summaryrefslogtreecommitdiff
path: root/src/mongo/db/pipeline/pipeline_d.cpp
blob: 7379cacf274102db886cb264c6b50d7ae8e309e3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
/**
 *    Copyright (C) 2018-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#include "mongo/db/query/projection_parser.h"

#include "mongo/platform/basic.h"

#include "mongo/db/pipeline/pipeline_d.h"

#include "mongo/base/exact_cast.h"
#include "mongo/bson/simple_bsonobj_comparator.h"
#include "mongo/db/catalog/collection.h"
#include "mongo/db/catalog/database.h"
#include "mongo/db/catalog/index_catalog.h"
#include "mongo/db/concurrency/d_concurrency.h"
#include "mongo/db/db_raii.h"
#include "mongo/db/exec/collection_scan.h"
#include "mongo/db/exec/fetch.h"
#include "mongo/db/exec/multi_iterator.h"
#include "mongo/db/exec/queued_data_stage.h"
#include "mongo/db/exec/sample_from_timeseries_bucket.h"
#include "mongo/db/exec/shard_filter.h"
#include "mongo/db/exec/shard_filterer_impl.h"
#include "mongo/db/exec/subplan.h"
#include "mongo/db/exec/trial_stage.h"
#include "mongo/db/exec/unpack_timeseries_bucket.h"
#include "mongo/db/exec/working_set.h"
#include "mongo/db/index/index_access_method.h"
#include "mongo/db/matcher/expression_expr.h"
#include "mongo/db/matcher/extensions_callback_real.h"
#include "mongo/db/namespace_string.h"
#include "mongo/db/ops/write_ops_exec.h"
#include "mongo/db/ops/write_ops_gen.h"
#include "mongo/db/pipeline/document_source.h"
#include "mongo/db/pipeline/document_source_change_stream.h"
#include "mongo/db/pipeline/document_source_cursor.h"
#include "mongo/db/pipeline/document_source_geo_near.h"
#include "mongo/db/pipeline/document_source_geo_near_cursor.h"
#include "mongo/db/pipeline/document_source_group.h"
#include "mongo/db/pipeline/document_source_internal_unpack_bucket.h"
#include "mongo/db/pipeline/document_source_lookup.h"
#include "mongo/db/pipeline/document_source_match.h"
#include "mongo/db/pipeline/document_source_project.h"
#include "mongo/db/pipeline/document_source_sample.h"
#include "mongo/db/pipeline/document_source_sample_from_random_cursor.h"
#include "mongo/db/pipeline/document_source_single_document_transformation.h"
#include "mongo/db/pipeline/document_source_sort.h"
#include "mongo/db/pipeline/inner_pipeline_stage_impl.h"
#include "mongo/db/pipeline/pipeline.h"
#include "mongo/db/pipeline/skip_and_limit.h"
#include "mongo/db/query/collation/collator_interface.h"
#include "mongo/db/query/get_executor.h"
#include "mongo/db/query/plan_executor_factory.h"
#include "mongo/db/query/plan_executor_impl.h"
#include "mongo/db/query/plan_summary_stats.h"
#include "mongo/db/query/query_feature_flags_gen.h"
#include "mongo/db/query/query_knobs_gen.h"
#include "mongo/db/query/query_planner.h"
#include "mongo/db/query/sort_pattern.h"
#include "mongo/db/s/collection_sharding_state.h"
#include "mongo/db/service_context.h"
#include "mongo/db/stats/top.h"
#include "mongo/db/storage/record_store.h"
#include "mongo/db/storage/sorted_data_interface.h"
#include "mongo/db/timeseries/timeseries_gen.h"
#include "mongo/rpc/metadata/client_metadata.h"
#include "mongo/s/query/document_source_merge_cursors.h"
#include "mongo/util/time_support.h"

#define MONGO_LOGV2_DEFAULT_COMPONENT ::mongo::logv2::LogComponent::kQuery


namespace mongo {

using boost::intrusive_ptr;
using std::shared_ptr;
using std::string;
using std::unique_ptr;
using write_ops::InsertCommandRequest;

namespace {
/**
 * Extracts a prefix of 'DocumentSourceGroup' and 'DocumentSourceLookUp' stages from the given
 * pipeline to prepare for pushdown of $group and $lookup into the inner query layer so that it
 * can be executed using SBE.
 * Group stages are extracted from the pipeline when all of the following conditions are met:
 *    0. When the 'internalQueryForceClassicEngine' feature flag is 'false'.
 *    1. When 'allowDiskUse' is false. We currently don't support spilling in the SBE HashAgg
 *       stage. This will change once that is supported when SERVER-58436 is complete.
 *    2. When the DocumentSourceGroup has 'doingMerge=false', this will change when we implement
 *       hash table spilling in SERVER-58436.
 *
 * Lookup stages are extracted from the pipeline when all of the following conditions are met:
 *    0. When the 'internalQueryForceClassicEngine' feature flag is 'false'.
 *    1. When the 'featureFlagSBELookupPushdown' feature flag is 'true'.
 *    2. The $lookup uses only the 'localField'/'foreignField' syntax (no pipelines).
 *    3. The foreign collection is neither sharded nor a view.
 */
std::vector<std::unique_ptr<InnerPipelineStageInterface>> extractSbeCompatibleStagesForPushdown(
    const intrusive_ptr<ExpressionContext>& expCtx,
    const MultipleCollectionAccessor& collections,
    const CanonicalQuery* cq,
    Pipeline* pipeline,
    const bool origSbeCompatible) {
    // We will eventually use the extracted group stages to populate 'CanonicalQuery::pipeline'
    // which requires stages to be wrapped in an interface.
    std::vector<std::unique_ptr<InnerPipelineStageInterface>> stagesForPushdown;

    // This handles the case of unionWith against an unknown collection.
    if (!collections.getMainCollection()) {
        return {};
    }

    // No pushdown if we're using the classic engine.
    if (cq->getForceClassicEngine()) {
        return {};
    }

    auto&& sources = pipeline->getSources();

    const auto disallowGroupPushdown =
        !(serverGlobalParams.featureCompatibility.isVersionInitialized() &&
          feature_flags::gFeatureFlagSBEGroupPushdown.isEnabled(
              serverGlobalParams.featureCompatibility)) ||
        internalQuerySlotBasedExecutionDisableGroupPushdown.load();

    bool isMainCollectionSharded = false;
    if (const auto& mainColl = collections.getMainCollection()) {
        isMainCollectionSharded = mainColl.isSharded();
    }

    // If lookup pushdown isn't enabled or the main collection is sharded or any of the secondary
    // namespaces are sharded or are a view, then no $lookup stage will be eligible for pushdown.
    //
    // When acquiring locks for multiple collections, it is the case that we can only determine
    // whether any secondary collection is a view or is sharded, not which ones are a view or are
    // sharded and which ones aren't. As such, if any secondary collection is a view or is sharded,
    // no $lookup will be eligible for pushdown.
    const bool disallowLookupPushdown =
        !feature_flags::gFeatureFlagSBELookupPushdown.isEnabledAndIgnoreFCV() ||
        internalQuerySlotBasedExecutionDisableLookupPushdown.load() || isMainCollectionSharded ||
        collections.isAnySecondaryNamespaceAViewOrSharded();

    for (auto itr = sources.begin(); itr != sources.end();) {
        const bool isLastSource = itr->get() == sources.back().get();

        // $group pushdown logic.
        if (auto groupStage = dynamic_cast<DocumentSourceGroup*>(itr->get())) {
            if (disallowGroupPushdown) {
                break;
            }

            if (groupStage->sbeCompatible() && !groupStage->doingMerge()) {
                stagesForPushdown.push_back(
                    std::make_unique<InnerPipelineStageImpl>(groupStage, isLastSource));
                sources.erase(itr++);
                continue;
            }
            break;
        }

        // $project pushdown logic.
        if (auto projectStage =
                dynamic_cast<DocumentSourceSingleDocumentTransformation*>(itr->get())) {
            bool projectEligibleForPushdown = feature_flags::gFeatureFlagSBEGroupPushdown.isEnabled(
                                                  serverGlobalParams.featureCompatibility) &&
                origSbeCompatible &&
                (projectStage->getType() ==
                 TransformerInterface::TransformerType::kInclusionProjection);

            if (projectEligibleForPushdown) {
                stagesForPushdown.push_back(std::make_unique<InnerPipelineStageImpl>(projectStage));
                sources.erase(itr++);
                continue;
            }
            break;
        }

        // $lookup pushdown logic.
        if (auto lookupStage = dynamic_cast<DocumentSourceLookUp*>(itr->get())) {
            if (disallowLookupPushdown) {
                break;
            }

            // Note that 'lookupStage->sbeCompatible()' encodes whether the foreign collection is a
            // view.
            if (lookupStage->sbeCompatible()) {
                stagesForPushdown.push_back(
                    std::make_unique<InnerPipelineStageImpl>(lookupStage, isLastSource));
                sources.erase(itr++);
                continue;
            }
            break;
        }

        // Current stage cannot be pushed down.
        break;
    }

    return stagesForPushdown;
}

StatusWith<std::unique_ptr<PlanExecutor, PlanExecutor::Deleter>> attemptToGetExecutor(
    const intrusive_ptr<ExpressionContext>& expCtx,
    const MultipleCollectionAccessor& collections,
    const NamespaceString& nss,
    BSONObj queryObj,
    BSONObj projectionObj,
    const QueryMetadataBitSet& metadataRequested,
    BSONObj sortObj,
    SkipThenLimit skipThenLimit,
    boost::optional<std::string> groupIdForDistinctScan,
    const AggregateCommandRequest* aggRequest,
    const size_t plannerOpts,
    const MatchExpressionParser::AllowedFeatureSet& matcherFeatures,
    Pipeline* pipeline) {
    auto findCommand = std::make_unique<FindCommandRequest>(nss);
    query_request_helper::setTailableMode(expCtx->tailableMode, findCommand.get());
    findCommand->setFilter(queryObj.getOwned());
    findCommand->setProjection(projectionObj.getOwned());
    findCommand->setSort(sortObj.getOwned());
    if (auto skip = skipThenLimit.getSkip()) {
        findCommand->setSkip(static_cast<std::int64_t>(*skip));
    }
    if (auto limit = skipThenLimit.getLimit()) {
        findCommand->setLimit(static_cast<std::int64_t>(*limit));
    }

    const bool isExplain = static_cast<bool>(expCtx->explain);
    if (aggRequest) {
        findCommand->setAllowDiskUse(aggRequest->getAllowDiskUse());
        findCommand->setHint(aggRequest->getHint().value_or(BSONObj()).getOwned());
    }

    // The collation on the ExpressionContext has been resolved to either the user-specified
    // collation or the collection default. This BSON should never be empty even if the resolved
    // collator is simple.
    findCommand->setCollation(expCtx->getCollatorBSON().getOwned());

    const ExtensionsCallbackReal extensionsCallback(expCtx->opCtx, &nss);

    // Reset the 'sbeCompatible' flag before canonicalizing the 'findCommand' to potentially allow
    // SBE to execute the portion of the query that's pushed down, even if the portion of the query
    // that is not pushed down contains expressions not supported by SBE.
    bool origSbeCompatible = expCtx->sbeCompatible;
    expCtx->sbeCompatible = true;

    auto cq = CanonicalQuery::canonicalize(expCtx->opCtx,
                                           std::move(findCommand),
                                           isExplain,
                                           expCtx,
                                           extensionsCallback,
                                           matcherFeatures,
                                           ProjectionPolicies::aggregateProjectionPolicies());

    if (!cq.isOK()) {
        // Return an error instead of uasserting, since there are cases where the combination of
        // sort and projection will result in a bad query, but when we try with a different
        // combination it will be ok. e.g. a sort by {$meta: 'textScore'}, without any projection
        // will fail, but will succeed when the corresponding '$meta' projection is passed in
        // another attempt.
        return {cq.getStatus()};
    }

    // Mark the metadata that's requested by the pipeline on the CQ.
    cq.getValue()->requestAdditionalMetadata(metadataRequested);

    if (groupIdForDistinctScan) {
        // When the pipeline includes a $group that groups by a single field
        // (groupIdForDistinctScan), we use getExecutorDistinct() to attempt to get an executor that
        // uses a DISTINCT_SCAN to scan exactly one document for each group. When that's not
        // possible, we return nullptr, and the caller is responsible for trying again without
        // passing a 'groupIdForDistinctScan' value.
        ParsedDistinct parsedDistinct(std::move(cq.getValue()), *groupIdForDistinctScan);

        // Note that we request a "strict" distinct plan because:
        // 1) We do not want to have to de-duplicate the results of the plan.
        //
        // 2) We not want a plan that will return separate values for each array element. For
        // example, if we have a document {a: [1,2]} and group by "a" a DISTINCT_SCAN on an "a"
        // index would produce one result for '1' and another for '2', which would be incorrect.
        auto distinctExecutor =
            getExecutorDistinct(&collections.getMainCollection(),
                                plannerOpts | QueryPlannerParams::STRICT_DISTINCT_ONLY,
                                &parsedDistinct);
        if (!distinctExecutor.isOK()) {
            return distinctExecutor.getStatus().withContext(
                "Unable to use distinct scan to optimize $group stage");
        } else if (!distinctExecutor.getValue()) {
            return {ErrorCodes::NoQueryExecutionPlans,
                    "Unable to use distinct scan to optimize $group stage"};
        } else {
            return distinctExecutor;
        }
    }

    auto permitYield = true;
    return getExecutorFind(
        expCtx->opCtx,
        collections,
        std::move(cq.getValue()),
        [&, origSbeCompatible](auto* canonicalQuery) {
            canonicalQuery->setPipeline(extractSbeCompatibleStagesForPushdown(
                expCtx, collections, canonicalQuery, pipeline, origSbeCompatible));
        },
        permitYield,
        plannerOpts);
}

/**
 * Examines the indexes in 'collection' and returns the field name of a geo-indexed field suitable
 * for use in $geoNear. 2d indexes are given priority over 2dsphere indexes.
 *
 * The 'collection' is required to exist. Throws if no usable 2d or 2dsphere index could be found.
 */
StringData extractGeoNearFieldFromIndexes(OperationContext* opCtx,
                                          const CollectionPtr& collection) {
    invariant(collection);

    std::vector<const IndexDescriptor*> idxs;
    collection->getIndexCatalog()->findIndexByType(opCtx, IndexNames::GEO_2D, idxs);
    uassert(ErrorCodes::IndexNotFound,
            str::stream() << "There is more than one 2d index on " << collection->ns().ns()
                          << "; unsure which to use for $geoNear",
            idxs.size() <= 1U);
    if (idxs.size() == 1U) {
        for (auto&& elem : idxs.front()->keyPattern()) {
            if (elem.type() == BSONType::String && elem.valueStringData() == IndexNames::GEO_2D) {
                return elem.fieldNameStringData();
            }
        }
        MONGO_UNREACHABLE;
    }

    // If there are no 2d indexes, look for a 2dsphere index.
    idxs.clear();
    collection->getIndexCatalog()->findIndexByType(opCtx, IndexNames::GEO_2DSPHERE, idxs);
    uassert(ErrorCodes::IndexNotFound,
            "$geoNear requires a 2d or 2dsphere index, but none were found",
            !idxs.empty());
    uassert(ErrorCodes::IndexNotFound,
            str::stream() << "There is more than one 2dsphere index on " << collection->ns().ns()
                          << "; unsure which to use for $geoNear",
            idxs.size() <= 1U);

    invariant(idxs.size() == 1U);
    for (auto&& elem : idxs.front()->keyPattern()) {
        if (elem.type() == BSONType::String && elem.valueStringData() == IndexNames::GEO_2DSPHERE) {
            return elem.fieldNameStringData();
        }
    }
    MONGO_UNREACHABLE;
}

/**
 * This attempts to either extract a $sample stage at the front of the pipeline or a
 * $_internalUnpackBucket stage at the front of the pipeline immediately followed by a $sample
 * stage. In the former case a 'nullptr' is returned for the second element of the pair <$sample,
 * $_internalUnpackBucket>, and if the latter case is encountered both elements of the pair will be
 * a populated. If the pipeline doesn't contain a $_internalUnpackBucket at the front of the
 * pipeline immediately followed by a $sample stage, then the first element in the pair will be a
 * 'nullptr'.
 */
std::pair<DocumentSourceSample*, DocumentSourceInternalUnpackBucket*> extractSampleUnpackBucket(
    const Pipeline::SourceContainer& sources) {
    DocumentSourceSample* sampleStage = nullptr;
    DocumentSourceInternalUnpackBucket* unpackStage = nullptr;

    auto sourcesIt = sources.begin();
    if (sourcesIt != sources.end()) {
        sampleStage = dynamic_cast<DocumentSourceSample*>(sourcesIt->get());
        if (sampleStage) {
            return std::pair{sampleStage, unpackStage};
        }

        unpackStage = dynamic_cast<DocumentSourceInternalUnpackBucket*>(sourcesIt->get());
        ++sourcesIt;

        if (unpackStage && sourcesIt != sources.end()) {
            sampleStage = dynamic_cast<DocumentSourceSample*>(sourcesIt->get());
            return std::pair{sampleStage, unpackStage};
        }
    }

    return std::pair{sampleStage, unpackStage};
}

std::tuple<DocumentSourceInternalUnpackBucket*, DocumentSourceSort*> findUnpackThenSort(
    const Pipeline::SourceContainer& sources) {
    DocumentSourceSort* sortStage = nullptr;
    DocumentSourceInternalUnpackBucket* unpackStage = nullptr;

    auto sourcesIt = sources.begin();
    while (sourcesIt != sources.end()) {
        if (!sortStage) {
            sortStage = dynamic_cast<DocumentSourceSort*>(sourcesIt->get());

            if (sortStage) {
                // Do not double optimize
                if (sortStage->isBoundedSortStage()) {
                    return {nullptr, nullptr};
                }

                return {unpackStage, sortStage};
            }
        }

        if (!unpackStage) {
            unpackStage = dynamic_cast<DocumentSourceInternalUnpackBucket*>(sourcesIt->get());
        }
        ++sourcesIt;
    }

    return {unpackStage, sortStage};
}
}  // namespace

StatusWith<unique_ptr<PlanExecutor, PlanExecutor::Deleter>> PipelineD::createRandomCursorExecutor(
    const CollectionPtr& coll,
    const boost::intrusive_ptr<ExpressionContext>& expCtx,
    Pipeline* pipeline,
    long long sampleSize,
    long long numRecords,
    boost::optional<BucketUnpacker> bucketUnpacker) {
    OperationContext* opCtx = expCtx->opCtx;

    // Verify that we are already under a collection lock. We avoid taking locks ourselves in this
    // function because double-locking forces any PlanExecutor we create to adopt a NO_YIELD policy.
    invariant(opCtx->lockState()->isCollectionLockedForMode(coll->ns(), MODE_IS));

    static const double kMaxSampleRatioForRandCursor = 0.05;
    if (!expCtx->ns.isTimeseriesBucketsCollection()) {
        if (sampleSize > numRecords * kMaxSampleRatioForRandCursor || numRecords <= 100) {
            return nullptr;
        }
    } else {
        // Suppose that a time-series bucket collection is observed to contain 200 buckets, and the
        // 'gTimeseriesBucketMaxCount' parameter is set to 1000. If all buckets are full, then the
        // maximum possible measurment count would be 200 * 1000 = 200,000. While the
        // 'SampleFromTimeseriesBucket' plan is more efficient when the sample size is small
        // relative to the total number of measurements in the time-series collection, for larger
        // sample sizes the top-k sort based sample is faster. Experiments have approximated that
        // the tipping point is roughly when the requested sample size is greater than 1% of the
        // maximum possible number of measurements in the collection (i.e. numBuckets *
        // maxMeasurementsPerBucket).
        static const double kCoefficient = 0.01;
        if (sampleSize > kCoefficient * numRecords * gTimeseriesBucketMaxCount) {
            return nullptr;
        }
    }

    // Attempt to get a random cursor from the RecordStore.
    auto rsRandCursor = coll->getRecordStore()->getRandomCursor(opCtx);
    if (!rsRandCursor) {
        // The storage engine has no random cursor support.
        return nullptr;
    }

    // Build a MultiIteratorStage and pass it the random-sampling RecordCursor.
    auto ws = std::make_unique<WorkingSet>();
    std::unique_ptr<PlanStage> root =
        std::make_unique<MultiIteratorStage>(expCtx.get(), ws.get(), coll);
    static_cast<MultiIteratorStage*>(root.get())->addIterator(std::move(rsRandCursor));

    TrialStage* trialStage = nullptr;

    auto css = CollectionShardingState::get(opCtx, coll->ns());
    const auto isSharded = css->getCollectionDescription(opCtx).isSharded();

    // Because 'numRecords' includes orphan documents, our initial decision to optimize the $sample
    // cursor may have been mistaken. For sharded collections, build a TRIAL plan that will switch
    // to a collection scan if the ratio of orphaned to owned documents encountered over the first
    // 100 works() is such that we would have chosen not to optimize.
    static const size_t kMaxPresampleSize = 100;
    if (expCtx->ns.isTimeseriesBucketsCollection()) {
        // We can't take ARHASH optimization path for a direct $sample on the system.buckets
        // collection because data is in compressed form. If we did have a direct $sample on the
        // system.buckets collection, then the 'bucketUnpacker' would not be set up properly. We
        // also should bail out early if a $sample is made against a time series collection that is
        // empty. If we don't the 'minAdvancedToWorkRatio' can be nan/-nan depending on the
        // architecture.
        if (!(bucketUnpacker && numRecords)) {
            return nullptr;
        }

        // Use a 'TrialStage' to run a trial between 'SampleFromTimeseriesBucket' and
        // 'UnpackTimeseriesBucket' with $sample left in the pipeline in-place. If the buckets are
        // not sufficiently full, or the 'SampleFromTimeseriesBucket' plan draws too many
        // duplicates, then we will fall back to the 'TrialStage' backup plan. This backup plan uses
        // the top-k sort sampling approach.
        //
        // Suppose the 'gTimeseriesBucketMaxCount' is 1000, but each bucket only contains 500
        // documents on average. The observed trial advanced/work ratio approximates the average
        // bucket fullness, noted here as "abf". In this example, abf = 500 / 1000 = 0.5.
        // Experiments have shown that the optimized 'SampleFromTimeseriesBucket' algorithm performs
        // better than backup plan when
        //
        //     sampleSize < 0.02 * abf * numRecords * gTimeseriesBucketMaxCount
        //
        //  This inequality can be rewritten as
        //
        //     abf > sampleSize / (0.02 * numRecords * gTimeseriesBucketMaxCount)
        //
        // Therefore, if the advanced/work ratio exceeds this threshold, we will use the
        // 'SampleFromTimeseriesBucket' plan. Note that as the sample size requested by the user
        // becomes larger with respect to the number of buckets, we require a higher advanced/work
        // ratio in order to justify using 'SampleFromTimeseriesBucket'.
        //
        // Additionally, we require the 'TrialStage' to approximate the abf as at least 0.25. When
        // buckets are mostly empty, the 'SampleFromTimeseriesBucket' will be inefficient due to a
        // lot of sampling "misses".
        static const auto kCoefficient = 0.02;
        static const auto kMinBucketFullness = 0.25;
        const auto minAdvancedToWorkRatio = std::max(
            std::min(sampleSize / (kCoefficient * numRecords * gTimeseriesBucketMaxCount), 1.0),
            kMinBucketFullness);

        boost::optional<std::unique_ptr<ShardFilterer>> maybeShardFilter;
        if (isSharded) {
            // In the sharded case, we need to use a ShardFilterer within the ARHASH plan to
            // eliminate orphans from the working set, since the stage owns the cursor.
            maybeShardFilter = std::make_unique<ShardFiltererImpl>(css->getOwnershipFilter(
                opCtx, CollectionShardingState::OrphanCleanupPolicy::kDisallowOrphanCleanup));
        }

        auto arhashPlan = std::make_unique<SampleFromTimeseriesBucket>(
            expCtx.get(),
            ws.get(),
            std::move(root),
            bucketUnpacker->copy(),
            std::move(maybeShardFilter),
            // By using a quantity slightly higher than 'kMaxPresampleSize', we ensure that the
            // 'SampleFromTimeseriesBucket' stage won't fail due to too many consecutive sampling
            // attempts during the 'TrialStage's trial period.
            kMaxPresampleSize + 5,
            sampleSize,
            gTimeseriesBucketMaxCount);

        std::unique_ptr<PlanStage> collScanPlan = std::make_unique<CollectionScan>(
            expCtx.get(), coll, CollectionScanParams{}, ws.get(), nullptr);

        if (isSharded) {
            // In the sharded case, we need to add a shard-filterer stage to the backup plan to
            // eliminate orphans. The trial plan is thus SHARDING_FILTER-COLLSCAN.
            auto collectionFilter = css->getOwnershipFilter(
                opCtx, CollectionShardingState::OrphanCleanupPolicy::kDisallowOrphanCleanup);
            collScanPlan = std::make_unique<ShardFilterStage>(
                expCtx.get(), std::move(collectionFilter), ws.get(), std::move(collScanPlan));
        }

        auto topkSortPlan = std::make_unique<UnpackTimeseriesBucket>(
            expCtx.get(), ws.get(), std::move(collScanPlan), bucketUnpacker->copy());

        // In a sharded collection we need to preserve the $sample source in order to provide the
        // AsyncResultsMerger with $sortKeys it can use to merge samples from multiple shards.
        // However, this means we need to perform a sort on the results of ARHASH. This work is not
        // counted by the TrialStage, so we impose an arbitrary upper limit on the sample size
        // before defaulting to a Top-K sort, in order to bound the cost of sorting the sample
        // returned by ARHASH.
        static const auto kMaxSortSizeForShardedARHASHSample = 1000;
        if (isSharded && (sampleSize > kMaxSortSizeForShardedARHASHSample)) {
            root = std::move(topkSortPlan);
        } else {
            // We need to use a TrialStage approach to handle a problem where ARHASH sampling can
            // fail due to small measurement counts. We can push sampling and bucket unpacking down
            // to the PlanStage layer and erase $_internalUnpackBucket and $sample.
            root = std::make_unique<TrialStage>(expCtx.get(),
                                                ws.get(),
                                                std::move(arhashPlan),
                                                std::move(topkSortPlan),
                                                kMaxPresampleSize,
                                                minAdvancedToWorkRatio);
            trialStage = static_cast<TrialStage*>(root.get());
        }

    } else if (isSharded) {
        // The ratio of owned to orphaned documents must be at least equal to the ratio between the
        // requested sampleSize and the maximum permitted sampleSize for the original constraints to
        // be satisfied. For instance, if there are 200 documents and the sampleSize is 5, then at
        // least (5 / (200*0.05)) = (5/10) = 50% of those documents must be owned. If less than 5%
        // of the documents in the collection are owned, we default to the backup plan.
        const auto minAdvancedToWorkRatio = std::max(
            sampleSize / (numRecords * kMaxSampleRatioForRandCursor), kMaxSampleRatioForRandCursor);
        // Since the incoming operation is sharded, use the CSS to infer the filtering metadata for
        // the collection. We get the shard ownership filter after checking to see if the collection
        // is sharded to avoid an invariant from being fired in this call.
        auto collectionFilter = css->getOwnershipFilter(
            opCtx, CollectionShardingState::OrphanCleanupPolicy::kDisallowOrphanCleanup);
        // The trial plan is SHARDING_FILTER-MULTI_ITERATOR.
        auto randomCursorPlan = std::make_unique<ShardFilterStage>(
            expCtx.get(), collectionFilter, ws.get(), std::move(root));
        // The backup plan is SHARDING_FILTER-COLLSCAN.
        std::unique_ptr<PlanStage> collScanPlan = std::make_unique<CollectionScan>(
            expCtx.get(), coll, CollectionScanParams{}, ws.get(), nullptr);
        collScanPlan = std::make_unique<ShardFilterStage>(
            expCtx.get(), collectionFilter, ws.get(), std::move(collScanPlan));
        // Place a TRIAL stage at the root of the plan tree, and pass it the trial and backup plans.
        root = std::make_unique<TrialStage>(expCtx.get(),
                                            ws.get(),
                                            std::move(randomCursorPlan),
                                            std::move(collScanPlan),
                                            kMaxPresampleSize,
                                            minAdvancedToWorkRatio);
        trialStage = static_cast<TrialStage*>(root.get());
    }

    auto execStatus = plan_executor_factory::make(expCtx,
                                                  std::move(ws),
                                                  std::move(root),
                                                  &coll,
                                                  opCtx->inMultiDocumentTransaction()
                                                      ? PlanYieldPolicy::YieldPolicy::INTERRUPT_ONLY
                                                      : PlanYieldPolicy::YieldPolicy::YIELD_AUTO,
                                                  QueryPlannerParams::RETURN_OWNED_DATA);
    if (!execStatus.isOK()) {
        return execStatus.getStatus();
    }

    // For sharded collections, the root of the plan tree is a TrialStage that may have chosen
    // either a random-sampling cursor trial plan or a COLLSCAN backup plan. We can only optimize
    // the $sample aggregation stage if the trial plan was chosen.
    const auto isStorageOptimizedSample = !trialStage || !trialStage->pickedBackupPlan();
    if (!bucketUnpacker) {
        if (isStorageOptimizedSample) {
            // Replace $sample stage with $sampleFromRandomCursor stage.
            pipeline->popFront();
            std::string idString = coll->ns().isOplog() ? "ts" : "_id";
            pipeline->addInitialSource(DocumentSourceSampleFromRandomCursor::create(
                expCtx, sampleSize, idString, numRecords));
        }
    } else {
        // For timeseries collections, we should remove the $_internalUnpackBucket stage which is at
        // the front of the pipeline, regardless of which plan the TrialStage has chosen. The
        // unpacking will be done by the 'UnpackTimeseriesBucket' PlanStage if the backup plan
        // (Top-K sort plan) was chosen, and by the 'SampleFromTimeseriesBucket' PlanStage if the
        // ARHASH plan was chosen.
        Pipeline::SourceContainer& sources = pipeline->_sources;
        sources.erase(sources.begin());
        // We can push down the $sample source into the PlanStage layer if the chosen strategy uses
        // ARHASH sampling on unsharded collections. For sharded collections, we cannot erase
        // $sample because we need to preserve the sort metadata (the $sortKey field) for the merge
        // cursor on mongos.
        if (isStorageOptimizedSample && !isSharded) {
            sources.erase(sources.begin());
        }
    }

    return std::move(execStatus.getValue());
}

std::pair<PipelineD::AttachExecutorCallback, std::unique_ptr<PlanExecutor, PlanExecutor::Deleter>>
PipelineD::buildInnerQueryExecutorSample(DocumentSourceSample* sampleStage,
                                         DocumentSourceInternalUnpackBucket* unpackBucketStage,
                                         const CollectionPtr& collection,
                                         Pipeline* pipeline) {
    tassert(5422105, "sampleStage cannot be a nullptr", sampleStage);

    auto expCtx = pipeline->getContext();

    const long long sampleSize = sampleStage->getSampleSize();
    const long long numRecords = collection->getRecordStore()->numRecords(expCtx->opCtx);

    boost::optional<BucketUnpacker> bucketUnpacker;
    if (unpackBucketStage) {
        bucketUnpacker = unpackBucketStage->bucketUnpacker();
    }
    auto exec = uassertStatusOK(createRandomCursorExecutor(
        collection, expCtx, pipeline, sampleSize, numRecords, std::move(bucketUnpacker)));

    AttachExecutorCallback attachExecutorCallback;
    if (exec) {
        // The order in which we evaluate these arguments is significant. We'd like to be
        // sure that the DocumentSourceCursor is created _last_, because if we run into a
        // case where a DocumentSourceCursor has been created (yet hasn't been put into a
        // Pipeline) and an exception is thrown, an invariant will trigger in the
        // DocumentSourceCursor. This is a design flaw in DocumentSourceCursor.
        auto deps = pipeline->getDependencies(DepsTracker::kAllMetadata);
        const auto cursorType = deps.hasNoRequirements()
            ? DocumentSourceCursor::CursorType::kEmptyDocuments
            : DocumentSourceCursor::CursorType::kRegular;
        attachExecutorCallback =
            [cursorType](const MultipleCollectionAccessor& collections,
                         std::unique_ptr<PlanExecutor, PlanExecutor::Deleter> exec,
                         Pipeline* pipeline) {
                auto cursor = DocumentSourceCursor::create(
                    collections, std::move(exec), pipeline->getContext(), cursorType);
                pipeline->addInitialSource(std::move(cursor));
            };
        return std::pair(std::move(attachExecutorCallback), std::move(exec));
    }
    return std::pair(std::move(attachExecutorCallback), nullptr);
}

std::pair<PipelineD::AttachExecutorCallback, std::unique_ptr<PlanExecutor, PlanExecutor::Deleter>>
PipelineD::buildInnerQueryExecutor(const MultipleCollectionAccessor& collections,
                                   const NamespaceString& nss,
                                   const AggregateCommandRequest* aggRequest,
                                   Pipeline* pipeline) {
    auto expCtx = pipeline->getContext();

    // We will be modifying the source vector as we go.
    Pipeline::SourceContainer& sources = pipeline->_sources;

    if (!sources.empty() && !sources.front()->constraints().requiresInputDocSource) {
        return {};
    }

    if (!sources.empty()) {
        // Try to inspect if the DocumentSourceSample or a DocumentSourceInternalUnpackBucket stage
        // can be optimized for sampling backed by a storage engine supplied random cursor.
        auto&& [sampleStage, unpackBucketStage] = extractSampleUnpackBucket(sources);
        const auto& collection = collections.getMainCollection();

        // Optimize an initial $sample stage if possible.
        if (collection && sampleStage) {
            auto [attachExecutorCallback, exec] =
                buildInnerQueryExecutorSample(sampleStage, unpackBucketStage, collection, pipeline);
            if (exec) {
                return std::make_pair(std::move(attachExecutorCallback), std::move(exec));
            }
        }
    }

    // If the first stage is $geoNear, prepare a special DocumentSourceGeoNearCursor stage;
    // otherwise, create a generic DocumentSourceCursor.
    const auto geoNearStage =
        sources.empty() ? nullptr : dynamic_cast<DocumentSourceGeoNear*>(sources.front().get());
    if (geoNearStage) {
        return buildInnerQueryExecutorGeoNear(collections, nss, aggRequest, pipeline);
    } else {
        return buildInnerQueryExecutorGeneric(collections, nss, aggRequest, pipeline);
    }
}

void PipelineD::attachInnerQueryExecutorToPipeline(
    const MultipleCollectionAccessor& collections,
    PipelineD::AttachExecutorCallback attachExecutorCallback,
    std::unique_ptr<PlanExecutor, PlanExecutor::Deleter> exec,
    Pipeline* pipeline) {
    // If the pipeline doesn't need a $cursor stage, there will be no callback function and
    // PlanExecutor provided in the 'attachExecutorCallback' object, so we don't need to do
    // anything.
    if (attachExecutorCallback && exec) {
        attachExecutorCallback(collections, std::move(exec), pipeline);
    }
}

void PipelineD::buildAndAttachInnerQueryExecutorToPipeline(
    const MultipleCollectionAccessor& collections,
    const NamespaceString& nss,
    const AggregateCommandRequest* aggRequest,
    Pipeline* pipeline) {

    auto callback = PipelineD::buildInnerQueryExecutor(collections, nss, aggRequest, pipeline);
    PipelineD::attachInnerQueryExecutorToPipeline(
        collections, callback.first, std::move(callback.second), pipeline);
}

namespace {

/**
 * Look for $sort, $group at the beginning of the pipeline, potentially returning either or both.
 * Returns nullptr for any of the stages that are not found. Note that we are not looking for the
 * opposite pattern ($group, $sort). In that case, this function will return only the $group stage.
 *
 * This function will not return the $group in the case that there is an initial $sort with
 * intermediate stages that separate it from the $group (e.g.: $sort, $limit, $group). That includes
 * the case of a $sort with a non-null value for getLimitSrc(), indicating that there was previously
 * a $limit stage that was optimized away.
 */
std::pair<boost::intrusive_ptr<DocumentSourceSort>, boost::intrusive_ptr<DocumentSourceGroup>>
getSortAndGroupStagesFromPipeline(const Pipeline::SourceContainer& sources) {
    boost::intrusive_ptr<DocumentSourceSort> sortStage = nullptr;
    boost::intrusive_ptr<DocumentSourceGroup> groupStage = nullptr;

    auto sourcesIt = sources.begin();
    if (sourcesIt != sources.end()) {
        sortStage = dynamic_cast<DocumentSourceSort*>(sourcesIt->get());
        if (sortStage) {
            if (!sortStage->hasLimit()) {
                ++sourcesIt;
            } else {
                // This $sort stage was previously followed by a $limit stage.
                sourcesIt = sources.end();
            }
        }
    }

    if (sourcesIt != sources.end()) {
        groupStage = dynamic_cast<DocumentSourceGroup*>(sourcesIt->get());
    }

    return std::make_pair(sortStage, groupStage);
}

boost::optional<long long> extractSkipForPushdown(Pipeline* pipeline) {
    // If the disablePipelineOptimization failpoint is enabled, then do not attempt the skip
    // pushdown optimization.
    if (MONGO_unlikely(disablePipelineOptimization.shouldFail())) {
        return boost::none;
    }
    auto&& sources = pipeline->getSources();

    auto skip = extractSkipForPushdown(sources.begin(), &sources);
    if (skip) {
        // Removing stages may have produced the opportunity for additional optimizations.
        pipeline->optimizePipeline();
    }
    return skip;
}

SkipThenLimit extractSkipAndLimitForPushdown(Pipeline* pipeline) {
    // If the disablePipelineOptimization failpoint is enabled, then do not attempt the limit and
    // skip pushdown optimization.
    if (MONGO_unlikely(disablePipelineOptimization.shouldFail())) {
        return {boost::none, boost::none};
    }
    auto&& sources = pipeline->getSources();

    // It is important to call 'extractLimitForPushdown' before 'extractSkipForPushdown'. Otherwise
    // there could be a situation when $limit stages in pipeline would prevent
    // 'extractSkipForPushdown' from extracting all $skip stages.
    auto limit = extractLimitForPushdown(sources.begin(), &sources);
    auto skip = extractSkipForPushdown(sources.begin(), &sources);
    auto skipThenLimit = LimitThenSkip(limit, skip).flip();
    if (skipThenLimit.getSkip() || skipThenLimit.getLimit()) {
        // Removing stages may have produced the opportunity for additional optimizations.
        pipeline->optimizePipeline();
    }
    return skipThenLimit;
}

/**
 * Given a dependency set and a pipeline, builds a projection BSON object to push down into the
 * PlanStage layer. The rules to push down the projection are as follows:
 *    1. If there is an inclusion projection at the front of the pipeline, it will be pushed down
 *       as is.
 *    2. If there is no inclusion projection at the front of the pipeline, but there is a finite
 *       dependency set, a projection representing this dependency set will be pushed down.
 *    3. Otherwise, an empty projection is returned and no projection push down will happen.
 *
 * If 'allowExpressions' is true, the returned projection may include expressions (which can only
 * happen in case 1). If 'allowExpressions' is false and the projection we find has expressions,
 * then we fall through to case 2 and attempt to push down a pure-inclusion projection based on its
 * dependencies.
 */
auto buildProjectionForPushdown(const DepsTracker& deps,
                                Pipeline* pipeline,
                                bool allowExpressions) {
    auto&& sources = pipeline->getSources();

    // Short-circuit if the pipeline is empty: there is no projection and nothing to push down.
    if (sources.empty()) {
        return BSONObj();
    }

    if (const auto projStage =
            exact_pointer_cast<DocumentSourceSingleDocumentTransformation*>(sources.front().get());
        projStage) {
        if (projStage->getType() == TransformerInterface::TransformerType::kInclusionProjection) {
            auto projObj =
                projStage->getTransformer().serializeTransformation(boost::none).toBson();
            auto projAst =
                projection_ast::parseAndAnalyze(projStage->getContext(),
                                                projObj,
                                                ProjectionPolicies::aggregateProjectionPolicies());
            if (!projAst.hasExpressions() || allowExpressions) {
                // If there is an inclusion projection at the front of the pipeline, we have case 1.
                sources.pop_front();
                return projObj;
            }
        }
    }

    // Depending of whether there is a finite dependency set, either return a projection
    // representing this dependency set, or an empty BSON, meaning no projection push down will
    // happen. This covers cases 2 and 3.
    if (deps.getNeedsAnyMetadata())
        return BSONObj();
    return deps.toProjectionWithoutMetadata();
}
}  // namespace

boost::optional<std::pair<PipelineD::IndexSortOrderAgree, PipelineD::IndexOrderedByMinTime>>
PipelineD::supportsSort(const BucketUnpacker& bucketUnpacker,
                        PlanStage* root,
                        const SortPattern& sort) {
    using SortPatternPart = SortPattern::SortPatternPart;

    if (!root)
        return boost::none;

    switch (root->stageType()) {
        case STAGE_COLLSCAN: {
            const CollectionScan* scan = static_cast<CollectionScan*>(root);
            if (sort.size() == 1) {
                auto part = sort[0];
                // Check the sort we're asking for is on time.
                if (part.fieldPath && *part.fieldPath == bucketUnpacker.getTimeField()) {
                    // Check that the directions agree.
                    if ((scan->getDirection() == CollectionScanParams::Direction::FORWARD) ==
                        part.isAscending)
                        return std::pair{part.isAscending, true};
                }
            }
            return boost::none;
        }
        case STAGE_IXSCAN: {
            const IndexScan* scan = static_cast<IndexScan*>(root);

            // Scanning only part of an index means we don't see all the index keys for a
            // document, which means the representative (first key we encounter, for a
            // given document) will be different. For simplicity, just check whether the
            // index is multikey. Mabye we could do better by looking at whether each field
            // separately is multikey, or by allowing a full index scan.
            if (scan->getSpecificStats()->isMultiKey)
                return boost::none;

            const auto& keyPattern = scan->getKeyPattern();

            const auto& time = bucketUnpacker.getTimeField();
            const auto& controlMinTime = bucketUnpacker.getMinField(time);
            const auto& controlMaxTime = bucketUnpacker.getMaxField(time);

            auto directionCompatible = [&](const BSONElement& keyPatternComponent,
                                           const SortPatternPart& sortComponent) -> bool {
                // The index component must not be special.
                if (!keyPatternComponent.isNumber() || abs(keyPatternComponent.numberInt()) != 1)
                    return false;
                // Is the index (as it is stored) ascending or descending on this field?
                const bool indexIsAscending = keyPatternComponent.numberInt() == 1;
                // Does the index scan produce this field in ascending or descending order?
                // For example: a backwards scan of a descending index produces ascending data.
                const bool scanIsAscending = scan->isForward() == indexIsAscending;
                return scanIsAscending == sortComponent.isAscending;
            };

            // Return none if the keyPattern cannot support the sort.
            // Note We add one to sort size to account for the compounding on min/max for the
            // time field.

            // Compare the requested 'sort' against the index 'keyPattern' one field at a time.
            // - If the leading fields are compatible, keep comparing.
            // - If the leading field of the index has a point predicate, ignore it.
            // - If we reach the end of the sort first, success!
            // - if we find a field of the sort that the index can't satisfy, fail.

            auto keyPatternIter = scan->getKeyPattern().begin();
            auto sortIter = sort.begin();
            for (;;) {
                if (sortIter == sort.end()) {
                    // We never found a 'time' field in the sort.
                    return boost::none;
                }
                if (keyPatternIter == keyPattern.end()) {
                    // There are still components of the sort, that the index key didn't satisfy.
                    return boost::none;
                }
                if (!sortIter->fieldPath) {
                    // We don't handle special $meta sort.
                    return boost::none;
                }

                // Does the leading sort field match the index?

                if (sortAndKeyPatternPartAgreeAndOnMeta(bucketUnpacker,
                                                        keyPatternIter->fieldNameStringData(),
                                                        *sortIter->fieldPath)) {
                    if (!directionCompatible(*keyPatternIter, *sortIter))
                        return boost::none;

                    // No conflict. Continue comparing the index vs the sort.
                    ++keyPatternIter;
                    ++sortIter;
                    continue;
                }

                // Does this index field have a point predicate?
                auto hasPointPredicate = [&](StringData fieldName) -> bool {
                    for (auto&& field : scan->getBounds().fields) {
                        if (field.name == fieldName)
                            return field.isPoint();
                    }
                    return false;
                };
                if (hasPointPredicate(keyPatternIter->fieldNameStringData())) {
                    ++keyPatternIter;
                    continue;
                }

                if ((*sortIter->fieldPath) == time) {
                    // We require the 'time' field to be the last component of the sort.
                    // (It's fine if the index has additional fields; we just ignore those.)
                    if (std::next(sortIter) != sort.end())
                        return boost::none;

                    // Now any of the following index fields can satisfy a sort on time:
                    // - control.min.time
                    // - control.max.time
                    // - _id  (like control.min.time but may break ties)
                    // as long as the direction matches.
                    // However, it's not possible for users to index the bucket _id (unless they
                    // bypass the view), so don't bother optimizing that case.
                    auto&& ixField = keyPatternIter->fieldNameStringData();
                    if (ixField != controlMinTime && ixField != controlMaxTime)
                        return boost::none;

                    if (!directionCompatible(*keyPatternIter, *sortIter))
                        return boost::none;

                    // Success! Every field of the sort can be satisfied by a field of the index.

                    // Now the caller wants to know:
                    // 1. Does the field in the index agree with the scan direction?
                    //    An index on 'control.min.time' or '_id' is better for ascending.
                    //    An index on 'control.max.time' is better for descending.
                    // 2. Which field was first? min or max (treating _id the same as min).
                    const bool isMinFirst = keyPatternIter->fieldNameStringData() != controlMaxTime;
                    const bool indexOrderAgree = isMinFirst == sortIter->isAscending;
                    return {{indexOrderAgree, isMinFirst}};
                }

                // This index field can't satisfy this sort field.
                return boost::none;
            }
        }
        default:
            return boost::none;
    }
}

std::pair<PipelineD::AttachExecutorCallback, std::unique_ptr<PlanExecutor, PlanExecutor::Deleter>>
PipelineD::buildInnerQueryExecutorGeneric(const MultipleCollectionAccessor& collections,
                                          const NamespaceString& nss,
                                          const AggregateCommandRequest* aggRequest,
                                          Pipeline* pipeline) {
    // Make a last effort to optimize pipeline stages before potentially detaching them to be pushed
    // down into the query executor.
    pipeline->optimizePipeline();

    Pipeline::SourceContainer& sources = pipeline->_sources;
    auto expCtx = pipeline->getContext();

    // Look for an initial match. This works whether we got an initial query or not. If not, it
    // results in a "{}" query, which will be what we want in that case.
    const BSONObj queryObj = pipeline->getInitialQuery();
    if (!queryObj.isEmpty()) {
        auto matchStage = dynamic_cast<DocumentSourceMatch*>(sources.front().get());
        if (matchStage) {
            // If a $match query is pulled into the cursor, the $match is redundant, and can be
            // removed from the pipeline.
            sources.pop_front();
        } else {
            // A $geoNear stage, the only other stage that can produce an initial query, is also
            // a valid initial stage. However, we should be in prepareGeoNearCursorSource() instead.
            MONGO_UNREACHABLE;
        }
    }

    auto&& [sortStage, groupStage] = getSortAndGroupStagesFromPipeline(pipeline->_sources);
    std::unique_ptr<GroupFromFirstDocumentTransformation> rewrittenGroupStage;
    if (groupStage) {
        rewrittenGroupStage = groupStage->rewriteGroupAsTransformOnFirstDocument();
    }

    // If there is a $limit or $skip stage (or multiple of them) that could be pushed down into the
    // PlanStage layer, obtain the value of the limit and skip and remove the $limit and $skip
    // stages from the pipeline.
    //
    // This analysis is done here rather than in 'optimizePipeline()' because swapping $limit before
    // stages such as $project is not always useful, and can sometimes defeat other optimizations.
    // In particular, in a sharded scenario a pipeline such as [$project, $limit] is preferable to
    // [$limit, $project]. The former permits the execution of the projection operation to be
    // parallelized across all targeted shards, whereas the latter would bring all of the data to a
    // merging shard first, and then apply the projection serially. See SERVER-24981 for a more
    // detailed discussion.
    //
    // This only handles the case in which the the $limit or $skip can logically be swapped to the
    // front of the pipeline. We can also push down a $limit which comes after a $sort into the
    // PlanStage layer, but that is handled elsewhere.
    const auto skipThenLimit = extractSkipAndLimitForPushdown(pipeline);

    auto unavailableMetadata = DocumentSourceMatch::isTextQuery(queryObj)
        ? DepsTracker::kDefaultUnavailableMetadata & ~DepsTracker::kOnlyTextScore
        : DepsTracker::kDefaultUnavailableMetadata;

    // Create the PlanExecutor.
    bool shouldProduceEmptyDocs = false;
    auto exec = uassertStatusOK(prepareExecutor(expCtx,
                                                collections,
                                                nss,
                                                pipeline,
                                                sortStage,
                                                std::move(rewrittenGroupStage),
                                                unavailableMetadata,
                                                queryObj,
                                                skipThenLimit,
                                                aggRequest,
                                                Pipeline::kAllowedMatcherFeatures,
                                                &shouldProduceEmptyDocs));

    // If this is a query on a time-series collection then it may be eligible for a post-planning
    // sort optimization. We check eligibility and perform the rewrite here.
    auto [unpack, sort] = findUnpackThenSort(pipeline->_sources);
    if (serverGlobalParams.featureCompatibility.isVersionInitialized() &&
        serverGlobalParams.featureCompatibility.isGreaterThanOrEqualTo(
            multiversion::FeatureCompatibilityVersion::kVersion_6_1) &&
        feature_flags::gFeatureFlagBucketUnpackWithSort.isEnabled(
            serverGlobalParams.featureCompatibility) &&
        unpack && sort) {
        auto execImpl = dynamic_cast<PlanExecutorImpl*>(exec.get());
        if (execImpl) {

            // Get source stage
            PlanStage* rootStage = execImpl->getRootStage();
            while (rootStage && rootStage->getChildren().size() == 1) {
                switch (rootStage->stageType()) {
                    case STAGE_FETCH:
                        rootStage = rootStage->child().get();
                        break;
                    case STAGE_SHARDING_FILTER:
                        rootStage = rootStage->child().get();
                        break;
                    default:
                        rootStage = nullptr;
                }
            }

            if (rootStage && rootStage->getChildren().size() != 0) {
                rootStage = nullptr;
            }

            const auto& sortPattern = sort->getSortKeyPattern();
            if (auto agree = supportsSort(unpack->bucketUnpacker(), rootStage, sortPattern)) {
                // Scan the pipeline to check if it's compatible with the  optimization.
                bool badStage = false;
                bool seenSort = false;
                bool seenUnpack = false;
                std::list<boost::intrusive_ptr<DocumentSource>>::iterator iter =
                    pipeline->_sources.begin();
                std::list<boost::intrusive_ptr<DocumentSource>>::iterator unpackIter =
                    pipeline->_sources.end();
                for (; !badStage && iter != pipeline->_sources.end() && !seenSort; ++iter) {
                    if (dynamic_cast<const DocumentSourceSort*>(iter->get())) {
                        seenSort = true;
                    } else if (dynamic_cast<const DocumentSourceMatch*>(iter->get())) {
                        // do nothing
                    } else if (const auto* unpack =
                                   dynamic_cast<const DocumentSourceInternalUnpackBucket*>(
                                       iter->get())) {
                        unpackIter = iter;
                        uassert(6505001,
                                str::stream()
                                    << "Expected at most one "
                                    << DocumentSourceInternalUnpackBucket::kStageNameInternal
                                    << " stage in the pipeline",
                                !seenUnpack);
                        seenUnpack = true;

                        // Check that the time field is preserved.
                        if (!unpack->includeTimeField())
                            badStage = true;

                        // If the sort is compound, check that the entire meta field is preserved.
                        if (sortPattern.size() > 1) {
                            // - Is there a meta field?
                            // - Will it be unpacked?
                            // - Will it be overwritten by 'computedMetaProjFields'?
                            auto&& unpacker = unpack->bucketUnpacker();
                            const boost::optional<std::string>& metaField = unpacker.getMetaField();
                            if (!metaField || !unpack->includeMetaField() ||
                                unpacker.bucketSpec().fieldIsComputed(*metaField)) {
                                badStage = true;
                            }
                        }
                    } else if (auto projection =
                                   dynamic_cast<const DocumentSourceSingleDocumentTransformation*>(
                                       iter->get())) {
                        auto modPaths = projection->getModifiedPaths();

                        // Check to see if the sort paths are modified.
                        if (seenUnpack) {
                            // This stage operates on events: check the event-level field names.
                            for (auto sortIter = sortPattern.begin();
                                 !badStage && sortIter != sortPattern.end();
                                 ++sortIter) {

                                auto fieldPath = sortIter->fieldPath;
                                // If they are then escape the loop & don't optimize.
                                if (!fieldPath || modPaths.canModify(*fieldPath)) {
                                    badStage = true;
                                }
                            }
                        } else {
                            // This stage operates on buckets: check the bucket-level field names.

                            // The time field maps to control.min.[time], control.max.[time], or
                            // _id, and $_internalUnpackBucket assumes that all of those fields are
                            // preserved. (We never push down a stage that would overwrite them.)

                            // Each field [meta].a.b.c maps to 'meta.a.b.c'.
                            auto rename = [&](const FieldPath& eventField) -> FieldPath {
                                if (eventField.getPathLength() == 1)
                                    return timeseries::kBucketMetaFieldName;
                                return FieldPath{timeseries::kBucketMetaFieldName}.concat(
                                    eventField.tail());
                            };

                            for (auto sortIter = sortPattern.begin(),
                                      // Skip the last field, which is time: only check the meta
                                      // fields.
                                 end = std::prev(sortPattern.end());
                                 !badStage && sortIter != end;
                                 ++sortIter) {
                                auto bucketFieldPath = rename(*sortIter->fieldPath);
                                if (modPaths.canModify(bucketFieldPath))
                                    badStage = true;
                            }
                        }
                    } else {
                        badStage = true;
                    }
                }
                if (!badStage && seenSort) {
                    auto [indexSortOrderAgree, indexOrderedByMinTime] = *agree;
                    // This is safe because we have seen a sort so we must have at least one stage
                    // to the left of the current iterator position.
                    --iter;

                    if (indexOrderedByMinTime) {
                        unpack->setIncludeMinTimeAsMetadata();
                    } else {
                        unpack->setIncludeMaxTimeAsMetadata();
                    }

                    if (indexSortOrderAgree) {
                        pipeline->_sources.insert(
                            iter,
                            DocumentSourceSort::createBoundedSort(sort->getSortKeyPattern(),
                                                                  (indexOrderedByMinTime
                                                                       ? DocumentSourceSort::kMin
                                                                       : DocumentSourceSort::kMax),
                                                                  0,
                                                                  sort->getLimit(),
                                                                  expCtx));
                    } else {
                        // Since the sortPattern and the direction of the index don't agree we must
                        // use the offset to get an estimate on the bounds of the bucket.
                        pipeline->_sources.insert(
                            iter,
                            DocumentSourceSort::createBoundedSort(
                                sort->getSortKeyPattern(),
                                (indexOrderedByMinTime ? DocumentSourceSort::kMin
                                                       : DocumentSourceSort::kMax),
                                ((indexOrderedByMinTime) ? unpack->getBucketMaxSpanSeconds()
                                                         : -unpack->getBucketMaxSpanSeconds()) *
                                    1000,
                                sort->getLimit(),
                                expCtx));

                        /**
                         * We wish to create the following predicate to avoid returning incorrect
                         * results in the unlikely event bucketMaxSpanSeconds changes under us.
                         *
                         * {$expr:
                         *   {$lte: [
                         *     {$subtract: [$control.max.timeField, $control.min.timeField]},
                         *     {$const: bucketMaxSpanSeconds, in milliseconds}
                         * ]}}
                         */
                        auto minTime = unpack->getMinTimeField();
                        auto maxTime = unpack->getMaxTimeField();
                        auto match = std::make_unique<ExprMatchExpression>(
                            // This produces {$lte: ... }
                            make_intrusive<ExpressionCompare>(
                                expCtx.get(),
                                ExpressionCompare::CmpOp::LTE,
                                // This produces [...]
                                makeVector<boost::intrusive_ptr<Expression>>(
                                    // This produces {$subtract: ... }
                                    make_intrusive<ExpressionSubtract>(
                                        expCtx.get(),
                                        // This produces [...]
                                        makeVector<boost::intrusive_ptr<Expression>>(
                                            // This produces "$control.max.timeField"
                                            ExpressionFieldPath::createPathFromString(
                                                expCtx.get(), maxTime, expCtx->variablesParseState),
                                            // This produces "$control.min.timeField"
                                            ExpressionFieldPath::createPathFromString(
                                                expCtx.get(),
                                                minTime,
                                                expCtx->variablesParseState))),
                                    // This produces {$const: maxBucketSpanSeconds}
                                    make_intrusive<ExpressionConstant>(
                                        expCtx.get(),
                                        Value{unpack->getBucketMaxSpanSeconds() * 1000}))),
                            expCtx);
                        pipeline->_sources.insert(
                            unpackIter,
                            make_intrusive<DocumentSourceMatch>(std::move(match), expCtx));
                    }
                    // Ensure we're erasing the sort source.
                    tassert(6434901,
                            "we must erase a $sort stage and replace it with a bounded sort stage",
                            strcmp((*iter)->getSourceName(),
                                   DocumentSourceSort::kStageName.rawData()) == 0);
                    pipeline->_sources.erase(iter);
                    pipeline->stitch();
                }
            }
        }
    }

    const auto cursorType = shouldProduceEmptyDocs
        ? DocumentSourceCursor::CursorType::kEmptyDocuments
        : DocumentSourceCursor::CursorType::kRegular;

    // If this is a change stream pipeline or a resharding resume token has been requested, make
    // sure that we tell DSCursor to track the oplog time.
    const bool trackOplogTS =
        (pipeline->peekFront() && pipeline->peekFront()->constraints().isChangeStreamStage()) ||
        (aggRequest && aggRequest->getRequestReshardingResumeToken());

    auto attachExecutorCallback =
        [cursorType, trackOplogTS](const MultipleCollectionAccessor& collections,
                                   std::unique_ptr<PlanExecutor, PlanExecutor::Deleter> exec,
                                   Pipeline* pipeline) {
            auto cursor = DocumentSourceCursor::create(
                collections, std::move(exec), pipeline->getContext(), cursorType, trackOplogTS);
            pipeline->addInitialSource(std::move(cursor));
        };
    return std::make_pair(std::move(attachExecutorCallback), std::move(exec));
}

std::pair<PipelineD::AttachExecutorCallback, std::unique_ptr<PlanExecutor, PlanExecutor::Deleter>>
PipelineD::buildInnerQueryExecutorGeoNear(const MultipleCollectionAccessor& collections,
                                          const NamespaceString& nss,
                                          const AggregateCommandRequest* aggRequest,
                                          Pipeline* pipeline) {
    // $geoNear can only run over the main collection.
    const auto& collection = collections.getMainCollection();
    uassert(ErrorCodes::NamespaceNotFound,
            str::stream() << "$geoNear requires a geo index to run, but " << nss.ns()
                          << " does not exist",
            collection);

    Pipeline::SourceContainer& sources = pipeline->_sources;
    auto expCtx = pipeline->getContext();
    const auto geoNearStage = dynamic_cast<DocumentSourceGeoNear*>(sources.front().get());
    invariant(geoNearStage);

    // If the user specified a "key" field, use that field to satisfy the "near" query. Otherwise,
    // look for a geo-indexed field in 'collection' that can.
    auto nearFieldName =
        (geoNearStage->getKeyField() ? geoNearStage->getKeyField()->fullPath()
                                     : extractGeoNearFieldFromIndexes(expCtx->opCtx, collection))
            .toString();

    // Create a PlanExecutor whose query is the "near" predicate on 'nearFieldName' combined with
    // the optional "query" argument in the $geoNear stage.
    BSONObj fullQuery = geoNearStage->asNearQuery(nearFieldName);

    bool shouldProduceEmptyDocs = false;
    auto exec = uassertStatusOK(
        prepareExecutor(expCtx,
                        collections,
                        nss,
                        pipeline,
                        nullptr, /* sortStage */
                        nullptr, /* rewrittenGroupStage */
                        DepsTracker::kDefaultUnavailableMetadata & ~DepsTracker::kAllGeoNearData,
                        std::move(fullQuery),
                        SkipThenLimit{boost::none, boost::none},
                        aggRequest,
                        Pipeline::kGeoNearMatcherFeatures,
                        &shouldProduceEmptyDocs));

    auto attachExecutorCallback = [distanceField = geoNearStage->getDistanceField(),
                                   locationField = geoNearStage->getLocationField(),
                                   distanceMultiplier =
                                       geoNearStage->getDistanceMultiplier().value_or(1.0)](
                                      const MultipleCollectionAccessor& collections,
                                      std::unique_ptr<PlanExecutor, PlanExecutor::Deleter> exec,
                                      Pipeline* pipeline) {
        auto cursor = DocumentSourceGeoNearCursor::create(collections,
                                                          std::move(exec),
                                                          pipeline->getContext(),
                                                          distanceField,
                                                          locationField,
                                                          distanceMultiplier);
        pipeline->addInitialSource(std::move(cursor));
    };
    // Remove the initial $geoNear; it will be replaced by $geoNearCursor.
    sources.pop_front();
    return std::make_pair(std::move(attachExecutorCallback), std::move(exec));
}

StatusWith<std::unique_ptr<PlanExecutor, PlanExecutor::Deleter>> PipelineD::prepareExecutor(
    const intrusive_ptr<ExpressionContext>& expCtx,
    const MultipleCollectionAccessor& collections,
    const NamespaceString& nss,
    Pipeline* pipeline,
    const boost::intrusive_ptr<DocumentSourceSort>& sortStage,
    std::unique_ptr<GroupFromFirstDocumentTransformation> rewrittenGroupStage,
    QueryMetadataBitSet unavailableMetadata,
    const BSONObj& queryObj,
    SkipThenLimit skipThenLimit,
    const AggregateCommandRequest* aggRequest,
    const MatchExpressionParser::AllowedFeatureSet& matcherFeatures,
    bool* hasNoRequirements) {
    invariant(hasNoRequirements);

    // Any data returned from the inner executor must be owned.
    size_t plannerOpts = QueryPlannerParams::DEFAULT;

    bool isChangeStream =
        pipeline->peekFront() && pipeline->peekFront()->constraints().isChangeStreamStage();
    if (isChangeStream) {
        invariant(expCtx->tailableMode == TailableModeEnum::kTailableAndAwaitData);
        plannerOpts |= (QueryPlannerParams::TRACK_LATEST_OPLOG_TS |
                        QueryPlannerParams::ASSERT_MIN_TS_HAS_NOT_FALLEN_OFF_OPLOG);
    }

    // The $_requestReshardingResumeToken parameter is only valid for an oplog scan.
    if (aggRequest && aggRequest->getRequestReshardingResumeToken()) {
        plannerOpts |= (QueryPlannerParams::TRACK_LATEST_OPLOG_TS |
                        QueryPlannerParams::ASSERT_MIN_TS_HAS_NOT_FALLEN_OFF_OPLOG);
    }

    // If there is a sort stage eligible for pushdown, serialize its SortPattern to a BSONObj. The
    // BSONObj format is currently necessary to request that the sort is computed by the query layer
    // inside the inner PlanExecutor. We also remove the $sort stage from the Pipeline, since it
    // will be handled instead by PlanStage execution.
    BSONObj sortObj;
    if (sortStage) {
        sortObj = sortStage->getSortKeyPattern()
                      .serialize(SortPattern::SortKeySerialization::kForPipelineSerialization)
                      .toBson();

        pipeline->popFrontWithName(DocumentSourceSort::kStageName);

        // Now that we've pushed down the sort, see if there is a $limit and $skip to push down
        // also. We should not already have a limit or skip here, otherwise it would be incorrect
        // for the caller to pass us a sort stage to push down, since the order matters.
        invariant(!skipThenLimit.getLimit());
        invariant(!skipThenLimit.getSkip());

        // Since all $limit stages were already pushdowned to the sort stage, we are only looking
        // for $skip stages.
        auto skip = extractSkipForPushdown(pipeline);

        // Since the limit from $sort is going before the extracted $skip stages, we construct
        // 'LimitThenSkip' object and then convert it 'SkipThenLimit'.
        skipThenLimit = LimitThenSkip(sortStage->getLimit(), skip).flip();
    }

    // Perform dependency analysis. In order to minimize the dependency set, we only analyze the
    // stages that remain in the pipeline after pushdown. In particular, any dependencies for a
    // $match or $sort pushed down into the query layer will not be reflected here.
    auto deps = pipeline->getDependencies(unavailableMetadata);
    *hasNoRequirements = deps.hasNoRequirements();

    BSONObj projObj;
    if (*hasNoRequirements) {
        // This query might be eligible for count optimizations, since the remaining stages in the
        // pipeline don't actually need to read any data produced by the query execution layer.
        plannerOpts |= QueryPlannerParams::IS_COUNT;
    } else {
        // Build a BSONObj representing a projection eligible for pushdown. If there is an inclusion
        // projection at the front of the pipeline, it will be removed and handled by the PlanStage
        // layer. If a projection cannot be pushed down, an empty BSONObj will be returned.

        // In most cases .find() behaves as if it evaluates in a predictable order:
        //     predicate, sort, skip, limit, projection.
        // But there is at least one case where it runs the projection before the sort/skip/limit:
        // when the predicate has a rooted $or.  (In that case we plan each branch of the $or
        // separately, using Subplan, and include the projection on each branch.)

        // To work around this behavior, don't allow pushing down expressions if we are also going
        // to push down a sort, skip or limit. We don't want the expressions to be evaluated on any
        // documents that the sort/skip/limit would have filtered out. (The sort stage can be a
        // top-k sort, which both sorts and limits.)
        bool allowExpressions = !sortStage && !skipThenLimit.getSkip() && !skipThenLimit.getLimit();
        projObj = buildProjectionForPushdown(deps, pipeline, allowExpressions);
        plannerOpts |= QueryPlannerParams::RETURN_OWNED_DATA;
    }

    if (rewrittenGroupStage) {
        // See if the query system can handle the $group and $sort stage using a DISTINCT_SCAN
        // (SERVER-9507).
        auto swExecutorGrouped = attemptToGetExecutor(expCtx,
                                                      collections,
                                                      nss,
                                                      queryObj,
                                                      projObj,
                                                      deps.metadataDeps(),
                                                      sortObj,
                                                      SkipThenLimit{boost::none, boost::none},
                                                      rewrittenGroupStage->groupId(),
                                                      aggRequest,
                                                      plannerOpts,
                                                      matcherFeatures,
                                                      pipeline);

        if (swExecutorGrouped.isOK()) {
            // Any $limit stage before the $group stage should make the pipeline ineligible for this
            // optimization.
            invariant(!sortStage || !sortStage->hasLimit());

            // We remove the $sort and $group stages that begin the pipeline, because the executor
            // will handle the sort, and the groupTransform (added below) will handle the $group
            // stage.
            pipeline->popFrontWithName(DocumentSourceSort::kStageName);
            pipeline->popFrontWithName(DocumentSourceGroup::kStageName);

            boost::intrusive_ptr<DocumentSource> groupTransform(
                new DocumentSourceSingleDocumentTransformation(
                    expCtx,
                    std::move(rewrittenGroupStage),
                    "$groupByDistinctScan",
                    false /* independentOfAnyCollection */));
            pipeline->addInitialSource(groupTransform);

            return swExecutorGrouped;
        } else if (swExecutorGrouped != ErrorCodes::NoQueryExecutionPlans) {
            return swExecutorGrouped.getStatus().withContext(
                "Failed to determine whether query system can provide a "
                "DISTINCT_SCAN grouping");
        }
    }

    // If this pipeline is a change stream, then the cursor must use the simple collation, so we
    // temporarily switch the collator on the ExpressionContext to nullptr. We do this here because
    // by this point, all the necessary pipeline analyses and optimizations have already been
    // performed. Note that 'collatorStash' restores the original collator when it leaves scope.
    std::unique_ptr<CollatorInterface> collatorForCursor = nullptr;
    auto collatorStash =
        isChangeStream ? expCtx->temporarilyChangeCollator(std::move(collatorForCursor)) : nullptr;

    return attemptToGetExecutor(expCtx,
                                collections,
                                nss,
                                queryObj,
                                projObj,
                                deps.metadataDeps(),
                                sortObj,
                                skipThenLimit,
                                boost::none, /* groupIdForDistinctScan */
                                aggRequest,
                                plannerOpts,
                                matcherFeatures,
                                pipeline);
}

Timestamp PipelineD::getLatestOplogTimestamp(const Pipeline* pipeline) {
    if (auto docSourceCursor =
            dynamic_cast<DocumentSourceCursor*>(pipeline->_sources.front().get())) {
        return docSourceCursor->getLatestOplogTimestamp();
    }
    return Timestamp();
}

BSONObj PipelineD::getPostBatchResumeToken(const Pipeline* pipeline) {
    if (auto docSourceCursor =
            dynamic_cast<DocumentSourceCursor*>(pipeline->_sources.front().get())) {
        return docSourceCursor->getPostBatchResumeToken();
    }
    return BSONObj{};
}
}  // namespace mongo