summaryrefslogtreecommitdiff
path: root/src/mongo/db/ftdc/compressor.cpp
blob: ecf9c7ece6c3b7436e2e7e89b1e286bd9b148d50 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/**
 * Copyright (C) 2015 MongoDB Inc.
 *
 * This program is free software: you can redistribute it and/or  modify
 * it under the terms of the GNU Affero General Public License, version 3,
 * as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * As a special exception, the copyright holders give permission to link the
 * code of portions of this program with the OpenSSL library under certain
 * conditions as described in each individual source file and distribute
 * linked combinations including the program with the OpenSSL library. You
 * must comply with the GNU Affero General Public License in all respects
 * for all of the code used other than as permitted herein. If you modify
 * file(s) with this exception, you may extend this exception to your
 * version of the file(s), but you are not obligated to do so. If you do not
 * wish to do so, delete this exception statement from your version. If you
 * delete this exception statement from all source files in the program,
 * then also delete it in the license file.
 */

#include "mongo/platform/basic.h"

#include "mongo/db/ftdc/compressor.h"

#include "mongo/base/data_builder.h"
#include "mongo/db/ftdc/config.h"
#include "mongo/db/ftdc/util.h"
#include "mongo/db/ftdc/varint.h"
#include "mongo/db/jsobj.h"
#include "mongo/db/service_context.h"
#include "mongo/util/assert_util.h"

namespace mongo {

using std::swap;

StatusWith<boost::optional<std::tuple<ConstDataRange, FTDCCompressor::CompressorState, Date_t>>>
FTDCCompressor::addSample(const BSONObj& sample, Date_t date) {
    if (_referenceDoc.isEmpty()) {
        FTDCBSONUtil::extractMetricsFromDocument(sample, sample, &_metrics);
        _reset(sample, date);
        return {boost::none};
    }

    _metrics.resize(0);

    auto swMatches = FTDCBSONUtil::extractMetricsFromDocument(_referenceDoc, sample, &_metrics);

    if (!swMatches.isOK()) {
        return swMatches.getStatus();
    }

    dassert((swMatches.getValue() == false || _metricsCount == _metrics.size()) &&
            _metrics.size() < std::numeric_limits<std::uint32_t>::max());

    // We need to flush the current set of samples since the BSON schema has changed.
    if (!swMatches.getValue()) {
        auto swCompressedSamples = getCompressedSamples();

        if (!swCompressedSamples.isOK()) {
            return swCompressedSamples.getStatus();
        }

        // Set the new sample as the current reference document as we have to start all over
        _reset(sample, date);
        return {std::tuple<ConstDataRange, FTDCCompressor::CompressorState, Date_t>(
            std::get<0>(swCompressedSamples.getValue()),
            CompressorState::kSchemaChanged,
            std::get<1>(swCompressedSamples.getValue()))};
    }


    // Add another sample
    for (std::size_t i = 0; i < _metrics.size(); ++i) {
        // NOTE: This touches a lot of cache lines so that compression code can be more effcient.
        _deltas[getArrayOffset(_maxDeltas, _deltaCount, i)] = _metrics[i] - _prevmetrics[i];
    }

    ++_deltaCount;

    _prevmetrics.clear();
    swap(_prevmetrics, _metrics);

    // If the count is full, flush
    if (_deltaCount == _maxDeltas) {
        auto swCompressedSamples = getCompressedSamples();

        if (!swCompressedSamples.isOK()) {
            return swCompressedSamples.getStatus();
        }

        // Setup so that we treat the next sample as the reference sample
        _referenceDoc = BSONObj();

        return {std::tuple<ConstDataRange, FTDCCompressor::CompressorState, Date_t>(
            std::get<0>(swCompressedSamples.getValue()),
            CompressorState::kCompressorFull,
            std::get<1>(swCompressedSamples.getValue()))};
    }

    // The buffer is not full, inform the caller
    return {boost::none};
}

StatusWith<std::tuple<ConstDataRange, Date_t>> FTDCCompressor::getCompressedSamples() {
    _uncompressedChunkBuffer.setlen(0);

    // Append reference document - BSON Object
    _uncompressedChunkBuffer.appendBuf(_referenceDoc.objdata(), _referenceDoc.objsize());

    // Append count of metrics - uint32 little endian
    _uncompressedChunkBuffer.appendNum(static_cast<std::uint32_t>(_metricsCount));

    // Append count of samples - uint32 little endian
    _uncompressedChunkBuffer.appendNum(static_cast<std::uint32_t>(_deltaCount));

    if (_metricsCount != 0 && _deltaCount != 0) {
        // On average, we do not need all 10 bytes for every sample, worst case, we grow the buffer
        DataBuilder db(_metricsCount * _deltaCount * FTDCVarInt::kMaxSizeBytes64 / 2);

        std::uint32_t zeroesCount = 0;

        // For each set of samples for a particular metric,
        // we think of it is simple array of 64-bit integers we try to compress into a byte array.
        // This is done in three steps for each metric
        // 1. Delta Compression
        //   - i.e., we store the difference between pairs of samples, not their absolute values
        //   - this is done in addSamples
        // 2. Run Length Encoding of zeros
        //   - We find consecutive sets of zeros and represent them as a tuple of (0, count - 1).
        //   - Each memeber is stored as VarInt packed integer
        // 3. Finally, for non-zero members, we store these as VarInt packed
        //
        // These byte arrays are added to a buffer which is then concatenated with other chunks and
        // compressed with ZLIB.
        for (std::uint32_t i = 0; i < _metricsCount; i++) {
            for (std::uint32_t j = 0; j < _deltaCount; j++) {
                std::uint64_t delta = _deltas[getArrayOffset(_maxDeltas, j, i)];

                if (delta == 0) {
                    ++zeroesCount;
                    continue;
                }

                // If we have a non-zero sample, then write out all the accumulated zero samples.
                if (zeroesCount > 0) {
                    auto s1 = db.writeAndAdvance(FTDCVarInt(0));
                    if (!s1.isOK()) {
                        return s1;
                    }

                    auto s2 = db.writeAndAdvance(FTDCVarInt(zeroesCount - 1));
                    if (!s2.isOK()) {
                        return s2;
                    }

                    zeroesCount = 0;
                }

                auto s3 = db.writeAndAdvance(FTDCVarInt(delta));
                if (!s3.isOK()) {
                    return s3;
                }
            }

            // If we are on the last metric, and the previous loop ended in a zero, write out the
            // RLE
            // pair of zero information.
            if ((i == (_metricsCount - 1)) && zeroesCount) {
                auto s1 = db.writeAndAdvance(FTDCVarInt(0));
                if (!s1.isOK()) {
                    return s1;
                }

                auto s2 = db.writeAndAdvance(FTDCVarInt(zeroesCount - 1));
                if (!s2.isOK()) {
                    return s2;
                }
            }
        }

        // Append the entire compacted metric chunk into the uncompressed buffer
        ConstDataRange cdr = db.getCursor();
        _uncompressedChunkBuffer.appendBuf(cdr.data(), cdr.length());
    }

    auto swDest = _compressor.compress(
        ConstDataRange(_uncompressedChunkBuffer.buf(), _uncompressedChunkBuffer.len()));

    // The only way for compression to fail is if the buffer size calculations are wrong
    if (!swDest.isOK()) {
        return swDest.getStatus();
    }

    _compressedChunkBuffer.setlen(0);

    _compressedChunkBuffer.appendNum(static_cast<std::uint32_t>(_uncompressedChunkBuffer.len()));

    _compressedChunkBuffer.appendBuf(swDest.getValue().data(), swDest.getValue().length());

    return std::tuple<ConstDataRange, Date_t>(
        ConstDataRange(_compressedChunkBuffer.buf(),
                       static_cast<size_t>(_compressedChunkBuffer.len())),
        _referenceDocDate);
}

void FTDCCompressor::reset() {
    _metrics.clear();
    _reset(BSONObj(), Date_t());
}

void FTDCCompressor::_reset(const BSONObj& referenceDoc, Date_t date) {
    _referenceDoc = referenceDoc;
    _referenceDocDate = date;

    _metricsCount = _metrics.size();
    _deltaCount = 0;
    _prevmetrics.clear();
    swap(_prevmetrics, _metrics);

    // The reference document counts as the first sample, remaining samples
    // are delta encoded, so the maximum number of deltas is one less than
    // the configured number of samples.
    _maxDeltas = _config->maxSamplesPerArchiveMetricChunk - 1;
    _deltas.resize(_metricsCount * _maxDeltas);
}

}  // namespace mongo