summaryrefslogtreecommitdiff
path: root/src/mongo/db/exec/geo_near.cpp
blob: c12bd3e11edd2790d9ca8115918eb543299c1952 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
/**
 *    Copyright (C) 2018-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#define MONGO_LOGV2_DEFAULT_COMPONENT ::mongo::logv2::LogComponent::kQuery

#include "mongo/db/exec/geo_near.h"

#include "mongo/logv2/log.h"
#include <memory>
#include <vector>

// For s2 search
#include "third_party/s2/s2regionintersection.h"

#include "mongo/base/owned_pointer_vector.h"
#include "mongo/db/bson/dotted_path_support.h"
#include "mongo/db/exec/document_value/value.h"
#include "mongo/db/exec/fetch.h"
#include "mongo/db/geo/geoconstants.h"
#include "mongo/db/geo/geoparser.h"
#include "mongo/db/geo/hash.h"
#include "mongo/db/index/expression_params.h"
#include "mongo/db/matcher/expression.h"
#include "mongo/db/query/expression_index.h"
#include "mongo/db/query/expression_index_knobs_gen.h"

#include <algorithm>

namespace mongo {

using std::abs;
using std::unique_ptr;

namespace dps = ::mongo::dotted_path_support;

//
// Shared GeoNear search functionality
//

static const double kCircOfEarthInMeters = 2 * M_PI * kRadiusOfEarthInMeters;
static const double kMaxEarthDistanceInMeters = kCircOfEarthInMeters / 2;
static const double kMetersPerDegreeAtEquator = kCircOfEarthInMeters / 360;

namespace {

/**
 * Structure that holds BSON addresses (BSONElements) and the corresponding geometry parsed
 * at those locations.
 * Used to separate the parsing of geometries from a BSONObj (which must stay in scope) from
 * the computation over those geometries.
 * TODO: Merge with 2D/2DSphere key extraction?
 */
struct StoredGeometry {
    static StoredGeometry* parseFrom(const BSONElement& element) {
        if (!element.isABSONObj())
            return nullptr;

        unique_ptr<StoredGeometry> stored(new StoredGeometry);

        // GeoNear stage can only be run with an existing index
        // Therefore, it is always safe to skip geometry validation
        if (!stored->geometry.parseFromStorage(element, true).isOK())
            return nullptr;
        stored->element = element;
        return stored.release();
    }

    BSONElement element;
    GeometryContainer geometry;
};
}  // namespace

/**
 * Find and parse all geometry elements on the appropriate field path from the document.
 */
static void extractGeometries(const BSONObj& doc,
                              const string& path,
                              std::vector<std::unique_ptr<StoredGeometry>>* geometries) {
    BSONElementSet geomElements;
    // NOTE: Annoyingly, we cannot just expand arrays b/c single 2d points are arrays, we need
    // to manually expand all results to check if they are geometries
    dps::extractAllElementsAlongPath(doc, path, geomElements, false /* expand arrays */);

    for (BSONElementSet::iterator it = geomElements.begin(); it != geomElements.end(); ++it) {
        const BSONElement& el = *it;
        unique_ptr<StoredGeometry> stored(StoredGeometry::parseFrom(el));

        if (stored.get()) {
            // Valid geometry element
            geometries->push_back(std::move(stored));
        } else if (el.type() == Array) {
            // Many geometries may be in an array
            BSONObjIterator arrIt(el.Obj());
            while (arrIt.more()) {
                const BSONElement nextEl = arrIt.next();
                stored.reset(StoredGeometry::parseFrom(nextEl));

                if (stored.get()) {
                    // Valid geometry element
                    geometries->push_back(std::move(stored));
                } else {
                    LOGV2_WARNING(23760,
                                  "geoNear stage read non-geometry element {nextEl} in array {el}",
                                  "nextEl"_attr = redact(nextEl),
                                  "el"_attr = redact(el));
                }
            }
        } else {
            LOGV2_WARNING(
                23761, "geoNear stage read non-geometry element {el}", "el"_attr = redact(el));
        }
    }
}

static StatusWith<double> computeGeoNearDistance(const GeoNearParams& nearParams,
                                                 WorkingSetMember* member) {
    //
    // Generic GeoNear distance computation
    // Distances are computed by projecting the stored geometry into the query CRS, and
    // computing distance in that CRS.
    //

    // Must have an object in order to get geometry out of it.
    invariant(member->hasObj());

    CRS queryCRS = nearParams.nearQuery->centroid->crs;

    // Extract all the geometries out of this document for the near query
    std::vector<std::unique_ptr<StoredGeometry>> geometries;
    extractGeometries(member->doc.value().toBson(), nearParams.nearQuery->field, &geometries);

    // Compute the minimum distance of all the geometries in the document
    double minDistance = -1;
    Value minDistanceMetadata;
    for (auto it = geometries.begin(); it != geometries.end(); ++it) {
        StoredGeometry& stored = **it;

        // NOTE: A stored document with STRICT_SPHERE CRS is treated as a malformed document
        // and ignored. Since GeoNear requires an index, there's no stored STRICT_SPHERE shape.
        // So we don't check it here.

        // NOTE: For now, we're sure that if we get this far in the query we'll have an
        // appropriate index which validates the type of geometry we're pulling back here.
        // TODO: It may make sense to change our semantics and, by default, only return
        // shapes in the same CRS from $geoNear.
        if (!stored.geometry.supportsProject(queryCRS))
            continue;
        stored.geometry.projectInto(queryCRS);

        double nextDistance = stored.geometry.minDistance(*nearParams.nearQuery->centroid);

        if (minDistance < 0 || nextDistance < minDistance) {
            minDistance = nextDistance;
            minDistanceMetadata = Value{stored.element};
        }
    }

    if (minDistance < 0) {
        // No distance to report
        return StatusWith<double>(-1);
    }

    if (nearParams.addDistMeta) {
        if (nearParams.nearQuery->unitsAreRadians) {
            // Hack for nearSphere
            // TODO: Remove nearSphere?
            invariant(SPHERE == queryCRS);
            member->metadata().setGeoNearDistance(minDistance / kRadiusOfEarthInMeters);
        } else {
            member->metadata().setGeoNearDistance(minDistance);
        }
    }

    if (nearParams.addPointMeta) {
        member->metadata().setGeoNearPoint(minDistanceMetadata);
    }

    return StatusWith<double>(minDistance);
}

static R2Annulus geoNearDistanceBounds(const GeoNearExpression& query) {
    const CRS queryCRS = query.centroid->crs;

    if (FLAT == queryCRS) {
        return R2Annulus(query.centroid->oldPoint, query.minDistance, query.maxDistance);
    }

    invariant(SPHERE == queryCRS);

    // TODO: Tighten this up a bit by making a CRS for "sphere with radians"
    double minDistance = query.minDistance;
    double maxDistance = query.maxDistance;

    if (query.unitsAreRadians) {
        // Our input bounds are in radians, convert to meters since the query CRS is actually
        // SPHERE.  We'll convert back to radians on outputting distances.
        minDistance *= kRadiusOfEarthInMeters;
        maxDistance *= kRadiusOfEarthInMeters;
    }

    // GOTCHA: oldPoint is a misnomer - it is the original point data and is in the correct
    // CRS.  We must not try to derive the original point from the spherical S2Point generated
    // as an optimization - the mapping is not 1->1 - [-180, 0] and [180, 0] map to the same
    // place.
    // TODO: Wrapping behavior should not depend on the index, which would make $near code
    // insensitive to which direction we explore the index in.
    return R2Annulus(query.centroid->oldPoint,
                     min(minDistance, kMaxEarthDistanceInMeters),
                     min(maxDistance, kMaxEarthDistanceInMeters));
}

//
// GeoNear2DStage
//

static R2Annulus twoDDistanceBounds(const GeoNearParams& nearParams,
                                    const IndexDescriptor* twoDIndex) {
    R2Annulus fullBounds = geoNearDistanceBounds(*nearParams.nearQuery);
    const CRS queryCRS = nearParams.nearQuery->centroid->crs;

    if (FLAT == queryCRS) {
        // Reset the full bounds based on our index bounds.
        // The index status should always be valid.
        auto result = invariantStatusOK(GeoHashConverter::createFromDoc(twoDIndex->infoObj()));

        // The biggest distance possible in this indexed collection is the diagonal of the
        // square indexed region.
        const GeoHashConverter::Parameters& hashParams = result->getParams();
        const double sqrt2Approx = 1.5;
        const double diagonalDist = sqrt2Approx * (hashParams.max - hashParams.min);

        fullBounds = R2Annulus(
            fullBounds.center(), fullBounds.getInner(), min(fullBounds.getOuter(), diagonalDist));
    } else {
        // Spherical queries have upper bounds set by the earth - no-op
        // TODO: Wrapping errors would creep in here if nearSphere wasn't defined to not wrap
        invariant(SPHERE == queryCRS);
        invariant(!nearParams.nearQuery->isWrappingQuery);
    }

    return fullBounds;
}

GeoNear2DStage::DensityEstimator::DensityEstimator(PlanStage::Children* children,
                                                   BSONObj infoObj,
                                                   const GeoNearParams* nearParams,
                                                   const R2Annulus& fullBounds)
    : _children(children), _nearParams(nearParams), _fullBounds(fullBounds), _currentLevel(0) {
    // The index status should always be valid.
    auto result = invariantStatusOK(GeoHashConverter::createFromDoc(std::move(infoObj)));

    _converter = std::move(result);
    _centroidCell = _converter->hash(_nearParams->nearQuery->centroid->oldPoint);

    // Since appendVertexNeighbors(level, output) requires level < hash.getBits(),
    // we have to start to find documents at most GeoHash::kMaxBits - 1. Thus the finest
    // search area is 16 * finest cell area at GeoHash::kMaxBits.
    _currentLevel = std::max(0, _converter->getParams().bits - 1);
}

// Initialize the internal states
void GeoNear2DStage::DensityEstimator::buildIndexScan(ExpressionContext* expCtx,
                                                      WorkingSet* workingSet,
                                                      const IndexDescriptor* twoDIndex) {
    // Scan bounds on 2D indexes are only over the 2D field - other bounds aren't applicable.
    // This is handled in query planning.
    IndexScanParams scanParams(expCtx->opCtx, twoDIndex);
    scanParams.bounds = _nearParams->baseBounds;

    // The "2d" field is always the first in the index
    const string twoDFieldName = _nearParams->nearQuery->field;
    const int twoDFieldPosition = 0;

    // Construct index intervals used by this stage
    OrderedIntervalList oil;
    oil.name = scanParams.bounds.fields[twoDFieldPosition].name;

    vector<GeoHash> neighbors;
    // Return the neighbors of closest vertex to this cell at the given level.
    _centroidCell.appendVertexNeighbors(_currentLevel, &neighbors);
    std::sort(neighbors.begin(), neighbors.end());

    for (vector<GeoHash>::const_iterator it = neighbors.begin(); it != neighbors.end(); it++) {
        mongo::BSONObjBuilder builder;
        it->appendHashMin(&builder, "");
        it->appendHashMax(&builder, "");
        oil.intervals.push_back(IndexBoundsBuilder::makeRangeInterval(
            builder.obj(), BoundInclusion::kIncludeBothStartAndEndKeys));
    }

    invariant(oil.isValidFor(1));

    // Intersect the $near bounds we just generated into the bounds we have for anything else
    // in the scan (i.e. $within)
    IndexBoundsBuilder::intersectize(oil, &scanParams.bounds.fields[twoDFieldPosition]);

    invariant(!_indexScan);
    _indexScan = new IndexScan(expCtx, scanParams, workingSet, nullptr);
    _children->emplace_back(_indexScan);
}

// Return IS_EOF is we find a document in it's ancestor cells and set estimated distance
// from the nearest document.
PlanStage::StageState GeoNear2DStage::DensityEstimator::work(ExpressionContext* expCtx,
                                                             WorkingSet* workingSet,
                                                             const IndexDescriptor* twoDIndex,
                                                             WorkingSetID* out,
                                                             double* estimatedDistance) {
    if (!_indexScan) {
        // Setup index scan stage for current level.
        buildIndexScan(expCtx, workingSet, twoDIndex);
    }

    WorkingSetID workingSetID;
    PlanStage::StageState state = _indexScan->work(&workingSetID);

    if (state == PlanStage::IS_EOF) {
        // We ran through the neighbors but found nothing.
        //
        // Before going to the next-coarsest level, check whether our search area contains the
        // entire search annulus, since we don't want to spend time doing density estimation over
        // areas that are much larger than the requested $maxDistance.
        //
        // The search area consists of four cells with side length S. Within its cell, the closest
        // vertex to the search point must be the vertex shared with the other three cells. If the
        // search point lies in the upper left cell, this means that it must lie in the lower right
        // quadrant of that cell. Furthermore, this lower-right quadrant has a side-length of S/2.
        //
        //   +-----------+-----------+
        //   |           |           |
        //   |       S/2 |           |
        //   +     +-----+           |
        //   |     | o   |           |
        //   |     |     |           |
        //   +-----+-----+-----------+
        //   |           |           |
        //   |           |           |
        //   |           |           |
        //   |           |           |
        //   |           |           |
        //   +-----------+-----------+
        //         S
        //
        // As long as the outer radius of the search annulus is less than S/2, it must be entirely
        // contained within these four cells.
        if (_fullBounds.getOuter() < (0.5 * _converter->sizeEdge(_currentLevel))) {
            // We're covering the entire search annulus. Return EOF to indicate we're done.
            *estimatedDistance = 0.5 * _converter->sizeEdge(_currentLevel);
            return PlanStage::IS_EOF;
        }

        if (_currentLevel > 0u) {
            // Advance to the next level and search again.
            _currentLevel--;
            // Reset index scan for the next level.
            invariant(_children->back().get() == _indexScan);
            _indexScan = nullptr;
            _children->pop_back();
            return PlanStage::NEED_TIME;
        }

        // We are already at the top level.
        *estimatedDistance = _converter->sizeEdge(_currentLevel);
        return PlanStage::IS_EOF;
    } else if (state == PlanStage::ADVANCED) {
        // Found a document at current level.
        *estimatedDistance = _converter->sizeEdge(_currentLevel);
        // Clean up working set.
        workingSet->free(workingSetID);
        return PlanStage::IS_EOF;
    } else if (state == PlanStage::NEED_YIELD) {
        *out = workingSetID;
    }

    // Propagate NEED_TIME or errors
    return state;
}

PlanStage::StageState GeoNear2DStage::initialize(OperationContext* opCtx,
                                                 WorkingSet* workingSet,
                                                 WorkingSetID* out) {
    if (!_densityEstimator) {
        _densityEstimator.reset(new DensityEstimator(
            &_children, indexDescriptor()->infoObj(), &_nearParams, _fullBounds));
    }

    double estimatedDistance;
    PlanStage::StageState state =
        _densityEstimator->work(expCtx(), workingSet, indexDescriptor(), out, &estimatedDistance);

    if (state == PlanStage::IS_EOF) {
        // 2d index only works with legacy points as centroid. $nearSphere will project
        // the point into SPHERE CRS and calculate distance based on that.
        // STRICT_SPHERE is impossible here, as GeoJSON centroid is not allowed for 2d index.

        // Estimator finished its work, we need to finish initialization too.
        if (SPHERE == _nearParams.nearQuery->centroid->crs) {
            // Estimated distance is in degrees, convert it to meters multiplied by 3.
            _boundsIncrement = (estimatedDistance * kRadiusOfEarthInMeters * 3) * (M_PI / 180);
            // Limit boundsIncrement to ~20KM, so that the first circle won't be too aggressive.
            _boundsIncrement = std::min(_boundsIncrement, kMaxEarthDistanceInMeters / 1000.0);
        } else {
            // We expand the radius by 3 times to give a reasonable starting search area.
            // Assume points are distributed evenly. X is the edge size of cells at whose
            // level we found a document in 4 neighbors. Thus the closest point is at least
            // X/2 far from the centroid. The distance between two points is at least X.
            // The area of Pi * (3X)^2 ~= 28 * X^2 will cover dozens of points at most.
            // We'll explore the space with exponentially increasing radius if this guess is
            // too small, so starting from a conservative initial radius doesn't hurt.

            _boundsIncrement = 3 * estimatedDistance;
        }
        invariant(_boundsIncrement > 0.0);

        // Clean up
        _densityEstimator.reset(nullptr);
    }

    return state;
}

static const string kTwoDIndexNearStage("GEO_NEAR_2D");

GeoNear2DStage::GeoNear2DStage(const GeoNearParams& nearParams,
                               ExpressionContext* expCtx,
                               WorkingSet* workingSet,
                               const IndexDescriptor* twoDIndex)
    : NearStage(expCtx, kTwoDIndexNearStage.c_str(), STAGE_GEO_NEAR_2D, workingSet, twoDIndex),
      _nearParams(nearParams),
      _fullBounds(twoDDistanceBounds(nearParams, twoDIndex)),
      _currBounds(_fullBounds.center(), -1, _fullBounds.getInner()),
      _boundsIncrement(0.0) {
    _specificStats.keyPattern = twoDIndex->keyPattern();
    _specificStats.indexName = twoDIndex->indexName();
    _specificStats.indexVersion = static_cast<int>(twoDIndex->version());
}


namespace {

/**
 * Expression which checks whether a legacy 2D index point is contained within our near
 * search annulus.  See nextInterval() below for more discussion.
 * TODO: Make this a standard type of GEO match expression
 */
class TwoDPtInAnnulusExpression : public LeafMatchExpression {
public:
    TwoDPtInAnnulusExpression(const R2Annulus& annulus, StringData twoDPath)
        : LeafMatchExpression(INTERNAL_2D_POINT_IN_ANNULUS, twoDPath), _annulus(annulus) {}

    void serialize(BSONObjBuilder* out, bool includePath) const final {
        out->append("TwoDPtInAnnulusExpression", true);
    }

    bool matchesSingleElement(const BSONElement& e, MatchDetails* details = nullptr) const final {
        if (!e.isABSONObj())
            return false;

        PointWithCRS point;
        if (!GeoParser::parseStoredPoint(e, &point).isOK())
            return false;

        return _annulus.contains(point.oldPoint);
    }

    //
    // These won't be called.
    //

    BSONObj getSerializedRightHandSide() const final {
        MONGO_UNREACHABLE;
    }

    void debugString(StringBuilder& debug, int level = 0) const final {
        MONGO_UNREACHABLE;
    }

    bool equivalent(const MatchExpression* other) const final {
        MONGO_UNREACHABLE;
        return false;
    }

    unique_ptr<MatchExpression> shallowClone() const final {
        MONGO_UNREACHABLE;
        return nullptr;
    }

private:
    ExpressionOptimizerFunc getOptimizer() const final {
        return [](std::unique_ptr<MatchExpression> expression) { return expression; };
    }

    R2Annulus _annulus;
};

// Helper class to maintain ownership of a match expression alongside an index scan
class FetchStageWithMatch final : public FetchStage {
public:
    FetchStageWithMatch(ExpressionContext* expCtx,
                        WorkingSet* ws,
                        std::unique_ptr<PlanStage> child,
                        MatchExpression* filter,
                        const Collection* collection)
        : FetchStage(expCtx, ws, std::move(child), filter, collection), _matcher(filter) {}

private:
    // Owns matcher
    const unique_ptr<MatchExpression> _matcher;
};
}  // namespace

static double min2DBoundsIncrement(const GeoNearExpression& query,
                                   const IndexDescriptor* twoDIndex) {
    // The index status should always be valid.
    auto result = invariantStatusOK(GeoHashConverter::createFromDoc(twoDIndex->infoObj()));

    // The hasher error is the diagonal of a 2D hash region - it's generally not helpful
    // to change region size such that a search radius is smaller than the 2D hash region
    // max radius.  This is slightly conservative for now (box diagonal vs circle radius).
    const double minBoundsIncrement = result->getError() / 2;

    const CRS queryCRS = query.centroid->crs;
    if (FLAT == queryCRS)
        return minBoundsIncrement;

    invariant(SPHERE == queryCRS);

    // If this is a spherical query, units are in meters - this is just a heuristic
    return minBoundsIncrement * kMetersPerDegreeAtEquator;
}

static R2Annulus projectBoundsToTwoDDegrees(R2Annulus sphereBounds) {
    const double outerDegrees = rad2deg(sphereBounds.getOuter() / kRadiusOfEarthInMeters);
    const double innerDegrees = rad2deg(sphereBounds.getInner() / kRadiusOfEarthInMeters);
    const double maxErrorDegrees = computeXScanDistance(sphereBounds.center().y, outerDegrees);

    return R2Annulus(sphereBounds.center(),
                     max(0.0, innerDegrees - maxErrorDegrees),
                     outerDegrees + maxErrorDegrees);
}

StatusWith<NearStage::CoveredInterval*>  //
GeoNear2DStage::nextInterval(OperationContext* opCtx,
                             WorkingSet* workingSet,
                             const Collection* collection) {
    // The search is finished if we searched at least once and all the way to the edge
    if (_currBounds.getInner() >= 0 && _currBounds.getOuter() == _fullBounds.getOuter()) {
        return StatusWith<CoveredInterval*>(nullptr);
    }

    //
    // Setup the next interval
    //

    if (!_specificStats.intervalStats.empty()) {
        const IntervalStats& lastIntervalStats = _specificStats.intervalStats.back();

        // TODO: Generally we want small numbers of results fast, then larger numbers later
        if (lastIntervalStats.numResultsReturned < 300)
            _boundsIncrement *= 2;
        else if (lastIntervalStats.numResultsReturned > 600)
            _boundsIncrement /= 2;
    }

    _boundsIncrement =
        max(_boundsIncrement, min2DBoundsIncrement(*_nearParams.nearQuery, indexDescriptor()));

    R2Annulus nextBounds(_currBounds.center(),
                         _currBounds.getOuter(),
                         min(_currBounds.getOuter() + _boundsIncrement, _fullBounds.getOuter()));

    const bool isLastInterval = (nextBounds.getOuter() == _fullBounds.getOuter());
    _currBounds = nextBounds;

    //
    // Get a covering region for this interval
    //

    const CRS queryCRS = _nearParams.nearQuery->centroid->crs;

    unique_ptr<R2Region> coverRegion;

    if (FLAT == queryCRS) {
        // NOTE: Due to floating point math issues, FLAT searches of a 2D index need to treat
        // containment and distance separately.
        // Ex: (distance) 54.001 - 54 > 0.001, but (containment) 54 + 0.001 <= 54.001
        // The idea is that a $near search with bounds is really a $within search, sorted by
        // distance.  We attach a custom $within : annulus matcher to do the $within search,
        // and adjust max/min bounds slightly since, as above, containment does not mean the
        // distance calculation won't slightly overflow the boundary.
        //
        // The code below adjusts:
        // 1) Overall min/max bounds of the generated distance intervals to be more inclusive
        // 2) Bounds of the interval covering to be more inclusive
        // ... and later on we add the custom $within : annulus matcher.
        //
        // IMPORTANT: The *internal* interval distance bounds are *exact thresholds* - these
        // should not be adjusted.
        // TODO: Maybe integrate annuluses as a standard shape, and literally transform $near
        // internally into a $within query with $near just as sort.

        // Compute the maximum axis-aligned distance error
        const double epsilon = std::numeric_limits<double>::epsilon() *
            (max(abs(_fullBounds.center().x), abs(_fullBounds.center().y)) +
             _fullBounds.getOuter());

        if (nextBounds.getInner() > 0 && nextBounds.getInner() == _fullBounds.getInner()) {
            nextBounds = R2Annulus(nextBounds.center(),
                                   max(0.0, nextBounds.getInner() - epsilon),
                                   nextBounds.getOuter());
        }

        if (nextBounds.getOuter() > 0 && nextBounds.getOuter() == _fullBounds.getOuter()) {
            // We're at the max bound of the search, adjust interval maximum
            nextBounds = R2Annulus(
                nextBounds.center(), nextBounds.getInner(), nextBounds.getOuter() + epsilon);
        }

        // *Always* adjust the covering bounds to be more inclusive
        coverRegion.reset(new R2Annulus(nextBounds.center(),
                                        max(0.0, nextBounds.getInner() - epsilon),
                                        nextBounds.getOuter() + epsilon));
    } else {
        invariant(SPHERE == queryCRS);
        // TODO: As above, make this consistent with $within : $centerSphere

        // Our intervals aren't in the same CRS as our index, so we need to adjust them
        coverRegion.reset(new R2Annulus(projectBoundsToTwoDDegrees(nextBounds)));
    }

    //
    // Setup the stages for this interval
    //

    // Scan bounds on 2D indexes are only over the 2D field - other bounds aren't applicable.
    // This is handled in query planning.
    IndexScanParams scanParams(opCtx, indexDescriptor());

    // This does force us to do our own deduping of results.
    scanParams.bounds = _nearParams.baseBounds;

    // The "2d" field is always the first in the index
    const string twoDFieldName = _nearParams.nearQuery->field;
    const int twoDFieldPosition = 0;

    std::vector<GeoHash> unorderedCovering = ExpressionMapping::get2dCovering(
        *coverRegion, indexDescriptor()->infoObj(), gInternalGeoNearQuery2DMaxCoveringCells.load());

    // Make sure the same index key isn't visited twice
    R2CellUnion diffUnion;
    diffUnion.init(unorderedCovering);
    diffUnion.getDifference(_scannedCells);
    // After taking the difference, there may be cells in the covering that don't intersect
    // with the annulus.
    diffUnion.detach(&unorderedCovering);

    // Add the cells in this covering to the _scannedCells union
    _scannedCells.add(unorderedCovering);

    OrderedIntervalList coveredIntervals;
    coveredIntervals.name = scanParams.bounds.fields[twoDFieldPosition].name;
    ExpressionMapping::GeoHashsToIntervalsWithParents(unorderedCovering, &coveredIntervals);

    // Intersect the $near bounds we just generated into the bounds we have for anything else
    // in the scan (i.e. $within)
    IndexBoundsBuilder::intersectize(coveredIntervals,
                                     &scanParams.bounds.fields[twoDFieldPosition]);

    // These parameters are stored by the index, and so must be ok
    invariantStatusOK(GeoHashConverter::createFromDoc(indexDescriptor()->infoObj()));

    // 2D indexes support covered search over additional fields they contain
    auto scan = std::make_unique<IndexScan>(expCtx(), scanParams, workingSet, _nearParams.filter);

    MatchExpression* docMatcher = nullptr;

    // FLAT searches need to add an additional annulus $within matcher, see above
    // TODO: Find out if this matcher is actually needed
    if (FLAT == queryCRS) {
        docMatcher = new TwoDPtInAnnulusExpression(_fullBounds, twoDFieldName);
    }

    // FetchStage owns index scan
    _children.emplace_back(std::make_unique<FetchStageWithMatch>(
        expCtx(), workingSet, std::move(scan), docMatcher, collection));

    return StatusWith<CoveredInterval*>(new CoveredInterval(
        _children.back().get(), nextBounds.getInner(), nextBounds.getOuter(), isLastInterval));
}

StatusWith<double> GeoNear2DStage::computeDistance(WorkingSetMember* member) {
    return computeGeoNearDistance(_nearParams, member);
}

//
// GeoNear2DSphereStage
//

static int getFieldPosition(const IndexDescriptor* index, const string& fieldName) {
    int fieldPosition = 0;

    BSONObjIterator specIt(index->keyPattern());
    while (specIt.more()) {
        if (specIt.next().fieldName() == fieldName) {
            break;
        }
        ++fieldPosition;
    }

    if (fieldPosition == index->keyPattern().nFields())
        return -1;

    return fieldPosition;
}

static const string kS2IndexNearStage("GEO_NEAR_2DSPHERE");

GeoNear2DSphereStage::GeoNear2DSphereStage(const GeoNearParams& nearParams,
                                           ExpressionContext* expCtx,
                                           WorkingSet* workingSet,
                                           const IndexDescriptor* s2Index)
    : NearStage(expCtx, kS2IndexNearStage.c_str(), STAGE_GEO_NEAR_2DSPHERE, workingSet, s2Index),
      _nearParams(nearParams),
      _fullBounds(geoNearDistanceBounds(*nearParams.nearQuery)),
      _currBounds(_fullBounds.center(), -1, _fullBounds.getInner()),
      _boundsIncrement(0.0) {
    _specificStats.keyPattern = s2Index->keyPattern();
    _specificStats.indexName = s2Index->indexName();
    _specificStats.indexVersion = static_cast<int>(s2Index->version());

    // initialize2dsphereParams() does not require the collator during the GEO_NEAR_2DSPHERE stage.
    // It only requires the collator for index key generation. For query execution,
    // _nearParams.baseBounds should have collator-generated comparison keys in place of raw
    // strings, and _nearParams.filter should have the collator.
    const CollatorInterface* collator = nullptr;
    ExpressionParams::initialize2dsphereParams(s2Index->infoObj(), collator, &_indexParams);
}

GeoNear2DSphereStage::~GeoNear2DSphereStage() {}

namespace {

S2Region* buildS2Region(const R2Annulus& sphereBounds) {
    // Internal bounds come in SPHERE CRS units
    // i.e. center is lon/lat, inner/outer are in meters
    S2LatLng latLng = S2LatLng::FromDegrees(sphereBounds.center().y, sphereBounds.center().x);

    vector<S2Region*> regions;

    const double inner = sphereBounds.getInner();
    const double outer = sphereBounds.getOuter();

    if (inner > 0) {
        // TODO: Currently a workaround to fix occasional floating point errors
        // in S2, where sometimes points near the axis will not be returned
        // if inner == 0
        S2Cap innerCap = S2Cap::FromAxisAngle(latLng.ToPoint(),
                                              S1Angle::Radians(inner / kRadiusOfEarthInMeters));
        innerCap = innerCap.Complement();
        regions.push_back(new S2Cap(innerCap));
    }

    // We only need to max bound if this is not a full search of the Earth
    // Using the constant here is important since we use the min of kMaxEarthDistance
    // and the actual bounds passed in to set up the search area.
    if (outer < kMaxEarthDistanceInMeters) {
        S2Cap outerCap = S2Cap::FromAxisAngle(latLng.ToPoint(),
                                              S1Angle::Radians(outer / kRadiusOfEarthInMeters));
        regions.push_back(new S2Cap(outerCap));
    }

    // if annulus is entire world, return a full cap
    if (regions.empty()) {
        regions.push_back(new S2Cap(S2Cap::Full()));
    }

    // Takes ownership of caps
    return new S2RegionIntersection(&regions);
}
}  // namespace

GeoNear2DSphereStage::DensityEstimator::DensityEstimator(PlanStage::Children* children,
                                                         const GeoNearParams* nearParams,
                                                         const S2IndexingParams& indexParams,
                                                         const R2Annulus& fullBounds)
    : _children(children),
      _nearParams(nearParams),
      _indexParams(indexParams),
      _fullBounds(fullBounds),
      _currentLevel(0) {
    // cellId.AppendVertexNeighbors(level, output) requires level < finest,
    // so we use the minimum of max_level - 1 and the user specified finest
    int level = std::min(S2::kMaxCellLevel - 1, gInternalQueryS2GeoFinestLevel.load());
    _currentLevel = std::max(0, level);
}

// Setup the index scan stage for neighbors at this level.
void GeoNear2DSphereStage::DensityEstimator::buildIndexScan(ExpressionContext* expCtx,
                                                            WorkingSet* workingSet,
                                                            const IndexDescriptor* s2Index) {
    IndexScanParams scanParams(expCtx->opCtx, s2Index);
    scanParams.bounds = _nearParams->baseBounds;

    // Because the planner doesn't yet set up 2D index bounds, do it ourselves here
    const string s2Field = _nearParams->nearQuery->field;
    const int s2FieldPosition = getFieldPosition(s2Index, s2Field);
    fassert(28677, s2FieldPosition >= 0);
    OrderedIntervalList* coveredIntervals = &scanParams.bounds.fields[s2FieldPosition];
    coveredIntervals->intervals.clear();

    // Find 4 neighbors (3 neighbors at face vertex) at current level.
    const S2CellId& centerId = _nearParams->nearQuery->centroid->cell.id();
    vector<S2CellId> neighbors;

    // The search area expands 4X each time.
    // Return the neighbors of closest vertex to this cell at the given level.
    invariant(_currentLevel < centerId.level());
    centerId.AppendVertexNeighbors(_currentLevel, &neighbors);

    ExpressionMapping::S2CellIdsToIntervals(neighbors, _indexParams.indexVersion, coveredIntervals);

    // Index scan
    invariant(!_indexScan);
    _indexScan = new IndexScan(expCtx, scanParams, workingSet, nullptr);
    _children->emplace_back(_indexScan);
}

PlanStage::StageState GeoNear2DSphereStage::DensityEstimator::work(ExpressionContext* expCtx,
                                                                   WorkingSet* workingSet,
                                                                   const IndexDescriptor* s2Index,
                                                                   WorkingSetID* out,
                                                                   double* estimatedDistance) {
    if (!_indexScan) {
        // Setup index scan stage for current level.
        buildIndexScan(expCtx, workingSet, s2Index);
    }

    WorkingSetID workingSetID;
    PlanStage::StageState state = _indexScan->work(&workingSetID);

    if (state == PlanStage::IS_EOF) {
        // We ran through the neighbors but found nothing.
        //
        // Before going to the next-coarsest level, check whether our search area contains the
        // entire search annulus, since we don't want to spend time doing density estimation over
        // areas that are much larger than the requested $maxDistance.
        //
        // The search area consists of four cells at level L. Within its cell, the closest vertex to
        // the search point must be the vertex shared with the other three cells. If the search
        // point lies in the upper left cell, this means that it must lie in the lower right
        // sub-cell at level L+1.
        //
        //   +-----------+-----------+
        //   |           |           |
        //   |        S  |           |
        //   +     +-----+           |
        //   |     | o   |           |
        //   |     |     |           |
        //   +-----+-----+-----------+
        //   |           |           |
        //   |           |           |
        //   |           |           |
        //   |           |           |
        //   |           |           |
        //   +-----------+-----------+
        //
        // In the diagram above, S is the width of the cell at level L+1. We can determine a lower
        // bound for the width any cell at this level, i.e. S > minWidth(L+1). As long as the outer
        // radius of the search annulus is less than minWidth(L+1), it must be entirely contained
        // within these four level L cells.
        if (_fullBounds.getOuter() <
            (S2::kMinWidth.GetValue(_currentLevel + 1) * kRadiusOfEarthInMeters)) {
            // We're covering the entire search annulus. Return EOF to indicate we're done.
            *estimatedDistance = S2::kMinWidth.GetValue(_currentLevel + 1) * kRadiusOfEarthInMeters;
            return PlanStage::IS_EOF;
        }

        if (_currentLevel > 0) {
            // Advance to the next level and search again.
            _currentLevel--;
            // Reset index scan for the next level.
            invariant(_children->back().get() == _indexScan);
            _indexScan = nullptr;
            _children->pop_back();
            return PlanStage::NEED_TIME;
        }

        // We are already at the top level.
        *estimatedDistance = S2::kAvgEdge.GetValue(_currentLevel) * kRadiusOfEarthInMeters;
        return PlanStage::IS_EOF;
    } else if (state == PlanStage::ADVANCED) {
        // We found something!
        *estimatedDistance = S2::kAvgEdge.GetValue(_currentLevel) * kRadiusOfEarthInMeters;
        // Clean up working set.
        workingSet->free(workingSetID);
        return PlanStage::IS_EOF;
    } else if (state == PlanStage::NEED_YIELD) {
        *out = workingSetID;
    }

    // Propagate NEED_TIME or errors
    return state;
}


PlanStage::StageState GeoNear2DSphereStage::initialize(OperationContext* opCtx,
                                                       WorkingSet* workingSet,
                                                       WorkingSetID* out) {
    if (!_densityEstimator) {
        _densityEstimator.reset(
            new DensityEstimator(&_children, &_nearParams, _indexParams, _fullBounds));
    }

    double estimatedDistance;
    PlanStage::StageState state =
        _densityEstimator->work(expCtx(), workingSet, indexDescriptor(), out, &estimatedDistance);

    if (state == IS_EOF) {
        // We find a document in 4 neighbors at current level, but didn't at previous level.
        //
        // Assuming cell size at current level is d and data is even distributed, the distance
        // between two nearest points are at least d. The following circle with radius of 3 * d
        // covers PI * 9 * d^2, giving at most 30 documents.
        //
        // At the coarsest level, the search area is the whole earth.
        _boundsIncrement = 3 * estimatedDistance;
        invariant(_boundsIncrement > 0.0);

        // Clean up
        _densityEstimator.reset(nullptr);
    }

    return state;
}

StatusWith<NearStage::CoveredInterval*>  //
GeoNear2DSphereStage::nextInterval(OperationContext* opCtx,
                                   WorkingSet* workingSet,
                                   const Collection* collection) {
    // The search is finished if we searched at least once and all the way to the edge
    if (_currBounds.getInner() >= 0 && _currBounds.getOuter() == _fullBounds.getOuter()) {
        return StatusWith<CoveredInterval*>(nullptr);
    }

    //
    // Setup the next interval
    //

    if (!_specificStats.intervalStats.empty()) {
        const IntervalStats& lastIntervalStats = _specificStats.intervalStats.back();

        // TODO: Generally we want small numbers of results fast, then larger numbers later
        if (lastIntervalStats.numResultsReturned < 300)
            _boundsIncrement *= 2;
        else if (lastIntervalStats.numResultsReturned > 600)
            _boundsIncrement /= 2;
    }

    invariant(_boundsIncrement > 0.0);

    R2Annulus nextBounds(_currBounds.center(),
                         _currBounds.getOuter(),
                         min(_currBounds.getOuter() + _boundsIncrement, _fullBounds.getOuter()));

    bool isLastInterval = (nextBounds.getOuter() == _fullBounds.getOuter());
    _currBounds = nextBounds;

    //
    // Setup the covering region and stages for this interval
    //

    IndexScanParams scanParams(opCtx, indexDescriptor());

    // This does force us to do our own deduping of results.
    scanParams.bounds = _nearParams.baseBounds;

    // Because the planner doesn't yet set up 2D index bounds, do it ourselves here
    const string s2Field = _nearParams.nearQuery->field;
    const int s2FieldPosition = getFieldPosition(indexDescriptor(), s2Field);
    fassert(28678, s2FieldPosition >= 0);
    scanParams.bounds.fields[s2FieldPosition].intervals.clear();
    std::unique_ptr<S2Region> region(buildS2Region(_currBounds));

    std::vector<S2CellId> cover = ExpressionMapping::get2dsphereCovering(*region);

    // Generate a covering that does not intersect with any previous coverings
    S2CellUnion coverUnion;
    coverUnion.InitSwap(&cover);
    invariant(cover.empty());
    S2CellUnion diffUnion;
    diffUnion.GetDifference(&coverUnion, &_scannedCells);
    for (auto cellId : diffUnion.cell_ids()) {
        if (region->MayIntersect(S2Cell(cellId))) {
            cover.push_back(cellId);
        }
    }

    // Add the cells in this covering to the _scannedCells union
    _scannedCells.Add(cover);

    OrderedIntervalList* coveredIntervals = &scanParams.bounds.fields[s2FieldPosition];
    ExpressionMapping::S2CellIdsToIntervalsWithParents(cover, _indexParams, coveredIntervals);

    auto scan = std::make_unique<IndexScan>(expCtx(), scanParams, workingSet, nullptr);

    // FetchStage owns index scan
    _children.emplace_back(std::make_unique<FetchStage>(
        expCtx(), workingSet, std::move(scan), _nearParams.filter, collection));

    return StatusWith<CoveredInterval*>(new CoveredInterval(
        _children.back().get(), nextBounds.getInner(), nextBounds.getOuter(), isLastInterval));
}

StatusWith<double> GeoNear2DSphereStage::computeDistance(WorkingSetMember* member) {
    return computeGeoNearDistance(_nearParams, member);
}

}  // namespace mongo