1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
|
/**
* Copyright (C) 2018-present MongoDB, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the Server Side Public License, version 1,
* as published by MongoDB, Inc.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Server Side Public License for more details.
*
* You should have received a copy of the Server Side Public License
* along with this program. If not, see
* <http://www.mongodb.com/licensing/server-side-public-license>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the Server Side Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#include "mongo/db/geo/hash.h"
#include "mongo/config.h"
#include "mongo/db/field_parser.h"
#include "mongo/db/geo/shapes.h"
#include "mongo/db/jsobj.h"
#include "mongo/util/str.h"
#include <algorithm> // for max()
#include <iostream>
namespace mongo {
using std::stringstream;
std::ostream& operator<<(std::ostream& s, const GeoHash& h) {
return s << h.toString();
}
/*
* GeoBitSets fills out various bit patterns that are used by GeoHash.
* What patterns? Look at the comments next to the fields.
*/
class GeoBitSets {
public:
GeoBitSets() {
/*
* oddBitmasks' values are all possible 8-bit odd bitmasks which are used in unhash_fast():
* "00000000", "00000001", "00000100", "00000101", "00010000", "00010001", "00010100",
* "00010101", "01000000", "01000001", "01000100", "01000101", "01010000", "01010001",
* "01010100", "01010101"
*/
unsigned oddBitmasks[16] = {0, 1, 4, 5, 16, 17, 20, 21, 64, 65, 68, 69, 80, 81, 84, 85};
for (unsigned i = 0; i < 16; i++) {
hashedToNormal[oddBitmasks[i]] = i;
}
// Generate all 32 + 1 all-on bit patterns by repeatedly shifting the next bit to the
// correct position
long long currAllX = 0, currAllY = 0;
for (int i = 0; i < 64 + 2; i++) {
long long thisBit = 1LL << (63 >= i ? 63 - i : 0);
if (i % 2 == 0) {
allX[i / 2] = currAllX;
currAllX |= thisBit;
} else {
allY[i / 2] = currAllY;
currAllY |= thisBit;
}
}
}
// The 0-th entries of each all[XY] is 0.
// The i-th entry of allX has i alternating bits turned on starting
// with the most significant. Example:
// allX[1] = 8000000000000000
// allX[2] = a000000000000000
// allX[3] = a800000000000000
// Note that 32 + 1 entries are needed, since 0 and 32 are both valid numbers of bits.
long long allX[33];
// Same alternating bits but starting with one from the MSB:
// allY[1] = 4000000000000000
// allY[2] = 5000000000000000
// allY[3] = 5400000000000000
long long allY[33];
unsigned hashedToNormal[256];
};
// Oh global variables.
GeoBitSets geoBitSets;
// For i return the i-th most significant bit.
// masks(0) = 80000..000
// masks(1) = 40000..000
// etc.
// Number of 0s depends on 32 vs. 64 bit.
inline static int mask32For(const int i) {
return 1 << (31 - i);
}
inline static long long mask64For(const int i) {
return 1LL << (63 - i);
}
// copyAndReverse is used to reverse the order of bytes when copying between BinData and GeoHash.
// GeoHashes are meant to be compared from MSB to LSB, where the first 2 MSB indicate the quadrant.
// In BinData, the GeoHash of a 2D index is compared from LSB to MSB, so the bytes should be
// reversed on little-endian systems.
inline static void copyAndReverse(char* dst, const char* src) {
for (unsigned a = 0; a < 8; a++) {
dst[a] = src[7 - a];
}
}
// Definition
unsigned int const GeoHash::kMaxBits = 32;
/* This class maps an x,y coordinate pair to a hash value.
* This should probably be renamed/generalized so that it's more of a planar hash,
* and we also have a spherical hash, etc.
*/
GeoHash::GeoHash() : _hash(0), _bits(0) {}
GeoHash::GeoHash(const string& hash) {
initFromString(hash.c_str());
}
GeoHash::GeoHash(const char* s) {
initFromString(s);
}
void GeoHash::initFromString(const char* s) {
int length = strlen(s);
uassert(16457, "initFromString passed a too-long string", length <= 64);
uassert(16458, "initFromString passed an odd length string ", 0 == (length % 2));
_hash = 0;
// _bits is how many bits for X or Y, not both, so we divide by 2.
_bits = length / 2;
for (int i = 0; s[i] != '\0'; ++i)
if (s[i] == '1')
setBit(i, 1);
}
GeoHash::GeoHash(unsigned x, unsigned y, unsigned bits) {
verify(bits <= 32);
_hash = 0;
_bits = bits;
for (unsigned i = 0; i < bits; i++) {
if (isBitSet(x, i))
_hash |= mask64For(i * 2);
if (isBitSet(y, i))
_hash |= mask64For((i * 2) + 1);
}
}
GeoHash::GeoHash(const GeoHash& old) {
_hash = old._hash;
_bits = old._bits;
}
GeoHash::GeoHash(long long hash, unsigned bits) : _hash(hash), _bits(bits) {
clearUnusedBits();
}
/**
* Explanation & Example:
* bitset<64>(_hash) = "00000001 00000010 00000100 00001000 00010000 00100000 01000000 10000000";
*
* the reinterpret_cast() of _hash results in:
* c[0] = 10000000 (the last 8 bits of _hash)
* c[1] = 01000000 (the second to last 8 bits of _hash)
* ...
* c[6] = 00000010 (the second 8 bits of _hash)
* c[7] = 00000001 (the first 8 bits of _hash)
*
* Calculating the Value of Y:
* in the for loop,
* t is c[i] but with all the even bits turned off:
* t = 00000000 (when i is even)
* t = 01000000 (i = 1)
* t = 00010000 (i = 3)
* t = 00000100 (i = 5)
* t = 00000001 (i = 7)
*
* then for each t,
* get the hashedToNormal(t):
* hashedToNormal(t) = 0 = 00000000 (when i is even)
* hashedToNormal(t) = 8 = 00001000 (i = 1)
* hashedToNormal(t) = 4 = 00000100 (i = 3)
* hashedToNormal(t) = 2 = 00000010 (i = 5)
* hashedToNormal(t) = 1 = 00000001 (i = 7)
* then shift it by (4 * i) (Little Endian) then
* bitwise OR it with y
*
* visually, all together it looks like:
* y = 00000000000000000000000000000000 (32 bits)
* y |= 00000000 (hashedToNormal(t) when i = 0)
* y |= 00001000 (hashedToNormal(t) when i = 1)
* y |= 00000000 (hashedToNormal(t) when i = 2)
* y |= 00000100 (hashedToNormal(t) when i = 3)
* y |= 00000000 (hashedToNormal(t) when i = 4)
* y |= 00000010 (hashedToNormal(t) when i = 5)
* y |= 00000000 (hashedToNormal(t) when i = 6)
* y |= 00000001 (hashedToNormal(t) when i = 7)
* ---------------------------------------------
* y = 00010000001000000100000010000000
*
* Calculating the Value of X:
* in the for loop,
* t is c[i] right shifted by 1 with all the even bits turned off:
* t = 00000000 (when i is odd)
* t = 01000000 (i = 0)
* t = 00010000 (i = 2)
* t = 00000100 (i = 4)
* t = 00000001 (i = 6)
*
* then for each t,
* get the hashedToNormal(t) and shift it by (4 * i) (Little Endian) then
* bitwise OR it with x
*/
void GeoHash::unhash_fast(unsigned* x, unsigned* y) const {
*x = 0;
*y = 0;
const char* c = reinterpret_cast<const char*>(&_hash);
for (int i = 0; i < 8; i++) {
// 0x55 in binary is "01010101",
// it's an odd bitmask that we use to turn off all the even bits
unsigned t = (unsigned)(c[i]) & 0x55;
int leftShift;
#if MONGO_CONFIG_BYTE_ORDER == MONGO_LITTLE_ENDIAN
leftShift = 4 * i;
#else
leftShift = 28 - (4 * i);
#endif
*y |= geoBitSets.hashedToNormal[t] << leftShift;
t = ((unsigned)(c[i]) >> 1) & 0x55;
*x |= geoBitSets.hashedToNormal[t] << leftShift;
}
}
void GeoHash::unhash_slow(unsigned* x, unsigned* y) const {
*x = 0;
*y = 0;
for (unsigned i = 0; i < _bits; i++) {
if (getBitX(i))
*x |= mask32For(i);
if (getBitY(i))
*y |= mask32For(i);
}
}
void GeoHash::unhash(unsigned* x, unsigned* y) const {
#if MONGO_CONFIG_BYTE_ORDER == MONGO_LITTLE_ENDIAN
unhash_fast(x, y);
#else
unhash_slow(x, y);
#endif
}
/** Is the 'bit'-th most significant bit set? (NOT the least significant) */
bool GeoHash::isBitSet(unsigned val, unsigned bit) {
return mask32For(bit) & val;
}
/** Return a GeoHash with one bit of precision lost. */
GeoHash GeoHash::up() const {
return GeoHash(_hash, _bits - 1);
}
bool GeoHash::hasPrefix(const GeoHash& other) const {
verify(other._bits <= _bits);
if (other._bits == 0)
return true;
long long x = other._hash ^ _hash;
// We only care about the leftmost other._bits (well, really _bits*2 since we have x and
// y)
x = x >> (64 - (other._bits * 2));
return x == 0;
}
string GeoHash::toString() const {
StringBuilder buf;
for (unsigned x = 0; x < _bits * 2; x++)
buf.append((_hash & mask64For(x)) ? "1" : "0");
return buf.str();
}
string GeoHash::toStringHex1() const {
stringstream ss;
ss << std::hex << _hash;
return ss.str();
}
void GeoHash::setBit(unsigned pos, bool value) {
verify(pos < _bits * 2);
const long long mask = mask64For(pos);
if (value)
_hash |= mask;
else // if (_hash & mask)
_hash &= ~mask;
}
bool GeoHash::getBit(unsigned pos) const {
return _hash & mask64For(pos);
}
bool GeoHash::getBitX(unsigned pos) const {
verify(pos < 32);
return getBit(pos * 2);
}
bool GeoHash::getBitY(unsigned pos) const {
verify(pos < 32);
return getBit((pos * 2) + 1);
}
// TODO(hk): Comment this.
BSONObj GeoHash::wrap(const char* name) const {
BSONObjBuilder b(20);
appendHashMin(&b, name);
BSONObj o = b.obj();
if ('\0' == name[0])
verify(o.objsize() == 20);
return o;
}
// Do we have a non-trivial GeoHash?
bool GeoHash::constrains() const {
return _bits > 0;
}
// Could our GeoHash have higher precision?
bool GeoHash::canRefine() const {
return _bits < 32;
}
/**
* Hashing works like this:
* Divide the world into 4 buckets. Label each one as such:
* -----------------
* | | |
* | | |
* | 0,1 | 1,1 |
* -----------------
* | | |
* | | |
* | 0,0 | 1,0 |
* -----------------
* We recursively divide each cell, furthermore.
* The functions below tell us what quadrant we're in *at the finest level
* of the subdivision.*
*/
bool GeoHash::atMinX() const {
return (_hash & geoBitSets.allX[_bits]) == 0;
}
bool GeoHash::atMinY() const {
return (_hash & geoBitSets.allY[_bits]) == 0;
}
bool GeoHash::atMaxX() const {
return (_hash & geoBitSets.allX[_bits]) == geoBitSets.allX[_bits];
}
bool GeoHash::atMaxY() const {
return (_hash & geoBitSets.allY[_bits]) == geoBitSets.allY[_bits];
}
// TODO(hk): comment better
void GeoHash::move(int x, int y) {
verify(_bits);
_move(0, x);
_move(1, y);
}
// TODO(hk): comment much better
void GeoHash::_move(unsigned offset, int d) {
if (d == 0)
return;
verify(d <= 1 && d >= -1); // TEMP
bool from, to;
if (d > 0) {
from = 0;
to = 1;
} else {
from = 1;
to = 0;
}
unsigned pos = (_bits * 2) - 1;
if (offset == 0)
pos--;
while (true) {
if (getBit(pos) == from) {
setBit(pos, to);
return;
}
if (pos < 2) {
// overflow
for (; pos < (_bits * 2); pos += 2) {
setBit(pos, from);
}
return;
}
setBit(pos, from);
pos -= 2;
}
verify(0);
}
GeoHash& GeoHash::operator=(const GeoHash& h) {
_hash = h._hash;
_bits = h._bits;
return *this;
}
bool GeoHash::operator==(const GeoHash& h) const {
return _hash == h._hash && _bits == h._bits;
}
bool GeoHash::operator!=(const GeoHash& h) const {
return !(*this == h);
}
bool GeoHash::operator<(const GeoHash& h) const {
if (_hash != h._hash) {
return static_cast<unsigned long long>(_hash) < static_cast<unsigned long long>(h._hash);
}
return _bits < h._bits;
}
// Append the hash in s to our current hash. We expect s to be '0' or '1' or '\0',
// though we also treat non-'1' values as '0'.
GeoHash& GeoHash::operator+=(const char* s) {
unsigned pos = _bits * 2;
_bits += strlen(s) / 2;
verify(_bits <= 32);
while ('\0' != s[0]) {
if (s[0] == '1')
setBit(pos, 1);
pos++;
s++;
}
return *this;
}
GeoHash GeoHash::operator+(const char* s) const {
GeoHash n = *this;
n += s;
return n;
}
GeoHash GeoHash::operator+(const std::string& s) const {
return operator+(s.c_str());
}
// Keep the most significant _bits*2 bits of _hash, clear the least significant bits. If shorter
// than 64 bits, the hash occupies the higher order bits, so we ensure that the lower order bits are
// zeroed.
void GeoHash::clearUnusedBits() {
// Left shift count should be less than 64
if (_bits == 0) {
_hash = 0;
return;
}
unsigned long long mask = (1LL << (64U - (_bits * 2U))) - 1LL;
_hash &= ~mask;
}
static void appendHashToBuilder(long long hash, BSONObjBuilder* builder, const char* fieldName) {
char buf[8];
#if MONGO_CONFIG_BYTE_ORDER == MONGO_LITTLE_ENDIAN
// Reverse the order of bytes when copying between BinData and GeoHash.
// GeoHashes are meant to be compared from MSB to LSB, where the first 2 MSB indicate the
// quadrant.
// In BinData, the GeoHash of a 2D index is compared from LSB to MSB, so the bytes should be
// reversed on little-endian systems
copyAndReverse(buf, (char*)&hash);
#else
std::memcpy(buf, reinterpret_cast<char*>(&hash), 8);
#endif
builder->appendBinData(fieldName, 8, bdtCustom, buf);
}
static void appendHashToKeyString(long long hash, KeyString::Builder* ks) {
char buf[8];
#if MONGO_CONFIG_BYTE_ORDER == MONGO_LITTLE_ENDIAN
// Reverse the order of bytes when copying between BinData and GeoHash.
// GeoHashes are meant to be compared from MSB to LSB, where the first 2 MSB indicate the
// quadrant.
// In BinData, the GeoHash of a 2D index is compared from LSB to MSB, so the bytes should be
// reversed on little-endian systems
copyAndReverse(buf, (char*)&hash);
#else
std::memcpy(buf, reinterpret_cast<char*>(&hash), 8);
#endif
ks->appendBinData(BSONBinData(buf, 8, bdtCustom));
}
void GeoHash::appendHashMin(BSONObjBuilder* builder, const char* fieldName) const {
// The min bound of a GeoHash region has all the unused suffix bits set to 0
appendHashToBuilder(_hash, builder, fieldName);
}
void GeoHash::appendHashMin(KeyString::Builder* ks) const {
// The min bound of a GeoHash region has all the unused suffix bits set to 0
appendHashToKeyString(_hash, ks);
}
void GeoHash::appendHashMax(BSONObjBuilder* builder, const char* fieldName) const {
// The max bound of a GeoHash region has all the unused suffix bits set to 1
long long suffixMax = ~(geoBitSets.allX[_bits] | geoBitSets.allY[_bits]);
long long hashMax = _hash | suffixMax;
appendHashToBuilder(hashMax, builder, fieldName);
}
long long GeoHash::getHash() const {
return _hash;
}
unsigned GeoHash::getBits() const {
return _bits;
}
GeoHash GeoHash::commonPrefix(const GeoHash& other) const {
unsigned i = 0;
for (; i < _bits && i < other._bits; i++) {
if (getBitX(i) == other.getBitX(i) && getBitY(i) == other.getBitY(i))
continue;
break;
}
// i is how many bits match between this and other.
return GeoHash(_hash, i);
}
bool GeoHash::subdivide(GeoHash children[4]) const {
if (_bits == 32) {
return false;
}
children[0] = GeoHash(_hash, _bits + 1); // (0, 0)
children[1] = children[0];
children[1].setBit(_bits * 2 + 1, 1); // (0, 1)
children[2] = children[0];
children[2].setBit(_bits * 2, 1); // (1, 0)
children[3] = GeoHash(children[1]._hash | children[2]._hash, _bits + 1); // (1, 1)
return true;
}
bool GeoHash::contains(const GeoHash& other) const {
return _bits <= other._bits && other.hasPrefix(*this);
}
GeoHash GeoHash::parent(unsigned int level) const {
return GeoHash(_hash, level);
}
GeoHash GeoHash::parent() const {
verify(_bits > 0);
return GeoHash(_hash, _bits - 1);
}
void GeoHash::appendVertexNeighbors(unsigned level, vector<GeoHash>* output) const {
invariant(level >= 0 && level < _bits);
// Parent at the given level.
GeoHash parentHash = parent(level);
output->push_back(parentHash);
// Generate the neighbors of parent that are closest to me.
unsigned px, py, parentBits;
parentHash.unhash(&px, &py);
parentBits = parentHash.getBits();
// No Neighbors for the top level.
if (parentBits == 0U)
return;
// Position in parent
// Y
// ^
// | 01, 11
// | 00, 10
// +----------> X
// We can guarantee _bits > 0.
long long posInParent = (_hash >> (64 - 2 * (parentBits + 1))) & 3LL;
// 1 bit at parent's level, the least significant bit of parent.
unsigned parentMask = 1U << (32 - parentBits);
// Along X Axis
if ((posInParent & 2LL) == 0LL) {
// Left side of parent, X - 1
if (!parentHash.atMinX())
output->push_back(GeoHash(px - parentMask, py, parentBits));
} else {
// Right side of parent, X + 1
if (!parentHash.atMaxX())
output->push_back(GeoHash(px + parentMask, py, parentBits));
}
// Along Y Axis
if ((posInParent & 1LL) == 0LL) {
// Bottom of parent, Y - 1
if (!parentHash.atMinY())
output->push_back(GeoHash(px, py - parentMask, parentBits));
} else {
// Top of parent, Y + 1
if (!parentHash.atMaxY())
output->push_back(GeoHash(px, py + parentMask, parentBits));
}
// Four corners
if (posInParent == 0LL) {
if (!parentHash.atMinX() && !parentHash.atMinY())
output->push_back(GeoHash(px - parentMask, py - parentMask, parentBits));
} else if (posInParent == 1LL) {
if (!parentHash.atMinX() && !parentHash.atMaxY())
output->push_back(GeoHash(px - parentMask, py + parentMask, parentBits));
} else if (posInParent == 2LL) {
if (!parentHash.atMaxX() && !parentHash.atMinY())
output->push_back(GeoHash(px + parentMask, py - parentMask, parentBits));
} else {
// PosInParent == 3LL
if (!parentHash.atMaxX() && !parentHash.atMaxY())
output->push_back(GeoHash(px + parentMask, py + parentMask, parentBits));
}
}
static BSONField<int> bitsField("bits", 26);
static BSONField<double> maxField("max", 180.0);
static BSONField<double> minField("min", -180.0);
// a x b
// | | |
// -----|---o-----|---------|-- "|" is a representable double number.
//
// In the above figure, b is the next representable double number after a, so
// |a - b|/|a| = epsilon (ULP) ~= 2.22E-16.
//
// An exact number x will be represented as the nearest representable double, which is a.
// |x - a|/|a| <= 0.5 ULP ~= 1.11e-16
//
// IEEE floating-point operations have a maximum error of 0.5 ULPS (units in
// the last place). For double-precision numbers, this works out to 2**-53
// (about 1.11e-16) times the magnitude of the result.
double const GeoHashConverter::kMachinePrecision = 0.5 * std::numeric_limits<double>::epsilon();
Status GeoHashConverter::parseParameters(const BSONObj& paramDoc,
GeoHashConverter::Parameters* params) {
string errMsg;
if (FieldParser::FIELD_INVALID ==
FieldParser::extractNumber(paramDoc, bitsField, ¶ms->bits, &errMsg)) {
return Status(ErrorCodes::InvalidOptions, errMsg);
}
if (FieldParser::FIELD_INVALID ==
FieldParser::extractNumber(paramDoc, maxField, ¶ms->max, &errMsg)) {
return Status(ErrorCodes::InvalidOptions, errMsg);
}
if (FieldParser::FIELD_INVALID ==
FieldParser::extractNumber(paramDoc, minField, ¶ms->min, &errMsg)) {
return Status(ErrorCodes::InvalidOptions, errMsg);
}
if (params->bits < 1 || params->bits > 32) {
return Status(ErrorCodes::InvalidOptions,
str::stream() << "bits for hash must be > 0 and <= 32, "
<< "but " << params->bits << " bits were specified");
}
if (params->min >= params->max) {
return Status(ErrorCodes::InvalidOptions,
str::stream() << "region for hash must be valid and have positive area, "
<< "but [" << params->min << ", " << params->max << "] "
<< "was specified");
}
double numBuckets = (1024 * 1024 * 1024 * 4.0);
params->scaling = numBuckets / (params->max - params->min);
return Status::OK();
}
GeoHashConverter::GeoHashConverter(const Parameters& params) : _params(params) {
init();
}
void GeoHashConverter::init() {
// TODO(hk): What do we require of the values in params?
// Compute how much error there is so it can be used as a fudge factor.
GeoHash a(0, 0, _params.bits);
GeoHash b = a;
b.move(1, 1);
// Epsilon is 1/100th of a bucket size
// TODO: Can we actually find error bounds for the sqrt function?
double epsilon = 0.001 / _params.scaling;
_error = distanceBetweenHashes(a, b) + epsilon;
// Error in radians
_errorSphere = deg2rad(_error);
// 8 * max(|max|, |min|) * u
_errorUnhashToBox = calcUnhashToBoxError(_params);
}
double GeoHashConverter::distanceBetweenHashes(const GeoHash& a, const GeoHash& b) const {
double ax, ay, bx, by;
unhash(a, &ax, &ay);
unhash(b, &bx, &by);
double dx = bx - ax;
double dy = by - ay;
return sqrt((dx * dx) + (dy * dy));
}
/**
* Hashing functions. Convert the following types (which have a double precision point)
* to a GeoHash:
* BSONElement
* BSONObj
* Point
* double, double
*/
GeoHash GeoHashConverter::hash(const Point& p) const {
return hash(p.x, p.y);
}
GeoHash GeoHashConverter::hash(const BSONObj& o) const {
return hash(o, nullptr);
}
// src is printed out as debugging information. Maybe it is actually somehow the 'source' of o?
GeoHash GeoHashConverter::hash(const BSONObj& o, const BSONObj* src) const {
BSONObjIterator i(o);
uassert(13067,
str::stream() << "geo field is empty" << (src ? causedBy((*src).toString()) : ""),
i.more());
BSONElement x = i.next();
uassert(13068,
str::stream() << "geo field only has 1 element"
<< causedBy(src ? (*src).toString() : x.toString()),
i.more());
BSONElement y = i.next();
uassert(13026,
str::stream() << "geo values must be 'legacy coordinate pairs' for 2d indexes"
<< causedBy(src ? (*src).toString() : BSON_ARRAY(x << y).toString()),
x.isNumber() && y.isNumber());
uassert(13027,
str::stream() << "point not in interval of [ " << _params.min << ", " << _params.max
<< " ]"
<< causedBy(src ? (*src).toString()
: BSON_ARRAY(x.number() << y.number()).toString()),
x.number() <= _params.max && x.number() >= _params.min && y.number() <= _params.max &&
y.number() >= _params.min);
return GeoHash(convertToHashScale(x.number()), convertToHashScale(y.number()), _params.bits);
}
GeoHash GeoHashConverter::hash(double x, double y) const {
uassert(16433,
str::stream() << "point not in interval of [ " << _params.min << ", " << _params.max
<< " ]" << causedBy(BSON_ARRAY(x << y).toString()),
x <= _params.max && x >= _params.min && y <= _params.max && y >= _params.min);
return GeoHash(convertToHashScale(x), convertToHashScale(y), _params.bits);
}
/**
* Unhashing functions. These convert from a "discretized" GeoHash to the "continuous"
* doubles according to our scaling parameters.
*
* Possible outputs:
* double, double
* Point
* BSONObj
*/
// TODO(hk): these should have consistent naming
Point GeoHashConverter::unhashToPoint(const GeoHash& h) const {
Point point;
unhash(h, &point.x, &point.y);
return point;
}
BSONObj GeoHashConverter::unhashToBSONObj(const GeoHash& h) const {
unsigned x, y;
h.unhash(&x, &y);
BSONObjBuilder b;
b.append("x", convertFromHashScale(x));
b.append("y", convertFromHashScale(y));
return b.obj();
}
void GeoHashConverter::unhash(const GeoHash& h, double* x, double* y) const {
unsigned a, b;
h.unhash(&a, &b);
*x = convertFromHashScale(a);
*y = convertFromHashScale(b);
}
Box GeoHashConverter::unhashToBoxCovering(const GeoHash& h) const {
if (h.getBits() == 0) {
// Return the result without any error.
return Box(Point(_params.min, _params.min), Point(_params.max, _params.max));
}
double sizeEdgeBox = sizeEdge(h.getBits());
Point min(unhashToPoint(h));
Point max(min.x + sizeEdgeBox, min.y + sizeEdgeBox);
// Expand the box by the error bound
Box box(min, max);
box.fudge(_errorUnhashToBox);
return box;
}
double GeoHashConverter::calcUnhashToBoxError(const GeoHashConverter::Parameters& params) {
return std::max(fabs(params.min), fabs(params.max)) * GeoHashConverter::kMachinePrecision * 8;
}
double GeoHashConverter::sizeOfDiag(const GeoHash& a) const {
GeoHash b = a;
b.move(1, 1);
return distanceBetweenHashes(a, b);
}
// Relative error = epsilon_(max-min). ldexp() is just a direct translation to
// floating point exponent, and should be exact.
double GeoHashConverter::sizeEdge(unsigned level) const {
invariant(level >= 0);
invariant((int)level <= _params.bits);
#pragma warning(push)
// C4146: unary minus operator applied to unsigned type, result still unsigned
#pragma warning(disable : 4146)
return ldexp(_params.max - _params.min, -level);
#pragma warning(pop)
}
// Convert from a double in [0, (max-min)*scaling] to [min, max]
double GeoHashConverter::convertDoubleFromHashScale(double x) const {
x /= _params.scaling;
x += _params.min;
return x;
}
// Convert from an unsigned in [0, (max-min)*scaling] to [min, max]
double GeoHashConverter::convertFromHashScale(unsigned in) const {
return convertDoubleFromHashScale((double)in);
}
// Convert from a double that is [min, max] to a double in [0, (max-min)*scaling]
double GeoHashConverter::convertToDoubleHashScale(double in) const {
verify(in <= _params.max && in >= _params.min);
if (in == _params.max) {
// prevent aliasing with _min by moving inside the "box"
// makes 180 == 179.999 (roughly)
in -= _error / 2;
}
in -= _params.min;
verify(in >= 0);
return in * _params.scaling;
}
// Convert from a double that is [min, max] to an unsigned in [0, (max-min)*scaling]
unsigned GeoHashConverter::convertToHashScale(double in) const {
return static_cast<unsigned>(convertToDoubleHashScale(in));
}
} // namespace mongo
|