1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
|
/**
* Copyright (C) 2018-present MongoDB, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the Server Side Public License, version 1,
* as published by MongoDB, Inc.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Server Side Public License for more details.
*
* You should have received a copy of the Server Side Public License
* along with this program. If not, see
* <http://www.mongodb.com/licensing/server-side-public-license>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the Server Side Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kQuery
#include "mongo/platform/basic.h"
#include "mongo/db/exec/subplan.h"
#include <memory>
#include <vector>
#include "mongo/db/exec/multi_plan.h"
#include "mongo/db/exec/scoped_timer.h"
#include "mongo/db/matcher/extensions_callback_real.h"
#include "mongo/db/query/collection_query_info.h"
#include "mongo/db/query/get_executor.h"
#include "mongo/db/query/plan_executor.h"
#include "mongo/db/query/planner_access.h"
#include "mongo/db/query/planner_analysis.h"
#include "mongo/db/query/query_planner.h"
#include "mongo/db/query/query_planner_common.h"
#include "mongo/db/query/stage_builder.h"
#include "mongo/util/log.h"
#include "mongo/util/scopeguard.h"
#include "mongo/util/transitional_tools_do_not_use/vector_spooling.h"
namespace mongo {
using std::endl;
using std::unique_ptr;
using std::vector;
const char* SubplanStage::kStageType = "SUBPLAN";
SubplanStage::SubplanStage(OperationContext* opCtx,
const Collection* collection,
WorkingSet* ws,
const QueryPlannerParams& params,
CanonicalQuery* cq)
: RequiresAllIndicesStage(kStageType, opCtx, collection),
_ws(ws),
_plannerParams(params),
_query(cq) {
invariant(cq);
invariant(_query->root()->matchType() == MatchExpression::OR);
invariant(_query->root()->numChildren(),
"Cannot use a SUBPLAN stage for an $or with no children");
}
bool SubplanStage::canUseSubplanning(const CanonicalQuery& query) {
const QueryRequest& qr = query.getQueryRequest();
const MatchExpression* expr = query.root();
// Hint provided
if (!qr.getHint().isEmpty()) {
return false;
}
// Min provided
// Min queries are a special case of hinted queries.
if (!qr.getMin().isEmpty()) {
return false;
}
// Max provided
// Similar to min, max queries are a special case of hinted queries.
if (!qr.getMax().isEmpty()) {
return false;
}
// Tailable cursors won't get cached, just turn into collscans.
if (query.getQueryRequest().isTailable()) {
return false;
}
// We can only subplan rooted $or queries, and only if they have at least one clause.
return MatchExpression::OR == expr->matchType() && expr->numChildren() > 0;
}
Status SubplanStage::planSubqueries() {
_orExpression = _query->root()->shallowClone();
for (size_t i = 0; i < _plannerParams.indices.size(); ++i) {
const IndexEntry& ie = _plannerParams.indices[i];
const auto insertionRes = _indexMap.insert(std::make_pair(ie.identifier, i));
// Be sure the key was not already in the map.
invariant(insertionRes.second);
LOG(5) << "Subplanner: index " << i << " is " << ie;
}
for (size_t i = 0; i < _orExpression->numChildren(); ++i) {
// We need a place to shove the results from planning this branch.
_branchResults.push_back(std::make_unique<BranchPlanningResult>());
BranchPlanningResult* branchResult = _branchResults.back().get();
MatchExpression* orChild = _orExpression->getChild(i);
// Turn the i-th child into its own query.
auto statusWithCQ = CanonicalQuery::canonicalize(getOpCtx(), *_query, orChild);
if (!statusWithCQ.isOK()) {
str::stream ss;
ss << "Can't canonicalize subchild " << orChild->debugString() << " "
<< statusWithCQ.getStatus().reason();
return Status(ErrorCodes::BadValue, ss);
}
branchResult->canonicalQuery = std::move(statusWithCQ.getValue());
// Plan the i-th child. We might be able to find a plan for the i-th child in the plan
// cache. If there's no cached plan, then we generate and rank plans using the MPS.
const auto* planCache = CollectionQueryInfo::get(collection()).getPlanCache();
// Populate branchResult->cachedSolution if an active cachedSolution entry exists.
if (planCache->shouldCacheQuery(*branchResult->canonicalQuery)) {
auto planCacheKey = planCache->computeKey(*branchResult->canonicalQuery);
if (auto cachedSol = planCache->getCacheEntryIfActive(planCacheKey)) {
// We have a CachedSolution. Store it for later.
LOG(5) << "Subplanner: cached plan found for child " << i << " of "
<< _orExpression->numChildren();
branchResult->cachedSolution = std::move(cachedSol);
}
}
if (!branchResult->cachedSolution) {
// No CachedSolution found. We'll have to plan from scratch.
LOG(5) << "Subplanner: planning child " << i << " of " << _orExpression->numChildren();
// We don't set NO_TABLE_SCAN because peeking at the cache data will keep us from
// considering any plan that's a collscan.
invariant(branchResult->solutions.empty());
auto solutions = QueryPlanner::plan(*branchResult->canonicalQuery, _plannerParams);
if (!solutions.isOK()) {
str::stream ss;
ss << "Can't plan for subchild " << branchResult->canonicalQuery->toString() << " "
<< solutions.getStatus().reason();
return Status(ErrorCodes::BadValue, ss);
}
branchResult->solutions = std::move(solutions.getValue());
LOG(5) << "Subplanner: got " << branchResult->solutions.size() << " solutions";
}
}
return Status::OK();
}
namespace {
/**
* On success, applies the index tags from 'branchCacheData' (which represent the winning
* plan for 'orChild') to 'compositeCacheData'.
*/
Status tagOrChildAccordingToCache(PlanCacheIndexTree* compositeCacheData,
SolutionCacheData* branchCacheData,
MatchExpression* orChild,
const std::map<IndexEntry::Identifier, size_t>& indexMap) {
invariant(compositeCacheData);
// We want a well-formed *indexed* solution.
if (nullptr == branchCacheData) {
// For example, we don't cache things for 2d indices.
str::stream ss;
ss << "No cache data for subchild " << orChild->debugString();
return Status(ErrorCodes::NoQueryExecutionPlans, ss);
}
if (SolutionCacheData::USE_INDEX_TAGS_SOLN != branchCacheData->solnType) {
str::stream ss;
ss << "No indexed cache data for subchild " << orChild->debugString();
return Status(ErrorCodes::NoQueryExecutionPlans, ss);
}
// Add the index assignments to our original query.
Status tagStatus =
QueryPlanner::tagAccordingToCache(orChild, branchCacheData->tree.get(), indexMap);
if (!tagStatus.isOK()) {
str::stream ss;
ss << "Failed to extract indices from subchild " << orChild->debugString();
return tagStatus.withContext(ss);
}
// Add the child's cache data to the cache data we're creating for the main query.
compositeCacheData->children.push_back(branchCacheData->tree->clone());
return Status::OK();
}
} // namespace
Status SubplanStage::choosePlanForSubqueries(PlanYieldPolicy* yieldPolicy) {
// This is the skeleton of index selections that is inserted into the cache.
std::unique_ptr<PlanCacheIndexTree> cacheData(new PlanCacheIndexTree());
for (size_t i = 0; i < _orExpression->numChildren(); ++i) {
MatchExpression* orChild = _orExpression->getChild(i);
BranchPlanningResult* branchResult = _branchResults[i].get();
if (branchResult->cachedSolution.get()) {
// We can get the index tags we need out of the cache.
Status tagStatus = tagOrChildAccordingToCache(
cacheData.get(), branchResult->cachedSolution->plannerData[0], orChild, _indexMap);
if (!tagStatus.isOK()) {
return tagStatus;
}
} else if (1 == branchResult->solutions.size()) {
QuerySolution* soln = branchResult->solutions.front().get();
Status tagStatus = tagOrChildAccordingToCache(
cacheData.get(), soln->cacheData.get(), orChild, _indexMap);
if (!tagStatus.isOK()) {
return tagStatus;
}
} else {
// N solutions, rank them.
// We already checked for zero solutions in planSubqueries(...).
invariant(!branchResult->solutions.empty());
_ws->clear();
// We pass the SometimesCache option to the MPS because the SubplanStage currently does
// not use the CachedPlanStage's eviction mechanism. We therefore are more conservative
// about putting a potentially bad plan into the cache in the subplan path. We
// temporarily add the MPS to _children to ensure that we pass down all save/restore
// messages that can be generated if pickBestPlan yields.
invariant(_children.empty());
_children.emplace_back(
std::make_unique<MultiPlanStage>(getOpCtx(),
collection(),
branchResult->canonicalQuery.get(),
MultiPlanStage::CachingMode::SometimesCache));
ON_BLOCK_EXIT([&] {
invariant(_children.size() == 1); // Make sure nothing else was added to _children.
_children.pop_back();
});
MultiPlanStage* multiPlanStage = static_cast<MultiPlanStage*>(child().get());
// Dump all the solutions into the MPS.
for (size_t ix = 0; ix < branchResult->solutions.size(); ++ix) {
auto nextPlanRoot = StageBuilder::build(getOpCtx(),
collection(),
*branchResult->canonicalQuery,
*branchResult->solutions[ix],
_ws);
multiPlanStage->addPlan(
std::move(branchResult->solutions[ix]), std::move(nextPlanRoot), _ws);
}
Status planSelectStat = multiPlanStage->pickBestPlan(yieldPolicy);
if (!planSelectStat.isOK()) {
return planSelectStat;
}
if (!multiPlanStage->bestPlanChosen()) {
str::stream ss;
ss << "Failed to pick best plan for subchild "
<< branchResult->canonicalQuery->toString();
return Status(ErrorCodes::NoQueryExecutionPlans, ss);
}
QuerySolution* bestSoln = multiPlanStage->bestSolution();
// Check that we have good cache data. For example, we don't cache things
// for 2d indices.
if (nullptr == bestSoln->cacheData.get()) {
str::stream ss;
ss << "No cache data for subchild " << orChild->debugString();
return Status(ErrorCodes::NoQueryExecutionPlans, ss);
}
if (SolutionCacheData::USE_INDEX_TAGS_SOLN != bestSoln->cacheData->solnType) {
str::stream ss;
ss << "No indexed cache data for subchild " << orChild->debugString();
return Status(ErrorCodes::NoQueryExecutionPlans, ss);
}
// Add the index assignments to our original query.
Status tagStatus = QueryPlanner::tagAccordingToCache(
orChild, bestSoln->cacheData->tree.get(), _indexMap);
if (!tagStatus.isOK()) {
str::stream ss;
ss << "Failed to extract indices from subchild " << orChild->debugString();
return tagStatus.withContext(ss);
}
cacheData->children.push_back(bestSoln->cacheData->tree->clone());
}
}
// Must do this before using the planner functionality.
prepareForAccessPlanning(_orExpression.get());
// Use the cached index assignments to build solnRoot. Takes ownership of '_orExpression'.
std::unique_ptr<QuerySolutionNode> solnRoot(QueryPlannerAccess::buildIndexedDataAccess(
*_query, std::move(_orExpression), _plannerParams.indices, _plannerParams));
if (!solnRoot) {
str::stream ss;
ss << "Failed to build indexed data path for subplanned query\n";
return Status(ErrorCodes::NoQueryExecutionPlans, ss);
}
LOG(5) << "Subplanner: fully tagged tree is " << redact(solnRoot->toString());
_compositeSolution =
QueryPlannerAnalysis::analyzeDataAccess(*_query, _plannerParams, std::move(solnRoot));
if (nullptr == _compositeSolution.get()) {
str::stream ss;
ss << "Failed to analyze subplanned query";
return Status(ErrorCodes::NoQueryExecutionPlans, ss);
}
LOG(5) << "Subplanner: Composite solution is " << redact(_compositeSolution->toString());
// Use the index tags from planning each branch to construct the composite solution,
// and set that solution as our child stage.
_ws->clear();
auto root =
StageBuilder::build(getOpCtx(), collection(), *_query, *_compositeSolution.get(), _ws);
invariant(_children.empty());
_children.emplace_back(std::move(root));
return Status::OK();
}
Status SubplanStage::choosePlanWholeQuery(PlanYieldPolicy* yieldPolicy) {
// Clear out the working set. We'll start with a fresh working set.
_ws->clear();
// Use the query planning module to plan the whole query.
auto statusWithSolutions = QueryPlanner::plan(*_query, _plannerParams);
if (!statusWithSolutions.isOK()) {
return statusWithSolutions.getStatus().withContext(
str::stream() << "error processing query: " << _query->toString()
<< " planner returned error");
}
auto solutions = std::move(statusWithSolutions.getValue());
if (1 == solutions.size()) {
// Only one possible plan. Run it. Build the stages from the solution.
auto root = StageBuilder::build(getOpCtx(), collection(), *_query, *solutions[0], _ws);
invariant(_children.empty());
_children.emplace_back(std::move(root));
// This SubplanStage takes ownership of the query solution.
_compositeSolution = std::move(solutions.back());
solutions.pop_back();
return Status::OK();
} else {
// Many solutions. Create a MultiPlanStage to pick the best, update the cache,
// and so on. The working set will be shared by all candidate plans.
invariant(_children.empty());
_children.emplace_back(new MultiPlanStage(getOpCtx(), collection(), _query));
MultiPlanStage* multiPlanStage = static_cast<MultiPlanStage*>(child().get());
for (size_t ix = 0; ix < solutions.size(); ++ix) {
if (solutions[ix]->cacheData.get()) {
solutions[ix]->cacheData->indexFilterApplied = _plannerParams.indexFiltersApplied;
}
auto nextPlanRoot =
StageBuilder::build(getOpCtx(), collection(), *_query, *solutions[ix], _ws);
multiPlanStage->addPlan(std::move(solutions[ix]), std::move(nextPlanRoot), _ws);
}
// Delegate the the MultiPlanStage's plan selection facility.
Status planSelectStat = multiPlanStage->pickBestPlan(yieldPolicy);
if (!planSelectStat.isOK()) {
return planSelectStat;
}
return Status::OK();
}
}
Status SubplanStage::pickBestPlan(PlanYieldPolicy* yieldPolicy) {
// Adds the amount of time taken by pickBestPlan() to executionTimeMillis. There's lots of
// work that happens here, so this is needed for the time accounting to make sense.
ScopedTimer timer(getClock(), &_commonStats.executionTimeMillis);
// During plan selection, the list of indices we are using to plan must remain stable, so the
// query will die during yield recovery if any index has been dropped. However, once plan
// selection completes successfully, we no longer need all indices to stick around. The selected
// plan should safely die on yield recovery if it is using the dropped index.
//
// Dismiss the requirement that no indices can be dropped when this method returns.
ON_BLOCK_EXIT([this] { releaseAllIndicesRequirement(); });
// Plan each branch of the $or.
Status subplanningStatus = planSubqueries();
if (!subplanningStatus.isOK()) {
return choosePlanWholeQuery(yieldPolicy);
}
// Use the multi plan stage to select a winning plan for each branch, and then construct
// the overall winning plan from the resulting index tags.
Status subplanSelectStat = choosePlanForSubqueries(yieldPolicy);
if (!subplanSelectStat.isOK()) {
if (subplanSelectStat != ErrorCodes::NoQueryExecutionPlans) {
// Query planning can continue if we failed to find a solution for one of the
// children. Otherwise, it cannot, as it may no longer be safe to access the collection
// (and index may have been dropped, we may have exceeded the time limit, etc).
return subplanSelectStat;
}
return choosePlanWholeQuery(yieldPolicy);
}
return Status::OK();
}
bool SubplanStage::isEOF() {
// If we're running we best have a runner.
invariant(child());
return child()->isEOF();
}
PlanStage::StageState SubplanStage::doWork(WorkingSetID* out) {
if (isEOF()) {
return PlanStage::IS_EOF;
}
invariant(child());
return child()->work(out);
}
unique_ptr<PlanStageStats> SubplanStage::getStats() {
_commonStats.isEOF = isEOF();
unique_ptr<PlanStageStats> ret = std::make_unique<PlanStageStats>(_commonStats, STAGE_SUBPLAN);
ret->children.emplace_back(child()->getStats());
return ret;
}
bool SubplanStage::branchPlannedFromCache(size_t i) const {
return nullptr != _branchResults[i]->cachedSolution.get();
}
const SpecificStats* SubplanStage::getSpecificStats() const {
return nullptr;
}
} // namespace mongo
|