1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
|
/**
* Copyright (C) 2014 10gen Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License, version 3,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the GNU Affero General Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#include "mongo/db/geo/big_polygon.h"
#include <map>
#include "mongo/base/owned_pointer_vector.h"
#include "mongo/util/assert_util.h"
namespace mongo {
using std::unique_ptr;
using std::unique_ptr;
using std::vector;
BigSimplePolygon::BigSimplePolygon() {
}
// Caller should ensure loop is valid.
BigSimplePolygon::BigSimplePolygon(S2Loop* loop) :
_loop(loop), _isNormalized(loop->IsNormalized()) {
}
BigSimplePolygon::~BigSimplePolygon() {
}
void BigSimplePolygon::Init(S2Loop* loop) {
_loop.reset(loop);
_isNormalized = loop->IsNormalized();
_borderLine.reset();
_borderPoly.reset();
}
double BigSimplePolygon::GetArea() const {
return _loop->GetArea();
}
bool BigSimplePolygon::Contains(const S2Polygon& polygon) const {
const S2Polygon& polyBorder = GetPolygonBorder();
if (_isNormalized) {
// Polygon border is the same as the loop
return polyBorder.Contains(&polygon);
}
// Polygon border is the complement of the loop
//
// Return true iff big polygon's complement (polyBorder) doesn't intersect with polygon.
// We don't guarantee whether the points on border are contained or not.
return !polyBorder.Intersects(&polygon);
}
bool BigSimplePolygon::Contains(const S2Polyline& line) const {
//
// A line is contained within a loop if the result of subtracting the loop from the line is
// nothing.
//
// Also, a line is contained within a loop if the result of clipping the line to the
// complement of the loop is nothing.
//
// If we can't subtract the loop itself using S2, we clip (intersect) to the inverse. Every
// point in S2 is contained in exactly one of these loops.
//
// TODO: Polygon borders are actually kind of weird, and this is somewhat inconsistent with
// Intersects(). A point might Intersect() a boundary exactly, but not be Contain()ed
// within the Polygon. Think the right thing to do here is custom intersection functions.
//
const S2Polygon& polyBorder = GetPolygonBorder();
OwnedPointerVector<S2Polyline> clippedOwned;
vector<S2Polyline*>& clipped = clippedOwned.mutableVector();
if (_isNormalized) {
// Polygon border is the same as the loop
polyBorder.SubtractFromPolyline(&line, &clipped);
return clipped.size() == 0;
}
else {
// Polygon border is the complement of the loop
polyBorder.IntersectWithPolyline(&line, &clipped);
return clipped.size() == 0;
}
}
bool BigSimplePolygon::Contains(S2Point const& point) const {
return _loop->Contains(point);
}
bool BigSimplePolygon::Intersects(const S2Polygon& polygon) const {
// If the loop area is at most 2*Pi, treat it as a simple Polygon.
if (_isNormalized) {
const S2Polygon& polyBorder = GetPolygonBorder();
return polyBorder.Intersects(&polygon);
}
// The loop area is greater than 2*Pi, so it intersects a polygon (even with holes) if it
// intersects any of the top-level polygon loops, since any valid polygon is less than
// a hemisphere.
//
// Intersecting a polygon hole requires that the loop must have intersected the containing
// loop - topology ftw.
//
// Another approach is to check polyBorder doesn't contain polygon, but the following
// approach is cheaper.
// Iterate over all the top-level polygon loops
for (int i = 0; i < polygon.num_loops(); i = polygon.GetLastDescendant(i) + 1) {
const S2Loop* polyLoop = polygon.loop(i);
if (_loop->Intersects(polyLoop))
return true;
}
return false;
}
bool BigSimplePolygon::Intersects(const S2Polyline& line) const {
//
// A loop intersects a line if line intersects the loop border or, if it doesn't, either
// line is contained in the loop, or line is disjoint with the loop. So checking any
// vertex of the line is sufficient.
//
// TODO: Make a general Polygon/Line relation tester which uses S2 primitives
//
return GetLineBorder().Intersects(&line) || _loop->Contains(line.vertex(0));
}
bool BigSimplePolygon::Intersects(S2Point const& point) const {
return Contains(point);
}
void BigSimplePolygon::Invert() {
_loop->Invert();
_isNormalized = _loop->IsNormalized();
}
const S2Polygon& BigSimplePolygon::GetPolygonBorder() const {
if (_borderPoly)
return *_borderPoly;
unique_ptr<S2Loop> cloned(_loop->Clone());
// Any loop in polygon should be than a hemisphere (2*Pi).
cloned->Normalize();
OwnedPointerVector<S2Loop> loops;
loops.mutableVector().push_back(cloned.release());
_borderPoly.reset(new S2Polygon(&loops.mutableVector()));
return *_borderPoly;
}
const S2Polyline& BigSimplePolygon::GetLineBorder() const {
if (_borderLine)
return *_borderLine;
vector<S2Point> points;
int numVertices = _loop->num_vertices();
for (int i = 0; i <= numVertices; ++i) {
// vertex() maps "numVertices" to 0 internally, so we don't have to deal with
// the index out of range.
points.push_back(_loop->vertex(i));
}
_borderLine.reset(new S2Polyline(points));
return *_borderLine;
}
BigSimplePolygon* BigSimplePolygon::Clone() const {
return new BigSimplePolygon(_loop->Clone());
}
S2Cap BigSimplePolygon::GetCapBound() const {
return _loop->GetCapBound();
}
S2LatLngRect BigSimplePolygon::GetRectBound() const {
return _loop->GetRectBound();
}
bool BigSimplePolygon::Contains(const S2Cell& cell) const {
return _loop->Contains(cell);
}
bool BigSimplePolygon::MayIntersect(const S2Cell& cell) const {
return _loop->MayIntersect(cell);
}
bool BigSimplePolygon::VirtualContainsPoint(const S2Point& p) const {
return _loop->VirtualContainsPoint(p);
}
void BigSimplePolygon::Encode(Encoder* const encoder) const {
invariant(false);
}
bool BigSimplePolygon::Decode(Decoder* const decoder) {
invariant(false);
}
bool BigSimplePolygon::DecodeWithinScope(Decoder* const decoder) {
invariant(false);
}
}
|