
*    Copyright (C) 2013 MongoDB Inc.
*
*    This program is free software: you can redistribute it and/or  modify
*    it under the terms of the GNU Affero General Public License, version 3,
*    as published by the Free Software Foundation.
*
*    This program is distributed in the hope that it will be useful,
*    but WITHOUT ANY WARRANTY; without even the implied warranty of
*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
*    GNU Affero General Public License for more details.
*
*    You should have received a copy of the GNU Affero General Public License
*    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*
*    As a special exception, the copyright holders give permission to link the
*    code of portions of this program with the OpenSSL library under certain
*    conditions as described in each individual source file and distribute
*    linked combinations including the program with the OpenSSL library. You
*    must comply with the GNU Affero General Public License in all respects for
*    all of the code used other than as permitted herein. If you modify file(s)
*    with this exception, you may extend this exception to your version of the
*    file(s), but you are not obligated to do so. If you do not wish to do so,
*    delete this exception statement from your version. If you delete this
*    exception statement from all source files in the program, then also delete
*    it in the license file.
*/

#include "mongo/platform/basic.h"

#include "mongo/db/cursor_manager.h"

#include "mongo/base/data_cursor.h"
#include "mongo/base/init.h"
#include "mongo/db/audit.h"
#include "mongo/db/auth/authorization_session.h"
#include "mongo/db/background.h"
#include "mongo/db/catalog/collection.h"
#include "mongo/db/catalog/database.h"
#include "mongo/db/catalog/database_holder.h"
#include "mongo/db/client.h"
#include "mongo/db/db_raii.h"
#include "mongo/db/kill_sessions_common.h"
#include "mongo/db/logical_session_cache.h"
#include "mongo/db/namespace_string.h"
#include "mongo/db/operation_context.h"
#include "mongo/db/query/plan_executor.h"
#include "mongo/db/server_parameters.h"
#include "mongo/db/service_context.h"
#include "mongo/platform/random.h"
#include "mongo/stdx/memory.h"
#include "mongo/util/exit.h"
#include "mongo/util/startup_test.h"

namespace mongo {
using std::vector;

constexpr Minutes CursorManager::kDefaultCursorTimeoutMinutes;

MONGO_EXPORT_SERVER_PARAMETER(
    cursorTimeoutMillis,
    int,
    durationCount<Milliseconds>(CursorManager::kDefaultCursorTimeoutMinutes));

constexpr int CursorManager::kNumPartitions;

namespace {
uint32_t idFromCursorId(CursorId id) {
    uint64_t x = static_cast<uint64_t>(id);
    x = x >> 32;
    return static_cast<uint32_t>(x);
}

CursorId cursorIdFromParts(uint32_t collectionIdentifier, uint32_t cursor) {
    // The leading two bits of a non-global CursorId should be 0.
    invariant((collectionIdentifier & (0b11 << 30)) == 0);
    CursorId x = static_cast<CursorId>(collectionIdentifier) << 32;
    x |= cursor;
    return x;
}

class GlobalCursorIdCache {
public:
    GlobalCursorIdCache();
    ~GlobalCursorIdCache();

    /**
     * Returns a unique 32-bit identifier to be used as the first 32 bits of all cursor ids for a
     * new CursorManager.
     */
    uint32_t registerCursorManager(const NamespaceString& nss);

    /**
     * Must be called when a CursorManager is deleted. 'id' must be the identifier returned by
     * registerCursorManager().
     */
    void deregisterCursorManager(uint32_t id, const NamespaceString& nss);

    /**
     * works globally
     */
    bool eraseCursor(OperationContext* opCtx, CursorId id, bool checkAuth);

    void appendStats(BSONObjBuilder& builder);

    std::size_t timeoutCursors(OperationContext* opCtx, Date_t now);

    template <typename Visitor>
    void visitAllCursorManagers(OperationContext* opCtx, Visitor* visitor);

    int64_t nextSeed();

private:
    SimpleMutex _mutex;

    typedef unordered_map<unsigned, NamespaceString> Map;
    Map _idToNss;
    unsigned _nextId;

    std::unique_ptr<SecureRandom> _secureRandom;
};

// Note that "globalCursorIdCache" must be declared before "globalCursorManager", as the latter
// calls into the former during destruction.
std::unique_ptr<GlobalCursorIdCache> globalCursorIdCache;
std::unique_ptr<CursorManager> globalCursorManager;

MONGO_INITIALIZER(GlobalCursorIdCache)(InitializerContext* context) {
    globalCursorIdCache.reset(new GlobalCursorIdCache());
    return Status::OK();
}

MONGO_INITIALIZER_WITH_PREREQUISITES(GlobalCursorManager, ("GlobalCursorIdCache"))
(InitializerContext* context) {
    globalCursorManager.reset(new CursorManager({}));
    return Status::OK();
}

GlobalCursorIdCache::GlobalCursorIdCache() : _nextId(0), _secureRandom() {}

GlobalCursorIdCache::~GlobalCursorIdCache() {}

int64_t GlobalCursorIdCache::nextSeed() {
    stdx::lock_guard<SimpleMutex> lk(_mutex);
    if (!_secureRandom)
        _secureRandom = SecureRandom::create();
    return _secureRandom->nextInt64();
}

uint32_t GlobalCursorIdCache::registerCursorManager(const NamespaceString& nss) {
    static const uint32_t kMaxIds = 1000 * 1000 * 1000;
    static_assert((kMaxIds & (0b11 << 30)) == 0,
                  "the first two bits of a collection identifier must always be zeroes");

    stdx::lock_guard<SimpleMutex> lk(_mutex);

    fassert(17359, _idToNss.size() < kMaxIds);

    for (uint32_t i = 0; i <= kMaxIds; i++) {
        uint32_t id = ++_nextId;
        if (id == 0)
            continue;
        if (_idToNss.count(id) > 0)
            continue;
        _idToNss[id] = nss;
        return id;
    }

    MONGO_UNREACHABLE;
}

void GlobalCursorIdCache::deregisterCursorManager(uint32_t id, const NamespaceString& nss) {
    stdx::lock_guard<SimpleMutex> lk(_mutex);
    invariant(nss == _idToNss[id]);
    _idToNss.erase(id);
}

bool GlobalCursorIdCache::eraseCursor(OperationContext* opCtx, CursorId id, bool checkAuth) {
    // Figure out what the namespace of this cursor is.
    NamespaceString nss;
    if (CursorManager::isGloballyManagedCursor(id)) {
        auto pin = globalCursorManager->pinCursor(opCtx, id);
        if (!pin.isOK()) {
            invariant(pin == ErrorCodes::CursorNotFound);
            // No such cursor.  TODO: Consider writing to audit log here (even though we don't
            // have a namespace).
            return false;
        }
        nss = pin.getValue().getCursor()->nss();
    } else {
        stdx::lock_guard<SimpleMutex> lk(_mutex);
        uint32_t nsid = idFromCursorId(id);
        Map::const_iterator it = _idToNss.find(nsid);
        if (it == _idToNss.end()) {
            // No namespace corresponding to this cursor id prefix.  TODO: Consider writing to
            // audit log here (even though we don't have a namespace).
            return false;
        }
        nss = it->second;
    }
    invariant(nss.isValid());

    // Check if we are authorized to erase this cursor.
    if (checkAuth) {
        AuthorizationSession* as = AuthorizationSession::get(opCtx->getClient());
        Status authorizationStatus = as->checkAuthForKillCursors(nss, id);
        if (!authorizationStatus.isOK()) {
            audit::logKillCursorsAuthzCheck(opCtx->getClient(), nss, id, ErrorCodes::Unauthorized);
            return false;
        }
    }

    // If this cursor is owned by the global cursor manager, ask it to erase the cursor for us.
    if (CursorManager::isGloballyManagedCursor(id)) {
        Status eraseStatus = globalCursorManager->eraseCursor(opCtx, id, checkAuth);
        massert(28697,
                eraseStatus.reason(),
                eraseStatus.code() == ErrorCodes::OK ||
                    eraseStatus.code() == ErrorCodes::CursorNotFound);
        return eraseStatus.isOK();
    }

    // If not, then the cursor must be owned by a collection.  Erase the cursor under the
    // collection lock (to prevent the collection from going away during the erase).
    AutoGetCollectionForReadCommand ctx(opCtx, nss);
    Collection* collection = ctx.getCollection();
    if (!collection) {
        if (checkAuth)
            audit::logKillCursorsAuthzCheck(
                opCtx->getClient(), nss, id, ErrorCodes::CursorNotFound);
        return false;
    }

    Status eraseStatus = collection->getCursorManager()->eraseCursor(opCtx, id, checkAuth);
    uassert(16089,
            eraseStatus.reason(),
            eraseStatus.code() == ErrorCodes::OK ||
                eraseStatus.code() == ErrorCodes::CursorNotFound);
    return eraseStatus.isOK();
}

std::size_t GlobalCursorIdCache::timeoutCursors(OperationContext* opCtx, Date_t now) {
    size_t totalTimedOut = 0;

    // Time out the cursors from the global cursor manager.
    totalTimedOut += globalCursorManager->timeoutCursors(opCtx, now);

    // Compute the set of collection names that we have to time out cursors for.
    vector<NamespaceString> todo;
    {
        stdx::lock_guard<SimpleMutex> lk(_mutex);
        for (auto&& entry : _idToNss) {
            todo.push_back(entry.second);
        }
    }

    // For each collection, time out its cursors under the collection lock (to prevent the
    // collection from going away during the erase).
    for (unsigned i = 0; i < todo.size(); i++) {
        AutoGetCollectionOrViewForReadCommand ctx(opCtx, NamespaceString(todo[i]));
        if (!ctx.getDb()) {
            continue;
        }

        Collection* collection = ctx.getCollection();
        if (collection == NULL) {
            continue;
        }

        totalTimedOut += collection->getCursorManager()->timeoutCursors(opCtx, now);
    }

    return totalTimedOut;
}
}  // namespace

template <typename Visitor>
void GlobalCursorIdCache::visitAllCursorManagers(OperationContext* opCtx, Visitor* visitor) {
    (*visitor)(*globalCursorManager);

    // Compute the set of collection names that we have to get sessions for
    vector<NamespaceString> namespaces;
    {
        stdx::lock_guard<SimpleMutex> lk(_mutex);
        for (auto&& entry : _idToNss) {
            namespaces.push_back(entry.second);
        }
    }

    // For each collection, get its sessions under the collection lock (to prevent the
    // collection from going away during the erase).
    for (auto&& ns : namespaces) {
        AutoGetCollectionOrView ctx(opCtx, NamespaceString(ns), MODE_IS);
        if (!ctx.getDb()) {
            continue;
        }

        Collection* collection = ctx.getCollection();
        if (!collection) {
            continue;
        }

        (*visitor)(*(collection->getCursorManager()));
    }
}

// ---

CursorManager* CursorManager::getGlobalCursorManager() {
    return globalCursorManager.get();
}

void CursorManager::appendAllActiveSessions(OperationContext* opCtx, LogicalSessionIdSet* lsids) {
    auto visitor = [&](CursorManager& mgr) { mgr.appendActiveSessions(lsids); };
    globalCursorIdCache->visitAllCursorManagers(opCtx, &visitor);
}

Status CursorManager::killCursorsWithMatchingSessions(OperationContext* opCtx,
                                                      const SessionKiller::Matcher& matcher) {
    auto eraser = [&](CursorManager& mgr, CursorId id) {
        uassertStatusOK(mgr.eraseCursor(opCtx, id, true));
    };

    auto visitor = makeKillSessionsCursorManagerVisitor(opCtx, matcher, std::move(eraser));
    globalCursorIdCache->visitAllCursorManagers(opCtx, &visitor);
    return visitor.getStatus();
}

std::size_t CursorManager::timeoutCursorsGlobal(OperationContext* opCtx, Date_t now) {
    return globalCursorIdCache->timeoutCursors(opCtx, now);
}

int CursorManager::eraseCursorGlobalIfAuthorized(OperationContext* opCtx, int n, const char* _ids) {
    ConstDataCursor ids(_ids);
    int numDeleted = 0;
    for (int i = 0; i < n; i++) {
        if (eraseCursorGlobalIfAuthorized(opCtx, ids.readAndAdvance<LittleEndian<int64_t>>()))
            numDeleted++;
        if (globalInShutdownDeprecated())
            break;
    }
    return numDeleted;
}
bool CursorManager::eraseCursorGlobalIfAuthorized(OperationContext* opCtx, CursorId id) {
    return globalCursorIdCache->eraseCursor(opCtx, id, true);
}
bool CursorManager::eraseCursorGlobal(OperationContext* opCtx, CursorId id) {
    return globalCursorIdCache->eraseCursor(opCtx, id, false);
}


// --------------------------

std::size_t CursorManager::PlanExecutorPartitioner::operator()(const PlanExecutor* exec,
                                                               const std::size_t nPartitions) {
    auto token = exec->getRegistrationToken();
    invariant(token);
    return (*token) % nPartitions;
}

CursorManager::CursorManager(NamespaceString nss)
    : _nss(std::move(nss)),
      _collectionCacheRuntimeId(_nss.isEmpty() ? 0
                                               : globalCursorIdCache->registerCursorManager(_nss)),
      _random(stdx::make_unique<PseudoRandom>(globalCursorIdCache->nextSeed())),
      _registeredPlanExecutors(),
      _cursorMap(stdx::make_unique<Partitioned<unordered_map<CursorId, ClientCursor*>>>()) {}

CursorManager::~CursorManager() {
    // All cursors and PlanExecutors should have been deleted already.
    invariant(_registeredPlanExecutors.empty());
    invariant(_cursorMap->empty());

    if (!isGlobalManager()) {
        globalCursorIdCache->deregisterCursorManager(_collectionCacheRuntimeId, _nss);
    }
}

void CursorManager::invalidateAll(OperationContext* opCtx,
                                  bool collectionGoingAway,
                                  const std::string& reason) {
    invariant(!isGlobalManager());  // The global cursor manager should never need to kill cursors.
    dassert(opCtx->lockState()->isCollectionLockedForMode(_nss.ns(), MODE_X));
    fassert(28819, !BackgroundOperation::inProgForNs(_nss));
    auto allExecPartitions = _registeredPlanExecutors.lockAllPartitions();
    for (auto&& partition : allExecPartitions) {
        for (auto&& exec : partition) {
            // The PlanExecutor is owned elsewhere, so we just mark it as killed and let it be
            // cleaned up later.
            exec->markAsKilled(reason);
        }
    }
    allExecPartitions.clear();

    // Mark all cursors as killed, but keep around those we can in order to provide a useful error
    // message to the user when they attempt to use it next time.
    auto allCurrentPartitions = _cursorMap->lockAllPartitions();
    for (auto&& partition : allCurrentPartitions) {
        for (auto it = partition.begin(); it != partition.end();) {
            auto* cursor = it->second;
            cursor->markAsKilled(reason);

            // If pinned, there is an active user of this cursor, who is now responsible for
            // cleaning it up. Otherwise, we can immediately dispose of it.
            if (cursor->_isPinned) {
                it = partition.erase(it);
                continue;
            }

            if (!collectionGoingAway) {
                // We keep around unpinned cursors so that future attempts to use the cursor will
                // result in a useful error message.
                ++it;
            } else {
                cursor->dispose(opCtx);
                delete cursor;
                it = partition.erase(it);
            }
        }
    }
}

void CursorManager::invalidateDocument(OperationContext* opCtx,
                                       const RecordId& dl,
                                       InvalidationType type) {
    dassert(opCtx->lockState()->isCollectionLockedForMode(_nss.ns(), MODE_IX));
    invariant(!isGlobalManager());  // The global cursor manager should never receive invalidations.
    if (supportsDocLocking()) {
        // If a storage engine supports doc locking, then we do not need to invalidate.
        // The transactional boundaries of the operation protect us.
        return;
    }

    auto allExecPartitions = _registeredPlanExecutors.lockAllPartitions();
    for (auto&& partition : allExecPartitions) {
        for (auto&& exec : partition) {
            exec->invalidate(opCtx, dl, type);
        }
    }

    auto allPartitions = _cursorMap->lockAllPartitions();
    for (auto&& partition : allPartitions) {
        for (auto&& entry : partition) {
            auto exec = entry.second->getExecutor();
            exec->invalidate(opCtx, dl, type);
        }
    }
}

bool CursorManager::cursorShouldTimeout_inlock(const ClientCursor* cursor, Date_t now) {
    if (cursor->isNoTimeout() || cursor->_isPinned) {
        return false;
    }
    return (now - cursor->_lastUseDate) >= Milliseconds(cursorTimeoutMillis.load());
}

std::size_t CursorManager::timeoutCursors(OperationContext* opCtx, Date_t now) {
    std::vector<std::unique_ptr<ClientCursor, ClientCursor::Deleter>> toDelete;

    for (size_t partitionId = 0; partitionId < kNumPartitions; ++partitionId) {
        auto lockedPartition = _cursorMap->lockOnePartitionById(partitionId);
        for (auto it = lockedPartition->begin(); it != lockedPartition->end();) {
            auto* cursor = it->second;
            if (cursorShouldTimeout_inlock(cursor, now)) {
                // Dispose of the cursor and remove it from the partition.
                cursor->dispose(opCtx);
                toDelete.push_back(std::unique_ptr<ClientCursor, ClientCursor::Deleter>{cursor});
                it = lockedPartition->erase(it);
            } else {
                ++it;
            }
        }
    }

    return toDelete.size();
}

namespace {
static AtomicUInt32 registeredPlanExecutorId;
}  // namespace

Partitioned<unordered_set<PlanExecutor*>>::PartitionId CursorManager::registerExecutor(
    PlanExecutor* exec) {
    auto partitionId = registeredPlanExecutorId.fetchAndAdd(1);
    exec->setRegistrationToken(partitionId);
    _registeredPlanExecutors.insert(exec);
    return partitionId;
}

void CursorManager::deregisterExecutor(PlanExecutor* exec) {
    if (auto partitionId = exec->getRegistrationToken()) {
        _registeredPlanExecutors.erase(exec);
    }
}

StatusWith<ClientCursorPin> CursorManager::pinCursor(OperationContext* opCtx, CursorId id) {
    auto lockedPartition = _cursorMap->lockOnePartition(id);
    auto it = lockedPartition->find(id);
    if (it == lockedPartition->end()) {
        return {ErrorCodes::CursorNotFound, str::stream() << "cursor id " << id << " not found"};
    }

    ClientCursor* cursor = it->second;
    uassert(12051, str::stream() << "cursor id " << id << " is already in use", !cursor->_isPinned);
    if (cursor->getExecutor()->isMarkedAsKilled()) {
        // This cursor was killed while it was idle.
        Status error{ErrorCodes::QueryPlanKilled,
                     str::stream() << "cursor killed because: "
                                   << cursor->getExecutor()->getKillReason()};
        lockedPartition->erase(cursor->cursorid());
        cursor->dispose(opCtx);
        delete cursor;
        return error;
    }

    auto cursorPrivilegeStatus = checkCursorSessionPrivilege(opCtx, cursor->getSessionId());

    if (!cursorPrivilegeStatus.isOK()) {
        return cursorPrivilegeStatus;
    }

    cursor->_isPinned = true;

    // We use pinning of a cursor as a proxy for active, user-initiated use of a cursor.  Therefor,
    // we pass down to the logical session cache and vivify the record (updating last use).
    if (cursor->getSessionId()) {
        LogicalSessionCache::get(opCtx)->vivify(opCtx, cursor->getSessionId().get());
    }

    return ClientCursorPin(opCtx, cursor);
}

void CursorManager::unpin(OperationContext* opCtx, ClientCursor* cursor) {
    // Avoid computing the current time within the critical section.
    auto now = opCtx->getServiceContext()->getPreciseClockSource()->now();

    auto partitionLock = _cursorMap->lockOnePartition(cursor->cursorid());
    invariant(cursor->_isPinned);
    cursor->_isPinned = false;
    cursor->_lastUseDate = now;
}

void CursorManager::getCursorIds(std::set<CursorId>* openCursors) const {
    auto allPartitions = _cursorMap->lockAllPartitions();
    for (auto&& partition : allPartitions) {
        for (auto&& entry : partition) {
            openCursors->insert(entry.first);
        }
    }
}

void CursorManager::appendActiveSessions(LogicalSessionIdSet* lsids) const {
    auto allPartitions = _cursorMap->lockAllPartitions();
    for (auto&& partition : allPartitions) {
        for (auto&& entry : partition) {
            auto cursor = entry.second;
            if (auto id = cursor->getSessionId()) {
                lsids->insert(id.value());
            }
        }
    }
}

stdx::unordered_set<CursorId> CursorManager::getCursorsForSession(LogicalSessionId lsid) const {
    stdx::unordered_set<CursorId> cursors;

    auto allPartitions = _cursorMap->lockAllPartitions();
    for (auto&& partition : allPartitions) {
        for (auto&& entry : partition) {
            auto cursor = entry.second;
            if (cursor->getSessionId() == lsid) {
                cursors.insert(cursor->cursorid());
            }
        }
    }

    return cursors;
}

size_t CursorManager::numCursors() const {
    return _cursorMap->size();
}

CursorId CursorManager::allocateCursorId_inlock() {
    for (int i = 0; i < 10000; i++) {
        // The leading two bits of a CursorId are used to determine if the cursor is registered on
        // the global cursor manager.
        CursorId id;
        if (isGlobalManager()) {
            // This is the global cursor manager, so generate a random number and make sure the
            // first two bits are 01.
            uint64_t mask = 0x3FFFFFFFFFFFFFFF;
            uint64_t bitToSet = 1ULL << 62;
            id = ((_random->nextInt64() & mask) | bitToSet);
        } else {
            // The first 2 bits are 0, the next 30 bits are the collection identifier, the next 32
            // bits are random.
            uint32_t myPart = static_cast<uint32_t>(_random->nextInt32());
            id = cursorIdFromParts(_collectionCacheRuntimeId, myPart);
        }
        auto partition = _cursorMap->lockOnePartition(id);
        if (partition->count(id) == 0)
            return id;
    }
    fassertFailed(17360);
}

ClientCursorPin CursorManager::registerCursor(OperationContext* opCtx,
                                              ClientCursorParams&& cursorParams) {
    // Avoid computing the current time within the critical section.
    auto now = opCtx->getServiceContext()->getPreciseClockSource()->now();

    // Make sure the PlanExecutor isn't registered, since we will register the ClientCursor wrapping
    // it.
    invariant(cursorParams.exec);
    deregisterExecutor(cursorParams.exec.get());
    cursorParams.exec.get_deleter().dismissDisposal();
    cursorParams.exec->unsetRegistered();

    // Note we must hold the registration lock from now until insertion into '_cursorMap' to ensure
    // we don't insert two cursors with the same cursor id.
    stdx::lock_guard<SimpleMutex> lock(_registrationLock);
    CursorId cursorId = allocateCursorId_inlock();
    std::unique_ptr<ClientCursor, ClientCursor::Deleter> clientCursor(new ClientCursor(
        std::move(cursorParams), this, cursorId, opCtx->getLogicalSessionId(), now));

    // Transfer ownership of the cursor to '_cursorMap'.
    auto partition = _cursorMap->lockOnePartition(cursorId);
    ClientCursor* unownedCursor = clientCursor.release();
    partition->emplace(cursorId, unownedCursor);
    return ClientCursorPin(opCtx, unownedCursor);
}

void CursorManager::deregisterCursor(ClientCursor* cc) {
    _cursorMap->erase(cc->cursorid());
}

Status CursorManager::eraseCursor(OperationContext* opCtx, CursorId id, bool shouldAudit) {
    auto lockedPartition = _cursorMap->lockOnePartition(id);
    auto it = lockedPartition->find(id);
    if (it == lockedPartition->end()) {
        if (shouldAudit) {
            audit::logKillCursorsAuthzCheck(
                opCtx->getClient(), _nss, id, ErrorCodes::CursorNotFound);
        }
        return {ErrorCodes::CursorNotFound, str::stream() << "Cursor id not found: " << id};
    }
    auto cursor = it->second;

    if (cursor->_isPinned) {
        if (shouldAudit) {
            audit::logKillCursorsAuthzCheck(
                opCtx->getClient(), _nss, id, ErrorCodes::OperationFailed);
        }
        return {ErrorCodes::OperationFailed, str::stream() << "Cannot kill pinned cursor: " << id};
    }
    std::unique_ptr<ClientCursor, ClientCursor::Deleter> ownedCursor(cursor);

    if (shouldAudit) {
        audit::logKillCursorsAuthzCheck(opCtx->getClient(), _nss, id, ErrorCodes::OK);
    }

    lockedPartition->erase(ownedCursor->cursorid());
    ownedCursor->dispose(opCtx);
    return Status::OK();
}

}  // namespace mongo