1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
|
/**
* Copyright (C) 2018-present MongoDB, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the Server Side Public License, version 1,
* as published by MongoDB, Inc.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Server Side Public License for more details.
*
* You should have received a copy of the Server Side Public License
* along with this program. If not, see
* <http://www.mongodb.com/licensing/server-side-public-license>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the Server Side Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
/**
* This file contains tests for mongo/db/geo/hash.cpp.
*/
#include <algorithm> // For max()
#include <bitset>
#include <cmath>
#include <iomanip>
#include <sstream>
#include <string>
#include "mongo/db/geo/hash.h"
#include "mongo/db/geo/shapes.h"
#include "mongo/platform/random.h"
#include "mongo/unittest/unittest.h"
#include "mongo/util/assert_util.h"
#include "mongo/util/mongoutils/str.h"
namespace {
using namespace mongo;
using std::cout;
using std::endl;
using std::string;
using std::stringstream;
TEST(GeoHash, MakeZeroHash) {
unsigned x = 0, y = 0;
GeoHash hash(x, y);
}
static string makeRandomBitString(int length) {
stringstream ss;
mongo::PseudoRandom random(31337);
for (int i = 0; i < length; ++i) {
if (random.nextInt32() & 1) {
ss << "1";
} else {
ss << "0";
}
}
return ss.str();
}
// splitBinStr("0000111100001111") -> "0000 1111 0000 1111"
string splitBinStr(string bin) {
string split = "";
for (unsigned i = 0; i < bin.length(); i += 4) {
split += bin.substr(i, 4) + ' ';
}
return split.substr(0, split.size() - 1);
}
bool unhash_fast_and_slow_match(string hash) {
GeoHash geoHash = GeoHash(hash);
unsigned fastX, fastY, slowX, slowY, x, y;
geoHash.unhash_fast(&x, &y);
fastX = x;
fastY = y;
geoHash.unhash_slow(&x, &y);
slowX = x;
slowY = y;
bool match = (fastX == slowX && fastY == slowY);
if (!match) {
std::bitset<32> fastXBits(fastX), fastYBits(fastY), slowXBits(slowX), slowYBits(slowY);
cout << "unhash_fast's x: " << splitBinStr(fastXBits.to_string()) << endl;
cout << "unhash_slow's x: " << splitBinStr(slowXBits.to_string()) << endl;
cout << "unhash_fast's y: " << splitBinStr(fastYBits.to_string()) << endl;
cout << "unhash_slow's y: " << splitBinStr(slowYBits.to_string()) << endl;
}
return match;
}
TEST(GeoHash, MakeRandomValidHashes) {
int maxStringLength = 64;
for (int i = 0; i < maxStringLength; i += 2) {
string a = makeRandomBitString(i);
GeoHash hashA = GeoHash(a);
(void)hashA.isBitSet(i, 0);
(void)hashA.isBitSet(i, 1);
}
}
// ASSERT_THROWS does not work if we try to put GeoHash(a) in the macro.
static GeoHash makeHash(const string& a) {
return GeoHash(a);
}
TEST(GeoHash, MakeTooLongHash) {
string a = makeRandomBitString(100);
ASSERT_THROWS(makeHash(a), mongo::AssertionException);
}
TEST(GeoHash, MakeOddHash) {
string a = makeRandomBitString(13);
ASSERT_THROWS(makeHash(a), mongo::AssertionException);
}
TEST(GeoHash, UnhashFastMatchesUnhashSlow) {
string hashes[12] = {"0000000000000000000000000000000000000000000000000000000000000000",
"0101010110100011011100110101000000000101001101000011001011111001",
"1010000000110010100110000111001111010011010100001000011110101100",
"0101010110100011011101011010001111000110111011111011001010110100",
"1010000000110010100111101000000000010000100010110000011111100001",
"0101010100100100001011111110011110010001111100011011011110110111",
"1010000010110101110001001100010001000111100101010000001011100010",
"0101010100100100001010010001010001010010001010100011011111111010",
"1010000010110101110000100011011110000100010011101000001010101111",
"0101010110100011011100110101000000000000100111110001101101001011",
"1010000000110010100110000111001111010110111110111010111000011110",
"1111111111111111111111111111111111111111111111111111111111111111"};
for (int i = 0; i < 12; i++) {
ASSERT_TRUE(unhash_fast_and_slow_match(hashes[i]));
}
}
TEST(GeoHashConvertor, EdgeLength) {
const double kError = 10E-15;
GeoHashConverter::Parameters params;
params.max = 200.0;
params.min = 100.0;
params.bits = 32;
double numBuckets = (1024 * 1024 * 1024 * 4.0);
params.scaling = numBuckets / (params.max - params.min);
GeoHashConverter converter(params);
ASSERT_APPROX_EQUAL(100.0, converter.sizeEdge(0), kError);
ASSERT_APPROX_EQUAL(50.0, converter.sizeEdge(1), kError);
ASSERT_APPROX_EQUAL(25.0, converter.sizeEdge(2), kError);
}
/**
* ==========================
* Error Bound of UnhashToBox
* ==========================
*
* Compute the absolute error when unhashing a GeoHash to a box, so that expanding
* the box by this absolute error can guarantee a point is always contained by the box
* of its GeoHash. Thus, the absolute error of box should consist of 3 components:
*
* 1) The error introduced by hashing x to GeoHash. The extreme example would be a point
* close to the boundary of a cell is hashed to an adjacent box.
*
* For a hash/unhash functions h(x)/uh(x) and computed functions h'(x),uh'(x):
*
* x uh(h'(x))
* |--------|----|--------------------> min-max scale
* min \
* \
* \
* \
* |--------|--|-|--------------------> hash scale for cells c
* 0 h(x) c h'(x)
*
* 2) The error introduced by unhashing an (int) GeoHash to its lower left corner in x-y
* space.
*
* uh(c)
* x | uh'(c)
* |--------|--|----|-----------------> min-max scale
* min \ /
* \ /
* \ /
* X
* |--------|--|-|--------------------> hash scale for cells c
* 0 h(x) c h'(x)
*
* 3) The error introduced by adding the edge length to get the top-right corner of box.
* Instead of directly computing uh'(c+1), we add the computed box edge length to the computed
* value uh(c), giving us an extra error.
*
* |edge(min,max)|
* | |
* | uh(c)+edge
* uh(c) |
* |-------------|------[uh(c)+edge']-----------> min-max scale
* min
*
* |-------------|-------------|----------------> hash scale
* 0 c c+1
* Hash and unhash definitions
* -------------------------
* h(x) = (x - min) * scaling = 2^32 * (x - min) / (max - min)
* uh(h) = h / scaling + min,
* where
* scaling = 2^32 / (max - min)
*
* Again, h(x)/uh(x) are the exact hash functions and h'(x)/uh'(x) are the computational hash
* functions which have small rounding errors.
*
* | h'(x) - h(x) | == | delta_h(x; max, min) |
* where delta_fn = the absolute difference between the computed and actual value of a
* function.
*
* Restating the problem, we're looking for:
* |delta_box| = | delta_x_{h'(x)=H} + delta_uh(h) + delta_edge_length |
* <= | delta_x_{h'(x)=H} | + | delta_uh(h) | + | delta_edge_length |
*
* 1. Error bounds calculation
* ---------------------------
*
* 1.1 Error: | delta_x_{h'(x)=H} |
* --------------------------------
* The first error | delta_x_{h'(x)=H} | means, given GeoHash H, we can find
* the range of x and only the range of x that may be mapped to H.
* In other words, given H, for any x that is far enough from uh(H) by at least d,
* it is impossible for x to be mapped to H.
* Mathematical, find d, such that for any x satisfying |x - uh(H)| > d,
* |h(x) - H| >= | delta_h(x) |
* => |h(x) - H| - | delta_h(x) | >= 0
* => |h(x) - H + delta_h(x) | >= 0 (|a + b| >= |a| - |b|)
* => |h'(x) - H| >= 0 (h'(x) = h(x) + delta_h(x))
* which guarantees h'(x) != H.
*
*
* uh(H)-d
* |
* x | uh(H)
* |--------|---[----|----]-----------> min-max scale
* min / \ \ /
* / \ \ /
* / \ \ /
* / \ \ /
* |---[----|--|-]---|----------------> hash scale for cells c
* 0 h(x) | H
* h'(x)
* =h(x)+delta_h(x)
*
*
* Let's consider one case of the above inequality. We need to find the d,
* such that, when
* x < uh(H) - d, (1)
* we have
* h(x) + |delta_h(x)| <= H. (2)
*
* Due to the monotonicity of h(x), apply h(x) to both side of inequality (1),
* we have
* h(x) < h(uh(H) - d) <= H - |delta_h(x)| (from (2))
*
* By solving it, we have
* d = |delta_h(x)| / scaling
* <= 2Mu * (1 + |x-min|/|max-min|) (see calculation for |delta_h(x)| below)
* <= 4Mu
*
* | delta_x_{h'(x)=H} | <= d <= 4Mu
* The similar calculation applies for the other side of the above inequality.
*
* 1.2 Error of h(x)
* -----------------
*
* Rules of error propagation
* --------------------------
* Absolute error of x is |delta_x|
* Relative error of x is epsilon_x = |delta_x| / |x|
* For any double number x, the relative error of x is bounded by "u". We assume all inputs
* have this error to make deduction clear.
* epsilon_x <= u = 0.5 * unit of least precision(ULP) ~= 1.1 * 10E-16
*
* |delta_(x + y)| <= |delta_x| + |delta_y|
* |delta_(x - y)| <= |delta_x| + |delta_y|
* epsilon_(x * y) <= epsilon_x + epsilon_y
* epsilon_(x / y) <= epsilon_x + epsilon_y
*
* For a given min, max scale, the maximum delta in a computation is bounded by the maximum
* value in the scale - M * u = max(|max|, |min|) * u.
*
* For the hash function h(x)
* --------------------------
*
* epsilon_h(x) = epsilon_(x-min) + epsilon_scaling
*
* epsilon_(x-min) = (|delta_x| + |delta_min|) / |x - min|
* <= 2Mu / |x - min|
*
* epsilon_scaling = epsilon_(2^32) + epsilon_(max - min)
* = 0 + epsilon_(max - min)
* <= 2Mu / |max - min|
*
* Hence, epsilon_h(x) <= 2Mu * (1/|x - min| + 1/|max - min|)
*
* |delta_h(x)| = 2Mu * (1 + |x-min|/|max-min|) * 2^32 / |max - min|
* <= 4Mu * 2^32 / |max-min|
*
* 2. Error: unhashing GeoHash to point
* ------------------------------------
* Similarly, we can calculate the error for uh(h) function, assuming h is exactly
* represented in form of GeoHash, since integer is represented exactly.
*
* |delta_uh(h)| = epsilon_(h/scaling) * |h/scaling| + delta_min
* = epsilon_(scaling) * |h/scaling| + delta_min
* <= 2Mu / |max-min| * |max-min| + |min| * u
* <= 3Mu
*
* Thus, the second error |delta_uh(h)| <= 3Mu
* Totally, the absolute error we need to add to unhashing to a point <= 4Mu + 3Mu = 7Mu
*
* 3. Error: edge length
* ---------------------
* The third part is easy to compute, since ldexp() doesn't introduce extra
* relative error.
*
* edge_length = ldexp(max - min, -level)
*
* epsilon_edge = epsilon_(max - min) <= 2 * M * u / |max - min|
*
* | delta_edge | = epsilon_edge * (max - min) * 2^(-level)
* = 2Mu * 2^(-level) <= Mu (level >= 1)
*
* This error is neglectable when level >> 0.
*
* In conclusion, | delta_box | <= 8Mu
*
*
* Test
* ====
* This first two component errors can be simulated by uh'(h'(x)).
* Let h = h'(x)
* |delta_(uh'(h'(x)))|
* = epsilon_(h/scaling) * |h/scaling| + delta_min
* = (epsilon_(h) + epsilon_(scaling)) * |h/scaling| + delta_min
* = epsilon_(h) * h/scaling + epsilon_(scaling) * |h/scaling| + delta_min
* = |delta_h|/scaling + |delta_uh(h)|
* ~= |delta_box| when level = 32
*
* Another way to think about it is the error of uh'(h'(x)) also consists of
* the same two components that constitute the error of unhashing to a point,
* by substituting c with h'(x).
*
* | delta_(uh'(h'(x))) | = | x - uh'(h(x)) |
*
* uh(h'(x))
* |
* x | uh'(h(x))
* |--------|---|---|----------------> min-max scale
* min \ /
* \ /
* \ /
* |--------|---|--------------------> hash scale for cells c
* 0 h(x) h'(x)
*
*
* We can get the maximum of the error by making max very large and min = -min, x -> max
*/
TEST(GeoHashConverter, UnhashToBoxError) {
GeoHashConverter::Parameters params;
// Test max from 2^-20 to 2^20
for (int times = -20; times <= 20; times += 2) {
// Construct parameters
params.max = ldexp(1 + 0.01 * times, times);
params.min = -params.max;
params.bits = 32;
double numBuckets = (1024 * 1024 * 1024 * 4.0);
params.scaling = numBuckets / (params.max - params.min);
GeoHashConverter converter(params);
// Assume level == 32, so we ignore the error of edge length here.
double delta_box = 7.0 / 8.0 * GeoHashConverter::calcUnhashToBoxError(params);
double cellEdge = 1 / params.scaling;
double x;
// We are not able to test all the FP numbers to verify the error bound by design,
// so we consider the numbers in the cell near the point we are interested in.
//
// FP numbers starting at max, working downward in minimal increments
x = params.max;
while (x > params.max - cellEdge) {
x = nextafter(x, params.min);
double x_prime =
converter.convertDoubleFromHashScale(converter.convertToDoubleHashScale(x));
double delta = fabs(x - x_prime);
ASSERT_LESS_THAN(delta, delta_box);
}
// FP numbers starting between first and second cell, working downward to min
x = params.min + cellEdge;
while (x > params.min) {
x = nextafter(x, params.min);
double x_prime =
converter.convertDoubleFromHashScale(converter.convertToDoubleHashScale(x));
double delta = fabs(x - x_prime);
ASSERT_LESS_THAN(delta, delta_box);
}
}
}
// SERVER-15576 Verify a point is contained by its GeoHash box.
TEST(GeoHashConverter, GeoHashBox) {
GeoHashConverter::Parameters params;
params.max = 100000000.3;
params.min = -params.max;
params.bits = 32;
double numBuckets = (1024 * 1024 * 1024 * 4.0);
params.scaling = numBuckets / (params.max - params.min);
GeoHashConverter converter(params);
// Without expanding the box, the following point is not contained by its GeoHash box.
mongo::Point p(-7201198.6497758823, -0.1);
mongo::GeoHash hash = converter.hash(p);
mongo::Box box = converter.unhashToBoxCovering(hash);
ASSERT(box.inside(p));
}
TEST(GeoHash, NeighborsBasic) {
vector<GeoHash> neighbors;
// Top level
GeoHash hashAtLevel3("100001");
hashAtLevel3.appendVertexNeighbors(0u, &neighbors);
ASSERT_EQUALS(neighbors.size(), (size_t)1);
ASSERT_EQUALS(neighbors.front(), GeoHash(""));
// Level 1
neighbors.clear();
hashAtLevel3.appendVertexNeighbors(1u, &neighbors);
ASSERT_EQUALS(neighbors.size(), (size_t)2);
std::sort(neighbors.begin(), neighbors.end());
ASSERT_EQUALS(neighbors[0], GeoHash("00"));
ASSERT_EQUALS(neighbors[1], GeoHash("10"));
// Level 2
neighbors.clear();
hashAtLevel3.appendVertexNeighbors(2u, &neighbors);
ASSERT_EQUALS(neighbors.size(), (size_t)4);
std::sort(neighbors.begin(), neighbors.end());
ASSERT_EQUALS(neighbors[0], GeoHash("0010"));
ASSERT_EQUALS(neighbors[1], GeoHash("0011"));
ASSERT_EQUALS(neighbors[2], GeoHash("1000"));
ASSERT_EQUALS(neighbors[3], GeoHash("1001"));
}
TEST(GeoHash, NeighborsAtFinestLevel) {
std::vector<GeoHash> neighbors;
std::string zeroBase = "00000000000000000000000000000000000000000000000000000000";
// At finest level
GeoHash cellHash(zeroBase + "00011110");
neighbors.clear();
cellHash.appendVertexNeighbors(31u, &neighbors);
ASSERT_EQUALS(neighbors.size(), (size_t)4);
std::sort(neighbors.begin(), neighbors.end());
ASSERT_EQUALS(neighbors[0], GeoHash(zeroBase + "000110"));
ASSERT_EQUALS(neighbors[1], GeoHash(zeroBase + "000111"));
ASSERT_EQUALS(neighbors[2], GeoHash(zeroBase + "001100"));
ASSERT_EQUALS(neighbors[3], GeoHash(zeroBase + "001101"));
// Level 30
neighbors.clear();
cellHash.appendVertexNeighbors(30u, &neighbors);
ASSERT_EQUALS(neighbors.size(), (size_t)4);
std::sort(neighbors.begin(), neighbors.end());
ASSERT_EQUALS(neighbors[0], GeoHash(zeroBase + "0001"));
ASSERT_EQUALS(neighbors[1], GeoHash(zeroBase + "0011"));
ASSERT_EQUALS(neighbors[2], GeoHash(zeroBase + "0100"));
ASSERT_EQUALS(neighbors[3], GeoHash(zeroBase + "0110"));
// Level 29, only two neighbors including the parent.
// ^
// |
// +-+
// +-+
// +-+-------> x
neighbors.clear();
cellHash.appendVertexNeighbors(29u, &neighbors);
ASSERT_EQUALS(neighbors.size(), (size_t)2);
std::sort(neighbors.begin(), neighbors.end());
ASSERT_EQUALS(neighbors[0], GeoHash(zeroBase + "00"));
ASSERT_EQUALS(neighbors[1], GeoHash(zeroBase + "01"));
// Level 28, only one neighbor (the parent) at the left bottom corner.
// ^
// |
// +---+
// | |
// +---+-----> x
neighbors.clear();
cellHash.appendVertexNeighbors(28u, &neighbors);
ASSERT_EQUALS(neighbors.size(), (size_t)1);
ASSERT_EQUALS(neighbors[0], GeoHash(zeroBase));
// Level 1
neighbors.clear();
cellHash.appendVertexNeighbors(1u, &neighbors);
ASSERT_EQUALS(neighbors.size(), (size_t)1);
ASSERT_EQUALS(neighbors[0], GeoHash("00"));
}
TEST(GeoHash, ClearUnusedBitsClearsSomeBits) {
GeoHash geoHash("10110010");
// 'parent' should have the four higher order bits from the original hash (1011, or the
// hexidecimal digit 'b').
GeoHash parent = geoHash.parent(2);
ASSERT_EQUALS(parent, GeoHash("1011"));
const long long expectedHash = 0xb000000000000000LL;
ASSERT_EQUALS(expectedHash, parent.getHash());
}
TEST(GeoHash, ClearUnusedBitsOnLengthZeroHashClearsAllBits) {
GeoHash geoHash("11");
const long long expectedHash = 0xc000000000000000LL;
ASSERT_EQUALS(expectedHash, geoHash.getHash());
GeoHash parent = geoHash.parent();
ASSERT_EQUALS(GeoHash(), parent);
ASSERT_EQUALS(0LL, parent.getHash());
}
TEST(GeoHash, ClearUnusedBitsIsNoopIfNoBitsAreUnused) {
// 64 pairs of "10" repeated.
str::stream ss;
for (int i = 0; i < 32; ++i) {
ss << "10";
}
GeoHash geoHash(ss);
GeoHash other = geoHash.parent(32);
ASSERT_EQUALS(geoHash, other);
}
}
|