1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
|
/**
* Copyright (C) 2018-present MongoDB, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the Server Side Public License, version 1,
* as published by MongoDB, Inc.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Server Side Public License for more details.
*
* You should have received a copy of the Server Side Public License
* along with this program. If not, see
* <http://www.mongodb.com/licensing/server-side-public-license>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the Server Side Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kDefault
#include "mongo/platform/basic.h"
#include "mongo/db/operation_context.h"
#include "mongo/bson/inline_decls.h"
#include "mongo/db/client.h"
#include "mongo/db/service_context.h"
#include "mongo/platform/random.h"
#include "mongo/stdx/mutex.h"
#include "mongo/transport/baton.h"
#include "mongo/util/assert_util.h"
#include "mongo/util/clock_source.h"
#include "mongo/util/fail_point_service.h"
#include "mongo/util/log.h"
#include "mongo/util/scopeguard.h"
#include "mongo/util/system_tick_source.h"
namespace mongo {
namespace {
// Enabling the maxTimeAlwaysTimeOut fail point will cause any query or command run with a
// valid non-zero max time to fail immediately. Any getmore operation on a cursor already
// created with a valid non-zero max time will also fail immediately.
//
// This fail point cannot be used with the maxTimeNeverTimeOut fail point.
MONGO_FAIL_POINT_DEFINE(maxTimeAlwaysTimeOut);
// Enabling the maxTimeNeverTimeOut fail point will cause the server to never time out any
// query, command, or getmore operation, regardless of whether a max time is set.
//
// This fail point cannot be used with the maxTimeAlwaysTimeOut fail point.
MONGO_FAIL_POINT_DEFINE(maxTimeNeverTimeOut);
// Enabling the checkForInterruptFail fail point will start a game of random chance on the
// connection specified in the fail point data, generating an interrupt with a given fixed
// probability. Example invocation:
//
// {configureFailPoint: "checkForInterruptFail",
// mode: "alwaysOn",
// data: {threadName: "threadName", chance: .01}}
//
// Both data fields must be specified. In the above example, all interrupt points on the thread with
// name 'threadName' will generate a kill on the current operation with probability p(.01),
// including interrupt points of nested operations. "chance" must be a double between 0 and 1,
// inclusive.
MONGO_FAIL_POINT_DEFINE(checkForInterruptFail);
} // namespace
OperationContext::OperationContext(Client* client, unsigned int opId)
: _client(client),
_opId(opId),
_elapsedTime(client ? client->getServiceContext()->getTickSource()
: SystemTickSource::get()) {}
void OperationContext::setDeadlineAndMaxTime(Date_t when,
Microseconds maxTime,
ErrorCodes::Error timeoutError) {
invariant(!getClient()->isInDirectClient() || _hasArtificialDeadline);
invariant(ErrorCodes::isExceededTimeLimitError(timeoutError));
uassert(40120,
"Illegal attempt to change operation deadline",
_hasArtificialDeadline || !hasDeadline());
_deadline = when;
_maxTime = maxTime;
_timeoutError = timeoutError;
}
Microseconds OperationContext::computeMaxTimeFromDeadline(Date_t when) {
Microseconds maxTime;
if (when == Date_t::max()) {
maxTime = Microseconds::max();
} else {
maxTime = when - getServiceContext()->getFastClockSource()->now();
if (maxTime < Microseconds::zero()) {
maxTime = Microseconds::zero();
}
}
return maxTime;
}
void OperationContext::setDeadlineByDate(Date_t when, ErrorCodes::Error timeoutError) {
setDeadlineAndMaxTime(when, computeMaxTimeFromDeadline(when), timeoutError);
}
void OperationContext::setDeadlineAfterNowBy(Microseconds maxTime, ErrorCodes::Error timeoutError) {
Date_t when;
if (maxTime < Microseconds::zero()) {
maxTime = Microseconds::zero();
}
if (maxTime == Microseconds::max()) {
when = Date_t::max();
} else {
auto clock = getServiceContext()->getFastClockSource();
when = clock->now();
if (maxTime > Microseconds::zero()) {
when += clock->getPrecision() + maxTime;
}
}
setDeadlineAndMaxTime(when, maxTime, timeoutError);
}
bool OperationContext::hasDeadlineExpired() const {
if (!hasDeadline()) {
return false;
}
if (MONGO_FAIL_POINT(maxTimeNeverTimeOut)) {
return false;
}
if (MONGO_FAIL_POINT(maxTimeAlwaysTimeOut)) {
return true;
}
// TODO: Remove once all OperationContexts are properly connected to Clients and ServiceContexts
// in tests.
if (MONGO_unlikely(!getClient() || !getServiceContext())) {
return false;
}
const auto now = getServiceContext()->getFastClockSource()->now();
return now >= getDeadline();
}
Milliseconds OperationContext::getRemainingMaxTimeMillis() const {
if (!hasDeadline()) {
return Milliseconds::max();
}
return std::max(Milliseconds{0},
getDeadline() - getServiceContext()->getFastClockSource()->now());
}
Microseconds OperationContext::getRemainingMaxTimeMicros() const {
if (!hasDeadline()) {
return Microseconds::max();
}
return _maxTime - getElapsedTime();
}
namespace {
// Helper function for checkForInterrupt fail point. Decides whether the operation currently
// being run by the given Client meet the (probabilistic) conditions for interruption as
// specified in the fail point info.
bool opShouldFail(Client* client, const BSONObj& failPointInfo) {
// Only target the client with the specified connection number.
if (client->desc() != failPointInfo["threadName"].valuestrsafe()) {
return false;
}
// Return true with (approx) probability p = "chance". Recall: 0 <= chance <= 1.
double next = client->getPrng().nextCanonicalDouble();
if (next > failPointInfo["chance"].numberDouble()) {
return false;
}
return true;
}
} // namespace
Status OperationContext::checkForInterruptNoAssert() noexcept {
// TODO: Remove the MONGO_likely(getClient()) once all operation contexts are constructed with
// clients.
if (MONGO_likely(getClient() && getServiceContext()) &&
getServiceContext()->getKillAllOperations()) {
return Status(ErrorCodes::InterruptedAtShutdown, "interrupted at shutdown");
}
if (hasDeadlineExpired()) {
if (!_hasArtificialDeadline) {
markKilled(_timeoutError);
}
return Status(_timeoutError, "operation exceeded time limit");
}
if (_ignoreInterrupts) {
return Status::OK();
}
MONGO_FAIL_POINT_BLOCK(checkForInterruptFail, scopedFailPoint) {
if (opShouldFail(getClient(), scopedFailPoint.getData())) {
log() << "set pending kill on op " << getOpID() << ", for checkForInterruptFail";
markKilled();
}
}
const auto killStatus = getKillStatus();
if (killStatus != ErrorCodes::OK) {
return Status(killStatus, "operation was interrupted");
}
return Status::OK();
}
// Theory of operation for waitForConditionOrInterruptNoAssertUntil and markKilled:
//
// An operation indicates to potential killers that it is waiting on a condition variable by setting
// _waitMutex and _waitCV, while holding the lock on its parent Client. It then unlocks its Client,
// unblocking any killers, which are required to have locked the Client before calling markKilled.
//
// When _waitMutex and _waitCV are set, killers must lock _waitMutex before setting the _killCode,
// and must signal _waitCV before releasing _waitMutex. Unfortunately, they must lock _waitMutex
// without holding a lock on Client to avoid a deadlock with callers of
// waitForConditionOrInterruptNoAssertUntil(). So, in the event that _waitMutex is set, the killer
// increments _numKillers, drops the Client lock, acquires _waitMutex and then re-acquires the
// Client lock. We know that the Client, its OperationContext and _waitMutex will remain valid
// during this period because the caller of waitForConditionOrInterruptNoAssertUntil will not return
// while _numKillers > 0 and will not return until it has itself reacquired _waitMutex. Instead,
// that caller will keep waiting on _waitCV until _numKillers drops to 0.
//
// In essence, when _waitMutex is set, _killCode is guarded by _waitMutex and _waitCV, but when
// _waitMutex is not set, it is guarded by the Client spinlock. Changing _waitMutex is itself
// guarded by the Client spinlock and _numKillers.
//
// When _numKillers does drop to 0, the waiter will null out _waitMutex and _waitCV.
//
// This implementation adds a minimum of two spinlock acquire-release pairs to every condition
// variable wait.
StatusWith<stdx::cv_status> OperationContext::waitForConditionOrInterruptNoAssertUntil(
stdx::condition_variable& cv, stdx::unique_lock<stdx::mutex>& m, Date_t deadline) noexcept {
invariant(getClient());
{
stdx::lock_guard<Client> clientLock(*getClient());
invariant(!_waitMutex);
invariant(!_waitCV);
invariant(0 == _numKillers);
// This interrupt check must be done while holding the client lock, so as not to race with a
// concurrent caller of markKilled.
auto status = checkForInterruptNoAssert();
if (!status.isOK()) {
return status;
}
_waitMutex = m.mutex();
_waitCV = &cv;
}
// If the maxTimeNeverTimeOut failpoint is set, behave as though the operation's deadline does
// not exist. Under normal circumstances, if the op has an existing deadline which is sooner
// than the deadline passed into this method, we replace our deadline with the op's. This means
// that we expect to time out at the same time as the existing deadline expires. If, when we
// time out, we find that the op's deadline has not expired (as will always be the case if
// maxTimeNeverTimeOut is set) then we assume that the incongruity is due to a clock mismatch
// and return _timeoutError regardless. To prevent this behaviour, only consider the op's
// deadline in the event that the maxTimeNeverTimeOut failpoint is not set.
bool opHasDeadline = (hasDeadline() && !MONGO_FAIL_POINT(maxTimeNeverTimeOut));
if (opHasDeadline) {
deadline = std::min(deadline, getDeadline());
}
const auto waitStatus = [&] {
if (Date_t::max() == deadline) {
Waitable::wait(_baton.get(), getServiceContext()->getPreciseClockSource(), cv, m);
return stdx::cv_status::no_timeout;
}
return getServiceContext()->getPreciseClockSource()->waitForConditionUntil(
cv, m, deadline, _baton.get());
}();
// Continue waiting on cv until no other thread is attempting to kill this one.
Waitable::wait(_baton.get(), getServiceContext()->getPreciseClockSource(), cv, m, [this] {
stdx::lock_guard<Client> clientLock(*getClient());
if (0 == _numKillers) {
_waitMutex = nullptr;
_waitCV = nullptr;
return true;
}
return false;
});
auto status = checkForInterruptNoAssert();
if (!status.isOK()) {
return status;
}
if (opHasDeadline && waitStatus == stdx::cv_status::timeout && deadline == getDeadline()) {
// It's possible that the system clock used in stdx::condition_variable::wait_until
// is slightly ahead of the FastClock used in checkForInterrupt. In this case,
// we treat the operation as though it has exceeded its time limit, just as if the
// FastClock and system clock had agreed.
if (!_hasArtificialDeadline) {
markKilled(_timeoutError);
}
return Status(_timeoutError, "operation exceeded time limit");
}
return waitStatus;
}
void OperationContext::markKilled(ErrorCodes::Error killCode) {
invariant(killCode != ErrorCodes::OK);
stdx::unique_lock<stdx::mutex> lkWaitMutex;
if (_waitMutex) {
invariant(++_numKillers > 0);
getClient()->unlock();
ON_BLOCK_EXIT([this]() noexcept {
getClient()->lock();
invariant(--_numKillers >= 0);
});
lkWaitMutex = stdx::unique_lock<stdx::mutex>{*_waitMutex};
}
_killCode.compareAndSwap(ErrorCodes::OK, killCode);
if (lkWaitMutex && _numKillers == 0) {
invariant(_waitCV);
_waitCV->notify_all();
}
}
void OperationContext::setLogicalSessionId(LogicalSessionId lsid) {
invariant(!_lsid);
_lsid = std::move(lsid);
}
void OperationContext::setTxnNumber(TxnNumber txnNumber) {
invariant(_lsid);
invariant(!_txnNumber);
_txnNumber = txnNumber;
}
std::unique_ptr<RecoveryUnit> OperationContext::releaseRecoveryUnit() {
return std::move(_recoveryUnit);
}
WriteUnitOfWork::RecoveryUnitState OperationContext::setRecoveryUnit(
std::unique_ptr<RecoveryUnit> unit, WriteUnitOfWork::RecoveryUnitState state) {
_recoveryUnit = std::move(unit);
WriteUnitOfWork::RecoveryUnitState oldState = _ruState;
_ruState = state;
return oldState;
}
void OperationContext::setLockState(std::unique_ptr<Locker> locker) {
invariant(!_locker);
invariant(locker);
_locker = std::move(locker);
}
std::unique_ptr<Locker> OperationContext::swapLockState(std::unique_ptr<Locker> locker) {
invariant(_locker);
invariant(locker);
_locker.swap(locker);
return locker;
}
Date_t OperationContext::getExpirationDateForWaitForValue(Milliseconds waitFor) {
return getServiceContext()->getPreciseClockSource()->now() + waitFor;
}
} // namespace mongo
|