summaryrefslogtreecommitdiff
path: root/src/mongo/db/matcher/expression_tree.cpp
blob: c9cdf0267000c8f9abe61d40cd73631ff5aa174b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
/**
 *    Copyright (C) 2018-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#include <algorithm>
#include <iterator>

#include "mongo/db/matcher/expression_tree.h"

#include "mongo/bson/bsonmisc.h"
#include "mongo/bson/bsonobj.h"
#include "mongo/bson/bsonobjbuilder.h"
#include "mongo/db/matcher/expression_always_boolean.h"
#include "mongo/db/matcher/expression_path.h"
#include "mongo/db/matcher/expression_text_base.h"

namespace mongo {

void ListOfMatchExpression::_debugList(StringBuilder& debug, int indentationLevel) const {
    for (unsigned i = 0; i < _expressions.size(); i++)
        _expressions[i]->debugString(debug, indentationLevel + 1);
}

void ListOfMatchExpression::_listToBSON(BSONArrayBuilder* out, bool includePath) const {
    for (unsigned i = 0; i < _expressions.size(); i++) {
        BSONObjBuilder childBob(out->subobjStart());
        _expressions[i]->serialize(&childBob, includePath);
    }
    out->doneFast();
}

MatchExpression::ExpressionOptimizerFunc ListOfMatchExpression::getOptimizer() const {
    return [](std::unique_ptr<MatchExpression> expression) -> std::unique_ptr<MatchExpression> {
        auto& children = static_cast<ListOfMatchExpression&>(*expression)._expressions;

        // Recursively apply optimizations to child expressions.
        for (auto& childExpression : children)
            childExpression = MatchExpression::optimize(std::move(childExpression));

        // Associativity of AND and OR: an AND absorbs the children of any ANDs among its children
        // (and likewise for any OR with OR children).
        MatchType matchType = expression->matchType();
        if (matchType == AND || matchType == OR) {
            auto absorbedExpressions = std::vector<std::unique_ptr<MatchExpression>>{};
            for (auto& childExpression : children) {
                if (childExpression->matchType() == matchType) {
                    // Move this child out of the children array.
                    auto childExpressionPtr = std::move(childExpression);
                    childExpression = nullptr;  // Null out this child's entry in _expressions, so
                                                // that it will be deleted by the erase call below.

                    // Move all of the grandchildren from the child expression to
                    // absorbedExpressions.
                    auto& grandChildren =
                        static_cast<ListOfMatchExpression&>(*childExpressionPtr)._expressions;
                    std::move(grandChildren.begin(),
                              grandChildren.end(),
                              std::back_inserter(absorbedExpressions));
                    grandChildren.clear();

                    // Note that 'childExpressionPtr' will now be destroyed.
                }
            }

            // We replaced each destroyed child expression with nullptr. Now we remove those
            // nullptrs from the array.
            children.erase(std::remove(children.begin(), children.end(), nullptr), children.end());

            // Append the absorbed children to the end of the array.
            std::move(absorbedExpressions.begin(),
                      absorbedExpressions.end(),
                      std::back_inserter(children));
        }

        // Remove all children of AND that are $alwaysTrue and all children of OR that are
        // $alwaysFalse.
        if (matchType == AND || matchType == OR) {
            for (auto& childExpression : children)
                if ((childExpression->isTriviallyTrue() && matchType == MatchExpression::AND) ||
                    (childExpression->isTriviallyFalse() && matchType == MatchExpression::OR))
                    childExpression = nullptr;

            // We replaced each destroyed child expression with nullptr. Now we remove those
            // nullptrs from the vector.
            children.erase(std::remove(children.begin(), children.end(), nullptr), children.end());
        }

        // Check if the above optimizations eliminated all children. An OR with no children is
        // always false.
        // TODO SERVER-34759 It is correct to replace this empty AND with an $alwaysTrue, but we
        // need to make enhancements to the planner to make it understand an $alwaysTrue and an
        // empty AND as the same thing. The planner can create inferior plans for $alwaysTrue which
        // it would not produce for an AND with no children.
        if (children.empty() && matchType == MatchExpression::OR) {
            return std::make_unique<AlwaysFalseMatchExpression>();
        }

        if (children.size() == 1) {
            if ((matchType == AND || matchType == OR || matchType == INTERNAL_SCHEMA_XOR)) {
                // Simplify AND/OR/XOR with exactly one operand to an expression consisting of just
                // that operand.
                auto simplifiedExpression = std::move(children.front());
                children.clear();
                return simplifiedExpression;
            } else if (matchType == NOR) {
                // Simplify NOR of exactly one operand to NOT of that operand.
                auto simplifiedExpression =
                    std::make_unique<NotMatchExpression>(std::move(children.front()));
                children.clear();
                return simplifiedExpression;
            }
        }

        if (matchType == MatchExpression::AND || matchType == MatchExpression::OR) {
            for (auto& childExpression : children) {
                // An AND containing an expression that always evaluates to false can be
                // optimized to a single $alwaysFalse expression.
                if (childExpression->isTriviallyFalse() && matchType == MatchExpression::AND) {
                    return std::make_unique<AlwaysFalseMatchExpression>();
                }

                // Likewise, an OR containing an expression that always evaluates to true can be
                // optimized to a single $alwaysTrue expression.
                if (childExpression->isTriviallyTrue() && matchType == MatchExpression::OR) {
                    return std::make_unique<AlwaysTrueMatchExpression>();
                }
            }
        }

        // Rewrite an OR with EQ conditions on the same path as an IN-list. Example:
        // {$or: [{name: "Don"}, {name: "Alice"}]}
        // is rewritten as:
        // {name: {$in: ["Alice", "Don"]}}
        if (matchType == MatchExpression::OR && children.size() > 1) {
            size_t countEquivEqPaths = 0;
            size_t countNonEquivExpr = 0;
            boost::optional<std::string> childPath;
            const CollatorInterface* eqCollator = nullptr;

            auto isRegEx = [](const BSONElement& elm) { return elm.type() == BSONType::RegEx; };

            // Check if all children are equality conditions or regular expressions with the
            // same path argument, and same collation.
            for (auto& childExpression : children) {
                if (childExpression->matchType() != MatchExpression::EQ &&
                    childExpression->matchType() != MatchExpression::REGEX) {
                    ++countNonEquivExpr;
                    continue;
                }

                // Disjunctions of equalities use $eq comparison, which has different semantics from
                // $in for regular expressions. The regex under the equality is matched literally as
                // a string constant, while a regex inside $in is matched as a regular expression.
                // Furthermore, $lookup processing explicitly depends on these different semantics.
                //
                // We should not attempt to rewrite an $eq:<regex> into $in because of these
                // different comparison semantics.
                const CollatorInterface* curCollator = nullptr;
                if (childExpression->matchType() == MatchExpression::EQ) {
                    auto eqExpression =
                        static_cast<EqualityMatchExpression*>(childExpression.get());
                    curCollator = eqExpression->getCollator();
                    if (isRegEx(eqExpression->getData())) {
                        ++countNonEquivExpr;
                        continue;
                    }
                }

                // childExpression is an equality with $in comparison semantics.
                // The current approach assumes there is one (large) group of $eq disjuncts
                // that are on the same path.
                if (!childPath) {
                    // The path of the first equality.
                    childPath = childExpression->path().toString();
                    eqCollator = curCollator;
                    countEquivEqPaths = 1;
                } else if (*childPath == childExpression->path() && eqCollator == curCollator) {
                    ++countEquivEqPaths;  // subsequent equality on the same path
                } else {
                    ++countNonEquivExpr;  // equality on another path
                }
            }
            tassert(3401201,
                    "All expressions must be classified as either eq-equiv or non-eq-equiv",
                    countEquivEqPaths + countNonEquivExpr == children.size());

            // The condition above checks that there are at least two equalities that can be
            // rewritten to an $in, and the we have classified all $or conditions into two disjoint
            // groups.
            if (countEquivEqPaths > 1) {
                tassert(3401202, "There must be a common path", childPath);
                auto inExpression = std::make_unique<InMatchExpression>(StringData(*childPath));
                auto nonEquivOrExpr =
                    (countNonEquivExpr > 0) ? std::make_unique<OrMatchExpression>() : nullptr;
                BSONArrayBuilder bab;

                for (auto& childExpression : children) {
                    if (*childPath != childExpression->path()) {
                        nonEquivOrExpr->add(std::move(childExpression));
                    } else if (childExpression->matchType() == MatchExpression::EQ) {
                        std::unique_ptr<EqualityMatchExpression> eqExpressionPtr{
                            static_cast<EqualityMatchExpression*>(childExpression.release())};
                        if (isRegEx(eqExpressionPtr->getData()) ||
                            eqExpressionPtr->getCollator() != eqCollator) {
                            nonEquivOrExpr->add(std::move(eqExpressionPtr));
                        } else {
                            bab.append(eqExpressionPtr->getData());
                        }
                    } else if (childExpression->matchType() == MatchExpression::REGEX) {
                        std::unique_ptr<RegexMatchExpression> regexExpressionPtr{
                            static_cast<RegexMatchExpression*>(childExpression.release())};
                        // Reset the path because when we parse a $in expression which contains a
                        // regexp, we create a RegexMatchExpression with an empty path.
                        regexExpressionPtr->setPath({});
                        auto status = inExpression->addRegex(std::move(regexExpressionPtr));
                        tassert(3401203,  // TODO SERVER-53380 convert to tassertStatusOK.
                                "Conversion from OR to IN should always succeed",
                                status == Status::OK());
                    } else {
                        nonEquivOrExpr->add(std::move(childExpression));
                    }
                }
                children.clear();
                tassert(3401204,
                        "Incorrect number of non-equivalent expressions",
                        !nonEquivOrExpr || nonEquivOrExpr->numChildren() == countNonEquivExpr);

                auto backingArr = bab.arr();
                std::vector<BSONElement> inEqualities;
                backingArr.elems(inEqualities);
                tassert(3401205,
                        "Incorrect number of in-equivalent expressions",
                        !countEquivEqPaths ||
                            (inEqualities.size() + inExpression->getRegexes().size()) ==
                                countEquivEqPaths);

                auto status = inExpression->setEqualities(std::move(inEqualities));
                tassert(3401206,  // TODO SERVER-53380 convert to tassertStatusOK.
                        "Conversion from OR to IN should always succeed",
                        status == Status::OK());

                inExpression->setBackingBSON(std::move(backingArr));
                if (eqCollator) {
                    inExpression->setCollator(eqCollator);
                }

                if (countNonEquivExpr > 0) {
                    auto parentOrExpr = std::make_unique<OrMatchExpression>();
                    parentOrExpr->add(std::move(inExpression));
                    if (countNonEquivExpr == 1) {
                        parentOrExpr->add(nonEquivOrExpr->releaseChild(0));
                    } else {
                        parentOrExpr->add(std::move(nonEquivOrExpr));
                    }
                    return parentOrExpr;
                }
                return inExpression;
            }
        }

        return expression;
    };
}

bool ListOfMatchExpression::equivalent(const MatchExpression* other) const {
    if (matchType() != other->matchType())
        return false;

    const ListOfMatchExpression* realOther = static_cast<const ListOfMatchExpression*>(other);

    if (_expressions.size() != realOther->_expressions.size())
        return false;

    // TOOD: order doesn't matter
    for (unsigned i = 0; i < _expressions.size(); i++)
        if (!_expressions[i]->equivalent(realOther->_expressions[i].get()))
            return false;

    return true;
}

// -----

bool AndMatchExpression::matches(const MatchableDocument* doc, MatchDetails* details) const {
    for (size_t i = 0; i < numChildren(); i++) {
        if (!getChild(i)->matches(doc, details)) {
            if (details)
                details->resetOutput();
            return false;
        }
    }
    return true;
}

bool AndMatchExpression::matchesSingleElement(const BSONElement& e, MatchDetails* details) const {
    for (size_t i = 0; i < numChildren(); i++) {
        if (!getChild(i)->matchesSingleElement(e, details)) {
            return false;
        }
    }
    return true;
}


void AndMatchExpression::debugString(StringBuilder& debug, int indentationLevel) const {
    _debugAddSpace(debug, indentationLevel);
    debug << "$and";
    MatchExpression::TagData* td = getTag();
    if (td) {
        debug << " ";
        td->debugString(&debug);
    }
    debug << "\n";
    _debugList(debug, indentationLevel);
}

void AndMatchExpression::serialize(BSONObjBuilder* out, bool includePath) const {
    if (!numChildren()) {
        // It is possible for an AndMatchExpression to have no children, resulting in the serialized
        // expression {$and: []}, which is not a valid query object.
        return;
    }

    BSONArrayBuilder arrBob(out->subarrayStart("$and"));
    _listToBSON(&arrBob, includePath);
    arrBob.doneFast();
}

bool AndMatchExpression::isTriviallyTrue() const {
    return numChildren() == 0;
}

// -----

bool OrMatchExpression::matches(const MatchableDocument* doc, MatchDetails* details) const {
    for (size_t i = 0; i < numChildren(); i++) {
        if (getChild(i)->matches(doc, nullptr)) {
            return true;
        }
    }
    return false;
}

bool OrMatchExpression::matchesSingleElement(const BSONElement& e, MatchDetails* details) const {
    MONGO_UNREACHABLE_TASSERT(5429901);
}


void OrMatchExpression::debugString(StringBuilder& debug, int indentationLevel) const {
    _debugAddSpace(debug, indentationLevel);
    debug << "$or";
    MatchExpression::TagData* td = getTag();
    if (td) {
        debug << " ";
        td->debugString(&debug);
    }
    debug << "\n";
    _debugList(debug, indentationLevel);
}

void OrMatchExpression::serialize(BSONObjBuilder* out, bool includePath) const {
    if (!numChildren()) {
        // It is possible for an OrMatchExpression to have no children, resulting in the serialized
        // expression {$or: []}, which is not a valid query object. An empty $or is logically
        // equivalent to {$alwaysFalse: 1}.
        out->append(AlwaysFalseMatchExpression::kName, 1);
        return;
    }
    BSONArrayBuilder arrBob(out->subarrayStart("$or"));
    _listToBSON(&arrBob, includePath);
}

bool OrMatchExpression::isTriviallyFalse() const {
    return numChildren() == 0;
}

// ----

bool NorMatchExpression::matches(const MatchableDocument* doc, MatchDetails* details) const {
    for (size_t i = 0; i < numChildren(); i++) {
        if (getChild(i)->matches(doc, nullptr)) {
            return false;
        }
    }
    return true;
}

bool NorMatchExpression::matchesSingleElement(const BSONElement& e, MatchDetails* details) const {
    for (size_t i = 0; i < numChildren(); i++) {
        if (getChild(i)->matchesSingleElement(e, details)) {
            return false;
        }
    }
    return true;
}

void NorMatchExpression::debugString(StringBuilder& debug, int indentationLevel) const {
    _debugAddSpace(debug, indentationLevel);
    debug << "$nor\n";
    _debugList(debug, indentationLevel);
}

void NorMatchExpression::serialize(BSONObjBuilder* out, bool includePath) const {
    BSONArrayBuilder arrBob(out->subarrayStart("$nor"));
    _listToBSON(&arrBob, includePath);
}

// -------

void NotMatchExpression::debugString(StringBuilder& debug, int indentationLevel) const {
    _debugAddSpace(debug, indentationLevel);
    debug << "$not\n";
    _exp->debugString(debug, indentationLevel + 1);
}

void NotMatchExpression::serializeNotExpressionToNor(MatchExpression* exp,
                                                     BSONObjBuilder* out,
                                                     bool includePath) {
    BSONObjBuilder childBob;
    exp->serialize(&childBob, includePath);
    BSONObj tempObj = childBob.obj();

    BSONArrayBuilder tBob(out->subarrayStart("$nor"));
    tBob.append(tempObj);
    tBob.doneFast();
}

void NotMatchExpression::serialize(BSONObjBuilder* out, bool includePath) const {
    if (_exp->matchType() == MatchType::AND && _exp->numChildren() == 0) {
        out->append("$alwaysFalse", 1);
        return;
    }

    if (!includePath) {
        BSONObjBuilder notBob(out->subobjStart("$not"));
        // Our parser does not accept a $and directly within a $not, instead expecting the direct
        // notation like {x: {$not: {$gt: 5, $lt: 0}}}. We represent such an expression with an AND
        // internally, so we un-nest it here to be able to re-parse it.
        if (_exp->matchType() == MatchType::AND) {
            for (size_t x = 0; x < _exp->numChildren(); ++x) {
                _exp->getChild(x)->serialize(&notBob, includePath);
            }
        } else {
            _exp->serialize(&notBob, includePath);
        }
        return;
    }

    auto expressionToNegate = _exp.get();
    if (_exp->matchType() == MatchType::AND && _exp->numChildren() == 1) {
        expressionToNegate = _exp->getChild(0);
    }

    // It is generally easier to be correct if we just always serialize to a $nor, since this will
    // delegate the path serialization to lower in the tree where we have the information on-hand.
    // However, for legibility we preserve a $not with a single path-accepting child as a $not.
    //
    // One exception: while TextMatchExpressionBase derives from PathMatchExpression, text match
    // expressions cannot be serialized in the same manner as other PathMatchExpression derivatives.
    // This is because the path for a TextMatchExpression is embedded within the $text object,
    // whereas for other PathMatchExpressions it is on the left-hand-side, for example {x: {$eq:
    // 1}}.
    if (auto pathMatch = dynamic_cast<PathMatchExpression*>(expressionToNegate);
        pathMatch && !dynamic_cast<TextMatchExpressionBase*>(expressionToNegate)) {
        const auto path = pathMatch->path();
        BSONObjBuilder pathBob(out->subobjStart(path));
        pathBob.append("$not", pathMatch->getSerializedRightHandSide());
        return;
    }
    return serializeNotExpressionToNor(expressionToNegate, out, includePath);
}

bool NotMatchExpression::equivalent(const MatchExpression* other) const {
    if (matchType() != other->matchType())
        return false;

    return _exp->equivalent(other->getChild(0));
}


MatchExpression::ExpressionOptimizerFunc NotMatchExpression::getOptimizer() const {
    return [](std::unique_ptr<MatchExpression> expression) {
        auto& notExpression = static_cast<NotMatchExpression&>(*expression);
        notExpression._exp = MatchExpression::optimize(std::move(notExpression._exp));

        return expression;
    };
}
}  // namespace mongo