1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
|
/**
* Copyright (C) 2018-present MongoDB, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the Server Side Public License, version 1,
* as published by MongoDB, Inc.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Server Side Public License for more details.
*
* You should have received a copy of the Server Side Public License
* along with this program. If not, see
* <http://www.mongodb.com/licensing/server-side-public-license>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the Server Side Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kQuery
#include "mongo/platform/basic.h"
#include "mongo/db/exec/multi_plan.h"
#include <algorithm>
#include <math.h>
#include "mongo/base/owned_pointer_vector.h"
#include "mongo/db/catalog/collection.h"
#include "mongo/db/catalog/database.h"
#include "mongo/db/client.h"
#include "mongo/db/concurrency/write_conflict_exception.h"
#include "mongo/db/exec/scoped_timer.h"
#include "mongo/db/exec/working_set_common.h"
#include "mongo/db/query/explain.h"
#include "mongo/db/query/plan_cache.h"
#include "mongo/db/query/plan_ranker.h"
#include "mongo/stdx/memory.h"
#include "mongo/util/log.h"
#include "mongo/util/mongoutils/str.h"
namespace mongo {
using std::endl;
using std::list;
using std::unique_ptr;
using std::vector;
using stdx::make_unique;
// static
const char* MultiPlanStage::kStageType = "MULTI_PLAN";
MultiPlanStage::MultiPlanStage(OperationContext* opCtx,
const Collection* collection,
CanonicalQuery* cq,
CachingMode cachingMode)
: PlanStage(kStageType, opCtx),
_collection(collection),
_cachingMode(cachingMode),
_query(cq),
_bestPlanIdx(kNoSuchPlan),
_backupPlanIdx(kNoSuchPlan),
_failure(false),
_failureCount(0),
_statusMemberId(WorkingSet::INVALID_ID) {
invariant(_collection);
}
void MultiPlanStage::addPlan(std::unique_ptr<QuerySolution> solution,
PlanStage* root,
WorkingSet* ws) {
_candidates.push_back(CandidatePlan(std::move(solution), root, ws));
_children.emplace_back(root);
}
bool MultiPlanStage::isEOF() {
if (_failure) {
return true;
}
// If _bestPlanIdx hasn't been found, can't be at EOF
if (!bestPlanChosen()) {
return false;
}
// We must have returned all our cached results
// and there must be no more results from the best plan.
CandidatePlan& bestPlan = _candidates[_bestPlanIdx];
return bestPlan.results.empty() && bestPlan.root->isEOF();
}
PlanStage::StageState MultiPlanStage::doWork(WorkingSetID* out) {
if (_failure) {
*out = _statusMemberId;
return PlanStage::FAILURE;
}
CandidatePlan& bestPlan = _candidates[_bestPlanIdx];
// Look for an already produced result that provides the data the caller wants.
if (!bestPlan.results.empty()) {
*out = bestPlan.results.front();
bestPlan.results.pop();
return PlanStage::ADVANCED;
}
// best plan had no (or has no more) cached results
StageState state = bestPlan.root->work(out);
if (PlanStage::FAILURE == state && hasBackupPlan()) {
LOG(5) << "Best plan errored out switching to backup";
// Uncache the bad solution if we fall back
// on the backup solution.
//
// XXX: Instead of uncaching we should find a way for the
// cached plan runner to fall back on a different solution
// if the best solution fails. Alternatively we could try to
// defer cache insertion to be after the first produced result.
_collection->infoCache()->getPlanCache()->remove(*_query).transitional_ignore();
_bestPlanIdx = _backupPlanIdx;
_backupPlanIdx = kNoSuchPlan;
return _candidates[_bestPlanIdx].root->work(out);
}
if (hasBackupPlan() && PlanStage::ADVANCED == state) {
LOG(5) << "Best plan had a blocking stage, became unblocked";
_backupPlanIdx = kNoSuchPlan;
}
return state;
}
Status MultiPlanStage::tryYield(PlanYieldPolicy* yieldPolicy) {
// These are the conditions which can cause us to yield:
// 1) The yield policy's timer elapsed, or
// 2) some stage requested a yield, or
// 3) we need to yield and retry due to a WriteConflictException.
// In all cases, the actual yielding happens here.
if (yieldPolicy->shouldYieldOrInterrupt()) {
auto yieldStatus = yieldPolicy->yieldOrInterrupt();
if (!yieldStatus.isOK()) {
_failure = true;
_statusMemberId =
WorkingSetCommon::allocateStatusMember(_candidates[0].ws, yieldStatus);
return yieldStatus;
}
}
return Status::OK();
}
// static
size_t MultiPlanStage::getTrialPeriodWorks(OperationContext* opCtx, const Collection* collection) {
// Run each plan some number of times. This number is at least as great as
// 'internalQueryPlanEvaluationWorks', but may be larger for big collections.
size_t numWorks = internalQueryPlanEvaluationWorks.load();
if (NULL != collection) {
// For large collections, the number of works is set to be this
// fraction of the collection size.
double fraction = internalQueryPlanEvaluationCollFraction;
numWorks = std::max(static_cast<size_t>(internalQueryPlanEvaluationWorks.load()),
static_cast<size_t>(fraction * collection->numRecords(opCtx)));
}
return numWorks;
}
// static
size_t MultiPlanStage::getTrialPeriodNumToReturn(const CanonicalQuery& query) {
// Determine the number of results which we will produce during the plan
// ranking phase before stopping.
size_t numResults = static_cast<size_t>(internalQueryPlanEvaluationMaxResults.load());
if (query.getQueryRequest().getNToReturn()) {
numResults =
std::min(static_cast<size_t>(*query.getQueryRequest().getNToReturn()), numResults);
} else if (query.getQueryRequest().getLimit()) {
numResults = std::min(static_cast<size_t>(*query.getQueryRequest().getLimit()), numResults);
}
return numResults;
}
Status MultiPlanStage::pickBestPlan(PlanYieldPolicy* yieldPolicy) {
// Adds the amount of time taken by pickBestPlan() to executionTimeMillis. There's lots of
// execution work that happens here, so this is needed for the time accounting to
// make sense.
ScopedTimer timer(getClock(), &_commonStats.executionTimeMillis);
size_t numWorks = getTrialPeriodWorks(getOpCtx(), _collection);
size_t numResults = getTrialPeriodNumToReturn(*_query);
// Work the plans, stopping when a plan hits EOF or returns some
// fixed number of results.
for (size_t ix = 0; ix < numWorks; ++ix) {
bool moreToDo = workAllPlans(numResults, yieldPolicy);
if (!moreToDo) {
break;
}
}
if (_failure) {
invariant(WorkingSet::INVALID_ID != _statusMemberId);
WorkingSetMember* member = _candidates[0].ws->get(_statusMemberId);
return WorkingSetCommon::getMemberStatus(*member);
}
// After picking best plan, ranking will own plan stats from
// candidate solutions (winner and losers).
std::unique_ptr<PlanRankingDecision> ranking(new PlanRankingDecision);
_bestPlanIdx = PlanRanker::pickBestPlan(_candidates, ranking.get());
verify(_bestPlanIdx >= 0 && _bestPlanIdx < static_cast<int>(_candidates.size()));
// Copy candidate order. We will need this to sort candidate stats for explain
// after transferring ownership of 'ranking' to plan cache.
std::vector<size_t> candidateOrder = ranking->candidateOrder;
CandidatePlan& bestCandidate = _candidates[_bestPlanIdx];
const auto& alreadyProduced = bestCandidate.results;
const auto& bestSolution = bestCandidate.solution;
LOG(5) << "Winning solution:\n" << redact(bestSolution->toString());
LOG(2) << "Winning plan: " << Explain::getPlanSummary(bestCandidate.root);
_backupPlanIdx = kNoSuchPlan;
if (bestSolution->hasBlockingStage && (0 == alreadyProduced.size())) {
LOG(5) << "Winner has blocking stage, looking for backup plan...";
for (size_t ix = 0; ix < _candidates.size(); ++ix) {
if (!_candidates[ix].solution->hasBlockingStage) {
LOG(5) << "Candidate " << ix << " is backup child";
_backupPlanIdx = ix;
break;
}
}
}
// Even if the query is of a cacheable shape, the caller might have indicated that we shouldn't
// write to the plan cache.
//
// TODO: We can remove this if we introduce replanning logic to the SubplanStage.
bool canCache = (_cachingMode == CachingMode::AlwaysCache);
if (_cachingMode == CachingMode::SometimesCache) {
// In "sometimes cache" mode, we cache unless we hit one of the special cases below.
canCache = true;
if (ranking->tieForBest) {
// The winning plan tied with the runner-up and we're using "sometimes cache" mode. We
// will not write a plan cache entry.
canCache = false;
// These arrays having two or more entries is implied by 'tieForBest'.
invariant(ranking->scores.size() > 1U);
invariant(ranking->candidateOrder.size() > 1U);
size_t winnerIdx = ranking->candidateOrder[0];
size_t runnerUpIdx = ranking->candidateOrder[1];
LOG(1) << "Winning plan tied with runner-up. Not caching."
<< " ns: " << _collection->ns() << " " << redact(_query->toStringShort())
<< " winner score: " << ranking->scores[0]
<< " winner summary: " << Explain::getPlanSummary(_candidates[winnerIdx].root)
<< " runner-up score: " << ranking->scores[1] << " runner-up summary: "
<< Explain::getPlanSummary(_candidates[runnerUpIdx].root);
}
if (alreadyProduced.empty()) {
// We're using the "sometimes cache" mode, and the winning plan produced no results
// during the plan ranking trial period. We will not write a plan cache entry.
canCache = false;
size_t winnerIdx = ranking->candidateOrder[0];
LOG(1) << "Winning plan had zero results. Not caching."
<< " ns: " << _collection->ns() << " " << redact(_query->toStringShort())
<< " winner score: " << ranking->scores[0]
<< " winner summary: " << Explain::getPlanSummary(_candidates[winnerIdx].root);
}
}
// Store the choice we just made in the cache, if the query is of a type that is safe to
// cache.
if (PlanCache::shouldCacheQuery(*_query) && canCache) {
// Create list of candidate solutions for the cache with
// the best solution at the front.
std::vector<QuerySolution*> solutions;
// Generate solutions and ranking decisions sorted by score.
for (size_t orderingIndex = 0; orderingIndex < candidateOrder.size(); ++orderingIndex) {
// index into candidates/ranking
size_t ix = candidateOrder[orderingIndex];
solutions.push_back(_candidates[ix].solution.get());
}
// Check solution cache data. Do not add to cache if
// we have any invalid SolutionCacheData data.
// XXX: One known example is 2D queries
bool validSolutions = true;
for (size_t ix = 0; ix < solutions.size(); ++ix) {
if (NULL == solutions[ix]->cacheData.get()) {
LOG(5) << "Not caching query because this solution has no cache data: "
<< redact(solutions[ix]->toString());
validSolutions = false;
break;
}
}
if (validSolutions) {
_collection->infoCache()
->getPlanCache()
->set(*_query,
solutions,
std::move(ranking),
getOpCtx()->getServiceContext()->getPreciseClockSource()->now())
.transitional_ignore();
}
}
return Status::OK();
}
bool MultiPlanStage::workAllPlans(size_t numResults, PlanYieldPolicy* yieldPolicy) {
bool doneWorking = false;
for (size_t ix = 0; ix < _candidates.size(); ++ix) {
CandidatePlan& candidate = _candidates[ix];
if (candidate.failed) {
continue;
}
// Might need to yield between calls to work due to the timer elapsing.
if (!(tryYield(yieldPolicy)).isOK()) {
return false;
}
WorkingSetID id = WorkingSet::INVALID_ID;
PlanStage::StageState state = candidate.root->work(&id);
if (PlanStage::ADVANCED == state) {
// Save result for later.
WorkingSetMember* member = candidate.ws->get(id);
// Ensure that the BSONObj underlying the WorkingSetMember is owned in case we choose to
// return the results from the 'candidate' plan.
member->makeObjOwnedIfNeeded();
candidate.results.push(id);
// Once a plan returns enough results, stop working.
if (candidate.results.size() >= numResults) {
doneWorking = true;
}
} else if (PlanStage::IS_EOF == state) {
// First plan to hit EOF wins automatically. Stop evaluating other plans.
// Assumes that the ranking will pick this plan.
doneWorking = true;
} else if (PlanStage::NEED_YIELD == state) {
invariant(id == WorkingSet::INVALID_ID);
if (!yieldPolicy->canAutoYield()) {
throw WriteConflictException();
}
if (yieldPolicy->canAutoYield()) {
yieldPolicy->forceYield();
}
if (!(tryYield(yieldPolicy)).isOK()) {
return false;
}
} else if (PlanStage::NEED_TIME != state) {
// FAILURE or DEAD. Do we want to just tank that plan and try the rest? We
// probably want to fail globally as this shouldn't happen anyway.
candidate.failed = true;
++_failureCount;
// Propagate most recent seen failure to parent.
if (PlanStage::FAILURE == state) {
_statusMemberId = id;
}
if (_failureCount == _candidates.size()) {
_failure = true;
return false;
}
}
}
return !doneWorking;
}
bool MultiPlanStage::hasBackupPlan() const {
return kNoSuchPlan != _backupPlanIdx;
}
bool MultiPlanStage::bestPlanChosen() const {
return kNoSuchPlan != _bestPlanIdx;
}
int MultiPlanStage::bestPlanIdx() const {
return _bestPlanIdx;
}
QuerySolution* MultiPlanStage::bestSolution() {
if (_bestPlanIdx == kNoSuchPlan)
return NULL;
return _candidates[_bestPlanIdx].solution.get();
}
unique_ptr<PlanStageStats> MultiPlanStage::getStats() {
_commonStats.isEOF = isEOF();
unique_ptr<PlanStageStats> ret = make_unique<PlanStageStats>(_commonStats, STAGE_MULTI_PLAN);
ret->specific = make_unique<MultiPlanStats>(_specificStats);
for (auto&& child : _children) {
ret->children.emplace_back(child->getStats());
}
return ret;
}
const SpecificStats* MultiPlanStage::getSpecificStats() const {
return &_specificStats;
}
} // namespace mongo
|