1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
|
/**
* Copyright (C) 2018-present MongoDB, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the Server Side Public License, version 1,
* as published by MongoDB, Inc.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Server Side Public License for more details.
*
* You should have received a copy of the Server Side Public License
* along with this program. If not, see
* <http://www.mongodb.com/licensing/server-side-public-license>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the Server Side Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#define MONGO_LOGV2_DEFAULT_COMPONENT ::mongo::logv2::LogComponent::kQuery
#include "mongo/platform/basic.h"
#include "mongo/db/pipeline/pipeline_d.h"
#include "mongo/base/exact_cast.h"
#include "mongo/bson/simple_bsonobj_comparator.h"
#include "mongo/db/catalog/collection.h"
#include "mongo/db/catalog/database.h"
#include "mongo/db/catalog/index_catalog.h"
#include "mongo/db/concurrency/d_concurrency.h"
#include "mongo/db/concurrency/write_conflict_exception.h"
#include "mongo/db/db_raii.h"
#include "mongo/db/exec/collection_scan.h"
#include "mongo/db/exec/fetch.h"
#include "mongo/db/exec/multi_iterator.h"
#include "mongo/db/exec/queued_data_stage.h"
#include "mongo/db/exec/shard_filter.h"
#include "mongo/db/exec/trial_stage.h"
#include "mongo/db/exec/working_set.h"
#include "mongo/db/index/index_access_method.h"
#include "mongo/db/matcher/extensions_callback_real.h"
#include "mongo/db/namespace_string.h"
#include "mongo/db/ops/write_ops_exec.h"
#include "mongo/db/ops/write_ops_gen.h"
#include "mongo/db/pipeline/document_source.h"
#include "mongo/db/pipeline/document_source_change_stream.h"
#include "mongo/db/pipeline/document_source_cursor.h"
#include "mongo/db/pipeline/document_source_geo_near.h"
#include "mongo/db/pipeline/document_source_geo_near_cursor.h"
#include "mongo/db/pipeline/document_source_group.h"
#include "mongo/db/pipeline/document_source_match.h"
#include "mongo/db/pipeline/document_source_sample.h"
#include "mongo/db/pipeline/document_source_sample_from_random_cursor.h"
#include "mongo/db/pipeline/document_source_single_document_transformation.h"
#include "mongo/db/pipeline/document_source_sort.h"
#include "mongo/db/pipeline/pipeline.h"
#include "mongo/db/query/collation/collator_interface.h"
#include "mongo/db/query/get_executor.h"
#include "mongo/db/query/plan_executor_factory.h"
#include "mongo/db/query/plan_summary_stats.h"
#include "mongo/db/query/query_planner.h"
#include "mongo/db/query/sort_pattern.h"
#include "mongo/db/s/collection_sharding_state.h"
#include "mongo/db/service_context.h"
#include "mongo/db/stats/top.h"
#include "mongo/db/storage/record_store.h"
#include "mongo/db/storage/sorted_data_interface.h"
#include "mongo/rpc/metadata/client_metadata_ismaster.h"
#include "mongo/s/query/document_source_merge_cursors.h"
#include "mongo/util/time_support.h"
namespace mongo {
using boost::intrusive_ptr;
using std::shared_ptr;
using std::string;
using std::unique_ptr;
using write_ops::Insert;
namespace {
/**
* Returns a PlanExecutor which uses a random cursor to sample documents if successful. Returns {}
* if the storage engine doesn't support random cursors, or if 'sampleSize' is a large enough
* percentage of the collection.
*
* If needed, adds DocumentSourceSampleFromRandomCursor to the front of the pipeline, replacing the
* $sample stage. This is needed if we select an optimized plan for $sample taking advantage of
* storage engine support for random cursors.
*/
StatusWith<unique_ptr<PlanExecutor, PlanExecutor::Deleter>> createRandomCursorExecutor(
const Collection* coll,
const boost::intrusive_ptr<ExpressionContext>& expCtx,
long long sampleSize,
long long numRecords,
Pipeline* pipeline) {
OperationContext* opCtx = expCtx->opCtx;
// Verify that we are already under a collection lock. We avoid taking locks ourselves in this
// function because double-locking forces any PlanExecutor we create to adopt a NO_YIELD policy.
invariant(opCtx->lockState()->isCollectionLockedForMode(coll->ns(), MODE_IS));
static const double kMaxSampleRatioForRandCursor = 0.05;
if (sampleSize > numRecords * kMaxSampleRatioForRandCursor || numRecords <= 100) {
return {nullptr};
}
// Attempt to get a random cursor from the RecordStore.
auto rsRandCursor = coll->getRecordStore()->getRandomCursor(opCtx);
if (!rsRandCursor) {
// The storage engine has no random cursor support.
return {nullptr};
}
// Build a MultiIteratorStage and pass it the random-sampling RecordCursor.
auto ws = std::make_unique<WorkingSet>();
std::unique_ptr<PlanStage> root =
std::make_unique<MultiIteratorStage>(expCtx.get(), ws.get(), coll);
static_cast<MultiIteratorStage*>(root.get())->addIterator(std::move(rsRandCursor));
// If the incoming operation is sharded, use the CSS to infer the filtering metadata for the
// collection, otherwise treat it as unsharded
auto collectionFilter =
CollectionShardingState::get(opCtx, coll->ns())
->getOwnershipFilter(
opCtx, CollectionShardingState::OrphanCleanupPolicy::kDisallowOrphanCleanup);
TrialStage* trialStage = nullptr;
// Because 'numRecords' includes orphan documents, our initial decision to optimize the $sample
// cursor may have been mistaken. For sharded collections, build a TRIAL plan that will switch
// to a collection scan if the ratio of orphaned to owned documents encountered over the first
// 100 works() is such that we would have chosen not to optimize.
if (collectionFilter.isSharded()) {
// The ratio of owned to orphaned documents must be at least equal to the ratio between the
// requested sampleSize and the maximum permitted sampleSize for the original constraints to
// be satisfied. For instance, if there are 200 documents and the sampleSize is 5, then at
// least (5 / (200*0.05)) = (5/10) = 50% of those documents must be owned. If less than 5%
// of the documents in the collection are owned, we default to the backup plan.
static const size_t kMaxPresampleSize = 100;
const auto minWorkAdvancedRatio = std::max(
sampleSize / (numRecords * kMaxSampleRatioForRandCursor), kMaxSampleRatioForRandCursor);
// The trial plan is SHARDING_FILTER-MULTI_ITERATOR.
auto randomCursorPlan = std::make_unique<ShardFilterStage>(
expCtx.get(), collectionFilter, ws.get(), std::move(root));
// The backup plan is SHARDING_FILTER-COLLSCAN.
std::unique_ptr<PlanStage> collScanPlan = std::make_unique<CollectionScan>(
expCtx.get(), coll, CollectionScanParams{}, ws.get(), nullptr);
collScanPlan = std::make_unique<ShardFilterStage>(
expCtx.get(), collectionFilter, ws.get(), std::move(collScanPlan));
// Place a TRIAL stage at the root of the plan tree, and pass it the trial and backup plans.
root = std::make_unique<TrialStage>(expCtx.get(),
ws.get(),
std::move(randomCursorPlan),
std::move(collScanPlan),
kMaxPresampleSize,
minWorkAdvancedRatio);
trialStage = static_cast<TrialStage*>(root.get());
}
auto exec = plan_executor_factory::make(
expCtx, std::move(ws), std::move(root), coll, PlanYieldPolicy::YieldPolicy::YIELD_AUTO);
// For sharded collections, the root of the plan tree is a TrialStage that may have chosen
// either a random-sampling cursor trial plan or a COLLSCAN backup plan. We can only optimize
// the $sample aggregation stage if the trial plan was chosen.
if (!trialStage || !trialStage->pickedBackupPlan()) {
// Replace $sample stage with $sampleFromRandomCursor stage.
pipeline->popFront();
std::string idString = coll->ns().isOplog() ? "ts" : "_id";
pipeline->addInitialSource(
DocumentSourceSampleFromRandomCursor::create(expCtx, sampleSize, idString, numRecords));
}
return exec;
}
StatusWith<std::unique_ptr<PlanExecutor, PlanExecutor::Deleter>> attemptToGetExecutor(
const intrusive_ptr<ExpressionContext>& expCtx,
const Collection* collection,
const NamespaceString& nss,
BSONObj queryObj,
BSONObj projectionObj,
const QueryMetadataBitSet& metadataRequested,
BSONObj sortObj,
boost::optional<long long> limit,
boost::optional<std::string> groupIdForDistinctScan,
const AggregationRequest* aggRequest,
const size_t plannerOpts,
const MatchExpressionParser::AllowedFeatureSet& matcherFeatures) {
auto qr = std::make_unique<QueryRequest>(nss);
qr->setTailableMode(expCtx->tailableMode);
qr->setFilter(queryObj);
qr->setProj(projectionObj);
qr->setSort(sortObj);
qr->setLimit(limit);
if (aggRequest) {
qr->setExplain(static_cast<bool>(aggRequest->getExplain()));
qr->setHint(aggRequest->getHint());
}
// The collation on the ExpressionContext has been resolved to either the user-specified
// collation or the collection default. This BSON should never be empty even if the resolved
// collator is simple.
qr->setCollation(expCtx->getCollatorBSON());
const ExtensionsCallbackReal extensionsCallback(expCtx->opCtx, &nss);
auto cq = CanonicalQuery::canonicalize(expCtx->opCtx,
std::move(qr),
expCtx,
extensionsCallback,
matcherFeatures,
ProjectionPolicies::aggregateProjectionPolicies());
if (!cq.isOK()) {
// Return an error instead of uasserting, since there are cases where the combination of
// sort and projection will result in a bad query, but when we try with a different
// combination it will be ok. e.g. a sort by {$meta: 'textScore'}, without any projection
// will fail, but will succeed when the corresponding '$meta' projection is passed in
// another attempt.
return {cq.getStatus()};
}
// Mark the metadata that's requested by the pipeline on the CQ.
cq.getValue()->requestAdditionalMetadata(metadataRequested);
if (groupIdForDistinctScan) {
// When the pipeline includes a $group that groups by a single field
// (groupIdForDistinctScan), we use getExecutorDistinct() to attempt to get an executor that
// uses a DISTINCT_SCAN to scan exactly one document for each group. When that's not
// possible, we return nullptr, and the caller is responsible for trying again without
// passing a 'groupIdForDistinctScan' value.
ParsedDistinct parsedDistinct(std::move(cq.getValue()), *groupIdForDistinctScan);
// Note that we request a "strict" distinct plan because:
// 1) We do not want to have to de-duplicate the results of the plan.
//
// 2) We not want a plan that will return separate values for each array element. For
// example, if we have a document {a: [1,2]} and group by "a" a DISTINCT_SCAN on an "a"
// index would produce one result for '1' and another for '2', which would be incorrect.
auto distinctExecutor = getExecutorDistinct(
collection, plannerOpts | QueryPlannerParams::STRICT_DISTINCT_ONLY, &parsedDistinct);
if (!distinctExecutor.isOK()) {
return distinctExecutor.getStatus().withContext(
"Unable to use distinct scan to optimize $group stage");
} else if (!distinctExecutor.getValue()) {
return {ErrorCodes::NoQueryExecutionPlans,
"Unable to use distinct scan to optimize $group stage"};
} else {
return distinctExecutor;
}
}
bool permitYield = true;
return getExecutorFind(
expCtx->opCtx, collection, std::move(cq.getValue()), permitYield, plannerOpts);
}
/**
* Examines the indexes in 'collection' and returns the field name of a geo-indexed field suitable
* for use in $geoNear. 2d indexes are given priority over 2dsphere indexes.
*
* The 'collection' is required to exist. Throws if no usable 2d or 2dsphere index could be found.
*/
StringData extractGeoNearFieldFromIndexes(OperationContext* opCtx, const Collection* collection) {
invariant(collection);
std::vector<const IndexDescriptor*> idxs;
collection->getIndexCatalog()->findIndexByType(opCtx, IndexNames::GEO_2D, idxs);
uassert(ErrorCodes::IndexNotFound,
str::stream() << "There is more than one 2d index on " << collection->ns().ns()
<< "; unsure which to use for $geoNear",
idxs.size() <= 1U);
if (idxs.size() == 1U) {
for (auto&& elem : idxs.front()->keyPattern()) {
if (elem.type() == BSONType::String && elem.valueStringData() == IndexNames::GEO_2D) {
return elem.fieldNameStringData();
}
}
MONGO_UNREACHABLE;
}
// If there are no 2d indexes, look for a 2dsphere index.
idxs.clear();
collection->getIndexCatalog()->findIndexByType(opCtx, IndexNames::GEO_2DSPHERE, idxs);
uassert(ErrorCodes::IndexNotFound,
"$geoNear requires a 2d or 2dsphere index, but none were found",
!idxs.empty());
uassert(ErrorCodes::IndexNotFound,
str::stream() << "There is more than one 2dsphere index on " << collection->ns().ns()
<< "; unsure which to use for $geoNear",
idxs.size() <= 1U);
invariant(idxs.size() == 1U);
for (auto&& elem : idxs.front()->keyPattern()) {
if (elem.type() == BSONType::String && elem.valueStringData() == IndexNames::GEO_2DSPHERE) {
return elem.fieldNameStringData();
}
}
MONGO_UNREACHABLE;
}
} // namespace
std::pair<PipelineD::AttachExecutorCallback, std::unique_ptr<PlanExecutor, PlanExecutor::Deleter>>
PipelineD::buildInnerQueryExecutor(const Collection* collection,
const NamespaceString& nss,
const AggregationRequest* aggRequest,
Pipeline* pipeline) {
auto expCtx = pipeline->getContext();
// We will be modifying the source vector as we go.
Pipeline::SourceContainer& sources = pipeline->_sources;
if (!sources.empty() && !sources.front()->constraints().requiresInputDocSource) {
return {};
}
// We are going to generate an input cursor, so we need to be holding the collection lock.
dassert(expCtx->opCtx->lockState()->isCollectionLockedForMode(nss, MODE_IS));
if (!sources.empty()) {
auto sampleStage = dynamic_cast<DocumentSourceSample*>(sources.front().get());
// Optimize an initial $sample stage if possible.
if (collection && sampleStage) {
const long long sampleSize = sampleStage->getSampleSize();
const long long numRecords = collection->getRecordStore()->numRecords(expCtx->opCtx);
auto exec = uassertStatusOK(
createRandomCursorExecutor(collection, expCtx, sampleSize, numRecords, pipeline));
if (exec) {
// The order in which we evaluate these arguments is significant. We'd like to be
// sure that the DocumentSourceCursor is created _last_, because if we run into a
// case where a DocumentSourceCursor has been created (yet hasn't been put into a
// Pipeline) and an exception is thrown, an invariant will trigger in the
// DocumentSourceCursor. This is a design flaw in DocumentSourceCursor.
auto deps = pipeline->getDependencies(DepsTracker::kAllMetadata);
const auto cursorType = deps.hasNoRequirements()
? DocumentSourceCursor::CursorType::kEmptyDocuments
: DocumentSourceCursor::CursorType::kRegular;
auto attachExecutorCallback =
[cursorType](const Collection* collection,
std::unique_ptr<PlanExecutor, PlanExecutor::Deleter> exec,
Pipeline* pipeline) {
auto cursor = DocumentSourceCursor::create(
collection, std::move(exec), pipeline->getContext(), cursorType);
pipeline->addInitialSource(std::move(cursor));
};
return std::make_pair(std::move(attachExecutorCallback), std::move(exec));
}
}
}
// If the first stage is $geoNear, prepare a special DocumentSourceGeoNearCursor stage;
// otherwise, create a generic DocumentSourceCursor.
const auto geoNearStage =
sources.empty() ? nullptr : dynamic_cast<DocumentSourceGeoNear*>(sources.front().get());
if (geoNearStage) {
return buildInnerQueryExecutorGeoNear(collection, nss, aggRequest, pipeline);
} else {
return buildInnerQueryExecutorGeneric(collection, nss, aggRequest, pipeline);
}
}
void PipelineD::attachInnerQueryExecutorToPipeline(
const Collection* collection,
PipelineD::AttachExecutorCallback attachExecutorCallback,
std::unique_ptr<PlanExecutor, PlanExecutor::Deleter> exec,
Pipeline* pipeline) {
// If the pipeline doesn't need a $cursor stage, there will be no callback function and
// PlanExecutor provided in the 'attachExecutorCallback' object, so we don't need to do
// anything.
if (attachExecutorCallback && exec) {
attachExecutorCallback(collection, std::move(exec), pipeline);
}
}
void PipelineD::buildAndAttachInnerQueryExecutorToPipeline(const Collection* collection,
const NamespaceString& nss,
const AggregationRequest* aggRequest,
Pipeline* pipeline) {
auto callback = PipelineD::buildInnerQueryExecutor(collection, nss, aggRequest, pipeline);
PipelineD::attachInnerQueryExecutorToPipeline(
collection, callback.first, std::move(callback.second), pipeline);
}
namespace {
/**
* Look for $sort, $group at the beginning of the pipeline, potentially returning either or both.
* Returns nullptr for any of the stages that are not found. Note that we are not looking for the
* opposite pattern ($group, $sort). In that case, this function will return only the $group stage.
*
* This function will not return the $group in the case that there is an initial $sort with
* intermediate stages that separate it from the $group (e.g.: $sort, $limit, $group). That includes
* the case of a $sort with a non-null value for getLimitSrc(), indicating that there was previously
* a $limit stage that was optimized away.
*/
std::pair<boost::intrusive_ptr<DocumentSourceSort>, boost::intrusive_ptr<DocumentSourceGroup>>
getSortAndGroupStagesFromPipeline(const Pipeline::SourceContainer& sources) {
boost::intrusive_ptr<DocumentSourceSort> sortStage = nullptr;
boost::intrusive_ptr<DocumentSourceGroup> groupStage = nullptr;
auto sourcesIt = sources.begin();
if (sourcesIt != sources.end()) {
sortStage = dynamic_cast<DocumentSourceSort*>(sourcesIt->get());
if (sortStage) {
if (!sortStage->hasLimit()) {
++sourcesIt;
} else {
// This $sort stage was previously followed by a $limit stage.
sourcesIt = sources.end();
}
}
}
if (sourcesIt != sources.end()) {
groupStage = dynamic_cast<DocumentSourceGroup*>(sourcesIt->get());
}
return std::make_pair(sortStage, groupStage);
}
boost::optional<long long> extractLimitForPushdown(Pipeline* pipeline) {
// If the disablePipelineOptimization failpoint is enabled, then do not attempt the limit
// pushdown optimization.
if (MONGO_unlikely(disablePipelineOptimization.shouldFail())) {
return boost::none;
}
auto&& sources = pipeline->getSources();
auto limit = DocumentSourceSort::extractLimitForPushdown(sources.begin(), &sources);
if (limit) {
// Removing $limit stages may have produced the opportunity for additional optimizations.
pipeline->optimizePipeline();
}
return limit;
}
/**
* Given a dependency set and a pipeline, builds a projection BSON object to push down into the
* PlanStage layer. The rules to push down the projection are as follows:
* 1. If there is an inclusion projection at the front of the pipeline, it will be pushed down
* as is.
* 2. If there is no inclusion projection at the front of the pipeline, but there is a finite
* dependency set, a projection representing this dependency set will be pushed down.
* 3. Otherwise, an empty projection is returned and no projection push down will happen.
*/
auto buildProjectionForPushdown(const DepsTracker& deps, Pipeline* pipeline) {
auto&& sources = pipeline->getSources();
// Short-circuit if the pipeline is emtpy, there is no projection and nothing to push down.
if (sources.empty()) {
return BSONObj();
}
if (const auto projStage =
exact_pointer_cast<DocumentSourceSingleDocumentTransformation*>(sources.front().get());
projStage) {
if (projStage->getType() == TransformerInterface::TransformerType::kInclusionProjection) {
// If there is an inclusion projection at the front of the pipeline, we have case 1.
auto projObj =
projStage->getTransformer().serializeTransformation(boost::none).toBson();
sources.pop_front();
return projObj;
}
}
// Depending of whether there is a finite dependency set, either return a projection
// representing this dependency set, or an empty BSON, meaning no projection push down will
// happen. This covers cases 2 and 3.
return deps.toProjectionWithoutMetadata();
}
} // namespace
std::pair<PipelineD::AttachExecutorCallback, std::unique_ptr<PlanExecutor, PlanExecutor::Deleter>>
PipelineD::buildInnerQueryExecutorGeneric(const Collection* collection,
const NamespaceString& nss,
const AggregationRequest* aggRequest,
Pipeline* pipeline) {
// Make a last effort to optimize pipeline stages before potentially detaching them to be pushed
// down into the query executor.
pipeline->optimizePipeline();
Pipeline::SourceContainer& sources = pipeline->_sources;
auto expCtx = pipeline->getContext();
// Look for an initial match. This works whether we got an initial query or not. If not, it
// results in a "{}" query, which will be what we want in that case.
const BSONObj queryObj = pipeline->getInitialQuery();
if (!queryObj.isEmpty()) {
auto matchStage = dynamic_cast<DocumentSourceMatch*>(sources.front().get());
if (matchStage) {
// If a $match query is pulled into the cursor, the $match is redundant, and can be
// removed from the pipeline.
sources.pop_front();
} else {
// A $geoNear stage, the only other stage that can produce an initial query, is also
// a valid initial stage. However, we should be in prepareGeoNearCursorSource() instead.
MONGO_UNREACHABLE;
}
}
auto&& [sortStage, groupStage] = getSortAndGroupStagesFromPipeline(pipeline->_sources);
std::unique_ptr<GroupFromFirstDocumentTransformation> rewrittenGroupStage;
if (groupStage) {
rewrittenGroupStage = groupStage->rewriteGroupAsTransformOnFirstDocument();
}
// If there is a $limit stage (or multiple $limit stages) that could be pushed down into the
// PlanStage layer, obtain the value of the limit and remove the $limit stages from the
// pipeline.
//
// This analysis is done here rather than in 'optimizePipeline()' because swapping $limit before
// stages such as $project is not always useful, and can sometimes defeat other optimizations.
// In particular, in a sharded scenario a pipeline such as [$project, $limit] is preferable to
// [$limit, $project]. The former permits the execution of the projection operation to be
// parallelized across all targeted shards, whereas the latter would bring all of the data to a
// merging shard first, and then apply the projection serially. See SERVER-24981 for a more
// detailed discussion.
//
// This only handles the case in which the the $limit can logically be swapped to the front of
// the pipeline. We can also push down a $limit which comes after a $sort into the PlanStage
// layer, but that is handled elsewhere.
const auto limit = extractLimitForPushdown(pipeline);
auto unavailableMetadata = DocumentSourceMatch::isTextQuery(queryObj)
? DepsTracker::kDefaultUnavailableMetadata & ~DepsTracker::kOnlyTextScore
: DepsTracker::kDefaultUnavailableMetadata;
// Create the PlanExecutor.
bool shouldProduceEmptyDocs = false;
auto exec = uassertStatusOK(prepareExecutor(expCtx,
collection,
nss,
pipeline,
sortStage,
std::move(rewrittenGroupStage),
unavailableMetadata,
queryObj,
limit,
aggRequest,
Pipeline::kAllowedMatcherFeatures,
&shouldProduceEmptyDocs));
const auto cursorType = shouldProduceEmptyDocs
? DocumentSourceCursor::CursorType::kEmptyDocuments
: DocumentSourceCursor::CursorType::kRegular;
// If this is a change stream pipeline, make sure that we tell DSCursor to track the oplog time.
const bool trackOplogTS =
(pipeline->peekFront() && pipeline->peekFront()->constraints().isChangeStreamStage());
auto attachExecutorCallback =
[cursorType, trackOplogTS](const Collection* collection,
std::unique_ptr<PlanExecutor, PlanExecutor::Deleter> exec,
Pipeline* pipeline) {
auto cursor = DocumentSourceCursor::create(
collection, std::move(exec), pipeline->getContext(), cursorType, trackOplogTS);
pipeline->addInitialSource(std::move(cursor));
};
return std::make_pair(std::move(attachExecutorCallback), std::move(exec));
}
std::pair<PipelineD::AttachExecutorCallback, std::unique_ptr<PlanExecutor, PlanExecutor::Deleter>>
PipelineD::buildInnerQueryExecutorGeoNear(const Collection* collection,
const NamespaceString& nss,
const AggregationRequest* aggRequest,
Pipeline* pipeline) {
uassert(ErrorCodes::NamespaceNotFound,
str::stream() << "$geoNear requires a geo index to run, but " << nss.ns()
<< " does not exist",
collection);
Pipeline::SourceContainer& sources = pipeline->_sources;
auto expCtx = pipeline->getContext();
const auto geoNearStage = dynamic_cast<DocumentSourceGeoNear*>(sources.front().get());
invariant(geoNearStage);
// If the user specified a "key" field, use that field to satisfy the "near" query. Otherwise,
// look for a geo-indexed field in 'collection' that can.
auto nearFieldName =
(geoNearStage->getKeyField() ? geoNearStage->getKeyField()->fullPath()
: extractGeoNearFieldFromIndexes(expCtx->opCtx, collection))
.toString();
// Create a PlanExecutor whose query is the "near" predicate on 'nearFieldName' combined with
// the optional "query" argument in the $geoNear stage.
BSONObj fullQuery = geoNearStage->asNearQuery(nearFieldName);
bool shouldProduceEmptyDocs = false;
auto exec = uassertStatusOK(
prepareExecutor(expCtx,
collection,
nss,
pipeline,
nullptr, /* sortStage */
nullptr, /* rewrittenGroupStage */
DepsTracker::kDefaultUnavailableMetadata & ~DepsTracker::kAllGeoNearData,
std::move(fullQuery),
boost::none, /* limit */
aggRequest,
Pipeline::kGeoNearMatcherFeatures,
&shouldProduceEmptyDocs));
auto attachExecutorCallback = [distanceField = geoNearStage->getDistanceField(),
locationField = geoNearStage->getLocationField(),
distanceMultiplier =
geoNearStage->getDistanceMultiplier().value_or(1.0)](
const Collection* collection,
std::unique_ptr<PlanExecutor, PlanExecutor::Deleter> exec,
Pipeline* pipeline) {
auto cursor = DocumentSourceGeoNearCursor::create(collection,
std::move(exec),
pipeline->getContext(),
distanceField,
locationField,
distanceMultiplier);
pipeline->addInitialSource(std::move(cursor));
};
// Remove the initial $geoNear; it will be replaced by $geoNearCursor.
sources.pop_front();
return std::make_pair(std::move(attachExecutorCallback), std::move(exec));
}
StatusWith<std::unique_ptr<PlanExecutor, PlanExecutor::Deleter>> PipelineD::prepareExecutor(
const intrusive_ptr<ExpressionContext>& expCtx,
const Collection* collection,
const NamespaceString& nss,
Pipeline* pipeline,
const boost::intrusive_ptr<DocumentSourceSort>& sortStage,
std::unique_ptr<GroupFromFirstDocumentTransformation> rewrittenGroupStage,
QueryMetadataBitSet unavailableMetadata,
const BSONObj& queryObj,
boost::optional<long long> limit,
const AggregationRequest* aggRequest,
const MatchExpressionParser::AllowedFeatureSet& matcherFeatures,
bool* hasNoRequirements) {
invariant(hasNoRequirements);
size_t plannerOpts = QueryPlannerParams::DEFAULT;
if (pipeline->peekFront() && pipeline->peekFront()->constraints().isChangeStreamStage()) {
invariant(expCtx->tailableMode == TailableModeEnum::kTailableAndAwaitData);
plannerOpts |= (QueryPlannerParams::TRACK_LATEST_OPLOG_TS |
QueryPlannerParams::ASSERT_MIN_TS_HAS_NOT_FALLEN_OFF_OPLOG);
}
// The aggregate command's $_requestResumeToken parameter can only be used for the oplog.
if (aggRequest && aggRequest->getRequestResumeToken()) {
plannerOpts |= QueryPlannerParams::TRACK_LATEST_OPLOG_TS;
}
// If there is a sort stage eligible for pushdown, serialize its SortPattern to a BSONObj. The
// BSONObj format is currently necessary to request that the sort is computed by the query layer
// inside the inner PlanExecutor. We also remove the $sort stage from the Pipeline, since it
// will be handled instead by PlanStage execution.
BSONObj sortObj;
if (sortStage) {
sortObj = sortStage->getSortKeyPattern()
.serialize(SortPattern::SortKeySerialization::kForPipelineSerialization)
.toBson();
// If the $sort has a coalesced $limit, then we push it down as well. Since the $limit was
// after a $sort in the pipeline, it should not have been provided by the caller.
invariant(!limit);
limit = sortStage->getLimit();
pipeline->popFrontWithName(DocumentSourceSort::kStageName);
}
// Perform dependency analysis. In order to minimize the dependency set, we only analyze the
// stages that remain in the pipeline after pushdown. In particular, any dependencies for a
// $match or $sort pushed down into the query layer will not be reflected here.
auto deps = pipeline->getDependencies(unavailableMetadata);
*hasNoRequirements = deps.hasNoRequirements();
BSONObj projObj;
if (*hasNoRequirements) {
// This query might be eligible for count optimizations, since the remaining stages in the
// pipeline don't actually need to read any data produced by the query execution layer.
plannerOpts |= QueryPlannerParams::IS_COUNT;
} else {
// Build a BSONObj representing a projection eligible for pushdown. If there is an inclusion
// projection at the front of the pipeline, it will be removed and handled by the PlanStage
// layer. If a projection cannot be pushed down, an empty BSONObj will be returned.
projObj = buildProjectionForPushdown(deps, pipeline);
}
if (rewrittenGroupStage) {
// See if the query system can handle the $group and $sort stage using a DISTINCT_SCAN
// (SERVER-9507).
auto swExecutorGrouped = attemptToGetExecutor(expCtx,
collection,
nss,
queryObj,
projObj,
deps.metadataDeps(),
sortObj,
boost::none, /* limit */
rewrittenGroupStage->groupId(),
aggRequest,
plannerOpts,
matcherFeatures);
if (swExecutorGrouped.isOK()) {
// Any $limit stage before the $group stage should make the pipeline ineligible for this
// optimization.
invariant(!sortStage || !sortStage->hasLimit());
// We remove the $sort and $group stages that begin the pipeline, because the executor
// will handle the sort, and the groupTransform (added below) will handle the $group
// stage.
pipeline->popFrontWithName(DocumentSourceSort::kStageName);
pipeline->popFrontWithName(DocumentSourceGroup::kStageName);
boost::intrusive_ptr<DocumentSource> groupTransform(
new DocumentSourceSingleDocumentTransformation(
expCtx,
std::move(rewrittenGroupStage),
"$groupByDistinctScan",
false /* independentOfAnyCollection */));
pipeline->addInitialSource(groupTransform);
return swExecutorGrouped;
} else if (swExecutorGrouped != ErrorCodes::NoQueryExecutionPlans) {
return swExecutorGrouped.getStatus().withContext(
"Failed to determine whether query system can provide a "
"DISTINCT_SCAN grouping");
}
}
return attemptToGetExecutor(expCtx,
collection,
nss,
queryObj,
projObj,
deps.metadataDeps(),
sortObj,
limit,
boost::none, /* groupIdForDistinctScan */
aggRequest,
plannerOpts,
matcherFeatures);
}
Timestamp PipelineD::getLatestOplogTimestamp(const Pipeline* pipeline) {
if (auto docSourceCursor =
dynamic_cast<DocumentSourceCursor*>(pipeline->_sources.front().get())) {
return docSourceCursor->getLatestOplogTimestamp();
}
return Timestamp();
}
std::string PipelineD::getPlanSummaryStr(const Pipeline* pipeline) {
if (auto docSourceCursor =
dynamic_cast<DocumentSourceCursor*>(pipeline->_sources.front().get())) {
return docSourceCursor->getPlanSummaryStr();
}
return "";
}
void PipelineD::getPlanSummaryStats(const Pipeline* pipeline, PlanSummaryStats* statsOut) {
invariant(statsOut);
if (auto docSourceCursor =
dynamic_cast<DocumentSourceCursor*>(pipeline->_sources.front().get())) {
*statsOut = docSourceCursor->getPlanSummaryStats();
}
for (auto&& source : pipeline->_sources) {
if (dynamic_cast<DocumentSourceSort*>(source.get()))
statsOut->hasSortStage = true;
statsOut->usedDisk = statsOut->usedDisk || source->usedDisk();
if (statsOut->usedDisk && statsOut->hasSortStage)
break;
}
}
} // namespace mongo
|