summaryrefslogtreecommitdiff
path: root/src/mongo/db/exec/sort_key_generator.cpp
blob: f7337a586c06707490b4614fa74e38b0df7bd418 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/**
 *    Copyright (C) 2015 MongoDB Inc.
 *
 *    This program is free software: you can redistribute it and/or  modify
 *    it under the terms of the GNU Affero General Public License, version 3,
 *    as published by the Free Software Foundation.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU Affero General Public License for more details.
 *
 *    You should have received a copy of the GNU Affero General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the GNU Affero General Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kQuery

#include "mongo/platform/basic.h"

#include "mongo/db/exec/sort_key_generator.h"

#include <vector>

#include "mongo/db/catalog/collection.h"
#include "mongo/db/exec/scoped_timer.h"
#include "mongo/db/exec/working_set.h"
#include "mongo/db/exec/working_set_common.h"
#include "mongo/db/exec/working_set_computed_data.h"
#include "mongo/db/matcher/extensions_callback_noop.h"
#include "mongo/db/query/query_planner.h"
#include "mongo/stdx/memory.h"
#include "mongo/util/log.h"

namespace mongo {

//
// SortKeyGenerator
//

SortKeyGenerator::SortKeyGenerator(const BSONObj& sortSpec, const BSONObj& queryObj) {
    _hasBounds = false;
    _sortHasMeta = false;
    _rawSortSpec = sortSpec;

    // 'sortSpec' can be a mix of $meta and index key expressions.  We pick it apart so that
    // we only generate Btree keys for the index key expressions.

    // The Btree key fields go in here.  We pass this fake index key pattern to the Btree
    // key generator below as part of generating sort keys for the docs.
    BSONObjBuilder btreeBob;

    BSONObjIterator it(sortSpec);
    while (it.more()) {
        BSONElement elt = it.next();
        if (elt.isNumber()) {
            // Btree key.  elt (should be) foo: 1 or foo: -1.
            btreeBob.append(elt);
        } else if (LiteParsedQuery::isTextScoreMeta(elt)) {
            _sortHasMeta = true;
        } else {
            // Sort spec. should have been validated before here.
            verify(false);
        }
    }

    // The fake index key pattern used to generate Btree keys.
    _btreeObj = btreeBob.obj();

    // If we're just sorting by meta, don't bother with all the key stuff.
    if (_btreeObj.isEmpty()) {
        return;
    }

    // We'll need to treat arrays as if we were to create an index over them. that is,
    // we may need to unnest the first level and consider each array element to decide
    // the sort order.
    std::vector<const char*> fieldNames;
    std::vector<BSONElement> fixed;
    BSONObjIterator btreeIt(_btreeObj);
    while (btreeIt.more()) {
        BSONElement patternElt = btreeIt.next();
        fieldNames.push_back(patternElt.fieldName());
        fixed.push_back(BSONElement());
    }

    _keyGen.reset(new BtreeKeyGeneratorV1(fieldNames, fixed, false /* not sparse */));

    // The bounds checker only works on the Btree part of the sort key.
    getBoundsForSort(queryObj, _btreeObj);

    if (_hasBounds) {
        _boundsChecker.reset(new IndexBoundsChecker(&_bounds, _btreeObj, 1 /* == order */));
    }
}

Status SortKeyGenerator::getSortKey(const WorkingSetMember& member, BSONObj* objOut) const {
    StatusWith<BSONObj> sortKey = BSONObj();

    if (member.hasObj()) {
        sortKey = getSortKeyFromObject(member);
    } else {
        sortKey = getSortKeyFromIndexKey(member);
    }
    if (!sortKey.isOK()) {
        return sortKey.getStatus();
    }

    if (!_sortHasMeta) {
        *objOut = sortKey.getValue();
        return Status::OK();
    }

    BSONObjBuilder mergedKeyBob;

    // Merge metadata into the key.
    BSONObjIterator it(_rawSortSpec);
    BSONObjIterator sortKeyIt(sortKey.getValue());
    while (it.more()) {
        BSONElement elt = it.next();
        if (elt.isNumber()) {
            // Merge btree key elt.
            mergedKeyBob.append(sortKeyIt.next());
        } else if (LiteParsedQuery::isTextScoreMeta(elt)) {
            // Add text score metadata
            double score = 0.0;
            if (member.hasComputed(WSM_COMPUTED_TEXT_SCORE)) {
                const TextScoreComputedData* scoreData = static_cast<const TextScoreComputedData*>(
                    member.getComputed(WSM_COMPUTED_TEXT_SCORE));
                score = scoreData->getScore();
            }
            mergedKeyBob.append("$metaTextScore", score);
        }
    }

    *objOut = mergedKeyBob.obj();
    return Status::OK();
}

StatusWith<BSONObj> SortKeyGenerator::getSortKeyFromIndexKey(const WorkingSetMember& member) const {
    invariant(member.getState() == WorkingSetMember::RID_AND_IDX);
    invariant(!_sortHasMeta);

    BSONObjBuilder sortKeyObj;
    for (BSONElement specElt : _rawSortSpec) {
        invariant(specElt.isNumber());
        BSONElement sortKeyElt;
        invariant(member.getFieldDotted(specElt.fieldName(), &sortKeyElt));
        sortKeyObj.appendAs(sortKeyElt, "");
    }

    return sortKeyObj.obj();
}

StatusWith<BSONObj> SortKeyGenerator::getSortKeyFromObject(const WorkingSetMember& member) const {
    // Not sorting by anything in the key, just bail out early.
    if (_btreeObj.isEmpty()) {
        return BSONObj();
    }

    // We will sort '_data' in the same order an index over '_pattern' would have.  This is
    // tricky.  Consider the sort pattern {a:1} and the document {a:[1, 10]}. We have
    // potentially two keys we could use to sort on. Here we extract these keys.
    BSONObjCmp patternCmp(_btreeObj);
    BSONObjSet keys(patternCmp);

    try {
        _keyGen->getKeys(member.obj.value(), &keys);
    } catch (const UserException& e) {
        // Probably a parallel array.
        if (BtreeKeyGenerator::ParallelArraysCode == e.getCode()) {
            return Status(ErrorCodes::BadValue, "cannot sort with keys that are parallel arrays");
        } else {
            return e.toStatus();
        }
    } catch (...) {
        return Status(ErrorCodes::InternalError, "unknown error during sort key generation");
    }

    // Key generator isn't sparse so we should at least get an all-null key.
    invariant(!keys.empty());

    // No bounds?  No problem!  Use the first key.
    if (!_hasBounds) {
        // Note that we sort 'keys' according to the pattern '_btreeObj'.
        return *keys.begin();
    }

    // To decide which key to use in sorting, we must consider not only the sort pattern but
    // the query.  Assume we have the query {a: {$gte: 5}} and a document {a:1}.  That
    // document wouldn't match the query.  As such, the key '1' in an array {a: [1, 10]}
    // should not be considered as being part of the result set and thus that array cannot
    // sort using the key '1'.  To ensure that the keys we sort by are valid w.r.t. the
    // query we use a bounds checker.
    verify(NULL != _boundsChecker.get());
    for (BSONObjSet::const_iterator it = keys.begin(); it != keys.end(); ++it) {
        if (_boundsChecker->isValidKey(*it)) {
            return *it;
        }
    }

    // No key is in our bounds.
    // TODO: will this ever happen?  don't think it should.
    return *keys.begin();
}

void SortKeyGenerator::getBoundsForSort(const BSONObj& queryObj, const BSONObj& sortObj) {
    QueryPlannerParams params;
    params.options = QueryPlannerParams::NO_TABLE_SCAN;

    // We're creating a "virtual index" with key pattern equal to the sort order.
    IndexEntry sortOrder(
        sortObj, IndexNames::BTREE, true, false, false, "doesnt_matter", NULL, BSONObj());
    params.indices.push_back(sortOrder);

    auto statusWithQueryForSort = CanonicalQuery::canonicalize(
        NamespaceString("fake.ns"), queryObj, ExtensionsCallbackNoop());
    verify(statusWithQueryForSort.isOK());
    std::unique_ptr<CanonicalQuery> queryForSort = std::move(statusWithQueryForSort.getValue());

    std::vector<QuerySolution*> solns;
    LOG(5) << "Sort key generation: Planning to obtain bounds for sort.";
    QueryPlanner::plan(*queryForSort, params, &solns);

    // TODO: are there ever > 1 solns?  If so, do we look for a specific soln?
    if (1 == solns.size()) {
        IndexScanNode* ixScan = NULL;
        QuerySolutionNode* rootNode = solns[0]->root.get();

        if (rootNode->getType() == STAGE_FETCH) {
            FetchNode* fetchNode = static_cast<FetchNode*>(rootNode);
            if (fetchNode->children[0]->getType() != STAGE_IXSCAN) {
                delete solns[0];
                // No bounds.
                return;
            }
            ixScan = static_cast<IndexScanNode*>(fetchNode->children[0]);
        } else if (rootNode->getType() == STAGE_IXSCAN) {
            ixScan = static_cast<IndexScanNode*>(rootNode);
        }

        if (ixScan) {
            _bounds.fields.swap(ixScan->bounds.fields);
            _hasBounds = true;
        }
    }

    for (size_t i = 0; i < solns.size(); ++i) {
        delete solns[i];
    }
}

//
// SortKeyGeneratorStage
//

const char* SortKeyGeneratorStage::kStageType = "SORT_KEY_GENERATOR";

SortKeyGeneratorStage::SortKeyGeneratorStage(OperationContext* opCtx,
                                             PlanStage* child,
                                             WorkingSet* ws,
                                             const BSONObj& sortSpecObj,
                                             const BSONObj& queryObj)
    : PlanStage(kStageType, opCtx), _ws(ws), _sortSpec(sortSpecObj), _query(queryObj) {
    _children.emplace_back(child);
}

bool SortKeyGeneratorStage::isEOF() {
    return child()->isEOF();
}

PlanStage::StageState SortKeyGeneratorStage::doWork(WorkingSetID* out) {
    if (!_sortKeyGen) {
        _sortKeyGen = stdx::make_unique<SortKeyGenerator>(_sortSpec, _query);
        return PlanStage::NEED_TIME;
    }

    auto stageState = child()->work(out);
    if (stageState == PlanStage::ADVANCED) {
        WorkingSetMember* member = _ws->get(*out);

        BSONObj sortKey;
        Status sortKeyStatus = _sortKeyGen->getSortKey(*member, &sortKey);
        if (!sortKeyStatus.isOK()) {
            *out = WorkingSetCommon::allocateStatusMember(_ws, sortKeyStatus);
            return PlanStage::FAILURE;
        }

        // Add the sort key to the WSM as computed data.
        member->addComputed(new SortKeyComputedData(sortKey));

        return PlanStage::ADVANCED;
    }

    if (stageState == PlanStage::IS_EOF) {
        _commonStats.isEOF = true;
    }

    return stageState;
}

std::unique_ptr<PlanStageStats> SortKeyGeneratorStage::getStats() {
    auto ret = stdx::make_unique<PlanStageStats>(_commonStats, STAGE_SORT_KEY_GENERATOR);
    ret->children.emplace_back(child()->getStats());
    return ret;
}

const SpecificStats* SortKeyGeneratorStage::getSpecificStats() const {
    // No specific stats are tracked for the sort key generation stage.
    return nullptr;
}

}  // namespace mongo