summaryrefslogtreecommitdiff
path: root/src/mongo/db/query/get_runner.cpp
blob: 97c8a2e0fa036005040bff42ae9f65ea27f6b30e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
/**
 *    Copyright (C) 2013 10gen Inc.
 *
 *    This program is free software: you can redistribute it and/or  modify
 *    it under the terms of the GNU Affero General Public License, version 3,
 *    as published by the Free Software Foundation.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU Affero General Public License for more details.
 *
 *    You should have received a copy of the GNU Affero General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the GNU Affero General Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#include "mongo/db/query/get_runner.h"

#include <limits>

#include "mongo/base/parse_number.h"
#include "mongo/client/dbclientinterface.h"
#include "mongo/db/query/cached_plan_runner.h"
#include "mongo/db/query/canonical_query.h"
#include "mongo/db/query/eof_runner.h"
#include "mongo/db/query/explain_plan.h"
#include "mongo/db/query/query_settings.h"
#include "mongo/db/query/idhack_runner.h"
#include "mongo/db/query/index_bounds_builder.h"
#include "mongo/db/query/internal_plans.h"
#include "mongo/db/query/multi_plan_runner.h"
#include "mongo/db/query/plan_cache.h"
#include "mongo/db/query/planner_analysis.h"
#include "mongo/db/query/planner_access.h"
#include "mongo/db/query/qlog.h"
#include "mongo/db/query/query_knobs.h"
#include "mongo/db/query/query_planner.h"
#include "mongo/db/query/query_planner_common.h"
#include "mongo/db/query/single_solution_runner.h"
#include "mongo/db/query/stage_builder.h"
#include "mongo/db/query/subplan_runner.h"
#include "mongo/db/index_names.h"
#include "mongo/db/server_options.h"
#include "mongo/db/server_parameters.h"
#include "mongo/s/d_logic.h"

namespace mongo {

    // static
    void filterAllowedIndexEntries(const AllowedIndices& allowedIndices,
                                   std::vector<IndexEntry>* indexEntries) {
        invariant(indexEntries);

        // Filter index entries
        // Check BSON objects in AllowedIndices::_indexKeyPatterns against IndexEntry::keyPattern.
        // Removes IndexEntrys that do not match _indexKeyPatterns.
        std::vector<IndexEntry> temp;
        for (std::vector<IndexEntry>::const_iterator i = indexEntries->begin();
             i != indexEntries->end(); ++i) {
            const IndexEntry& indexEntry = *i;
            for (std::vector<BSONObj>::const_iterator j = allowedIndices.indexKeyPatterns.begin();
                 j != allowedIndices.indexKeyPatterns.end(); ++j) {
                const BSONObj& index = *j;
                // Copy index entry to temp vector if found in query settings.
                if (0 == indexEntry.keyPattern.woCompare(index)) {
                    temp.push_back(indexEntry);
                    break;
                }
            }
        }

        // Update results.
        temp.swap(*indexEntries);
    }

    Status getRunner(Collection* collection,
                     const std::string& ns,
                     const BSONObj& unparsedQuery,
                     Runner** outRunner,
                     CanonicalQuery** outCanonicalQuery,
                     size_t plannerOptions) {

        if (!collection) {
            LOG(2) << "Collection " << ns << " does not exist."
                   << " Using EOF runner: " << unparsedQuery.toString();
            *outCanonicalQuery = NULL;
            *outRunner = new EOFRunner(NULL, ns);
            return Status::OK();
        }

        if (!CanonicalQuery::isSimpleIdQuery(unparsedQuery) ||
            !collection->getIndexCatalog()->findIdIndex()) {

            const WhereCallbackReal whereCallback(collection->ns().db());
            Status status = CanonicalQuery::canonicalize(
                        collection->ns(), unparsedQuery, outCanonicalQuery, whereCallback);
            if (!status.isOK())
                return status;
            return getRunner(collection, *outCanonicalQuery, outRunner, plannerOptions);
        }

        LOG(2) << "Using idhack: " << unparsedQuery.toString();

        *outCanonicalQuery = NULL;
        *outRunner = new IDHackRunner(collection, unparsedQuery["_id"].wrap());
        return Status::OK();
    }

    namespace {
        // The body is below in the "count hack" section but getRunner calls it.
        bool turnIxscanIntoCount(QuerySolution* soln);
    }  // namespace


    void fillOutPlannerParams(Collection* collection,
                              CanonicalQuery* canonicalQuery,
                              QueryPlannerParams* plannerParams) {
        // If it's not NULL, we may have indices.  Access the catalog and fill out IndexEntry(s)
        IndexCatalog::IndexIterator ii = collection->getIndexCatalog()->getIndexIterator(false);
        while (ii.more()) {
            const IndexDescriptor* desc = ii.next();
            plannerParams->indices.push_back(IndexEntry(desc->keyPattern(),
                                                        desc->getAccessMethodName(),
                                                        desc->isMultikey(),
                                                        desc->isSparse(),
                                                        desc->indexName(),
                                                        desc->infoObj()));
        }

        // If query supports index filters, filter params.indices by indices in query settings.
        QuerySettings* querySettings = collection->infoCache()->getQuerySettings();
        AllowedIndices* allowedIndicesRaw;

        // Filter index catalog if index filters are specified for query.
        // Also, signal to planner that application hint should be ignored.
        if (querySettings->getAllowedIndices(*canonicalQuery, &allowedIndicesRaw)) {
            boost::scoped_ptr<AllowedIndices> allowedIndices(allowedIndicesRaw);
            filterAllowedIndexEntries(*allowedIndices, &plannerParams->indices);
            plannerParams->indexFiltersApplied = true;
        }

        // We will not output collection scans unless there are no indexed solutions. NO_TABLE_SCAN
        // overrides this behavior by not outputting a collscan even if there are no indexed
        // solutions.
        if (storageGlobalParams.noTableScan) {
            const string& ns = canonicalQuery->ns();
            // There are certain cases where we ignore this restriction:
            bool ignore = canonicalQuery->getQueryObj().isEmpty()
                          || (string::npos != ns.find(".system."))
                          || (0 == ns.find("local."));
            if (!ignore) {
                plannerParams->options |= QueryPlannerParams::NO_TABLE_SCAN;
            }
        }

        // If the caller wants a shard filter, make sure we're actually sharded.
        if (plannerParams->options & QueryPlannerParams::INCLUDE_SHARD_FILTER) {
            CollectionMetadataPtr collMetadata =
                shardingState.getCollectionMetadata(canonicalQuery->ns());

            if (collMetadata) {
                plannerParams->shardKey = collMetadata->getKeyPattern();
            }
            else {
                // If there's no metadata don't bother w/the shard filter since we won't know what
                // the key pattern is anyway...
                plannerParams->options &= ~QueryPlannerParams::INCLUDE_SHARD_FILTER;
            }
        }

        if (internalQueryPlannerEnableIndexIntersection) {
            plannerParams->options |= QueryPlannerParams::INDEX_INTERSECTION;
        }

        plannerParams->options |= QueryPlannerParams::KEEP_MUTATIONS;
        plannerParams->options |= QueryPlannerParams::SPLIT_LIMITED_SORT;
    }

    Status getRunnerFromCache(CanonicalQuery* canonicalQuery,
                              Collection* collection,
                              const QueryPlannerParams& plannerParams,
                              Runner** out) {
        // Skip cache look up for non-cacheable queries.
        if (!PlanCache::shouldCacheQuery(*canonicalQuery)) {
            return Status(ErrorCodes::BadValue, "query is not cacheable");
        }

        CachedSolution* rawCS;
        Status cacheLookupStatus = collection->infoCache()->getPlanCache()->get(*canonicalQuery,
                                                                                &rawCS);
        if (!cacheLookupStatus.isOK()) {
            return cacheLookupStatus;
        }

        // We have a CachedSolution.  Have the planner turn it into a QuerySolution.
        boost::scoped_ptr<CachedSolution> cs(rawCS);
        QuerySolution *qs, *backupQs;
        Status status = QueryPlanner::planFromCache(*canonicalQuery,
                                                    plannerParams,
                                                    *cs,
                                                    &qs,
                                                    &backupQs);
        if (!status.isOK()) {
            return status;
        }

        // If our cached solution is a hit for a count query, try to turn it into a fast count
        // thing.
        if (plannerParams.options & QueryPlannerParams::PRIVATE_IS_COUNT) {
            if (turnIxscanIntoCount(qs)) {
                LOG(2) << "Using fast count: " << canonicalQuery->toStringShort()
                       << ", planSummary: " << getPlanSummary(*qs);

                WorkingSet* ws;
                PlanStage* root;
                verify(StageBuilder::build(collection, *qs, &root, &ws));
                *out = new SingleSolutionRunner(collection,
                                                canonicalQuery, qs, root, ws);
                if (NULL != backupQs) {
                    delete backupQs;
                }
                return Status::OK();
            }
        }

        // If we're here, we're going to used the cached plan and things are normal.
        LOG(2) << "Using cached query plan: " << canonicalQuery->toStringShort()
               << ", planSummary: " << getPlanSummary(*qs);

        WorkingSet* ws;
        PlanStage* root;
        verify(StageBuilder::build(collection, *qs, &root, &ws));
        CachedPlanRunner* cpr = new CachedPlanRunner(collection,
                                                     canonicalQuery,
                                                     qs,
                                                     root,
                                                     ws);

        // If there's a backup solution, let the CachedPlanRunner know about it.
        if (NULL != backupQs) {
            WorkingSet* backupWs;
            PlanStage* backupRoot;
            verify(StageBuilder::build(collection, *backupQs, &backupRoot, &backupWs));
            cpr->setBackupPlan(backupQs, backupRoot, backupWs);
        }

        *out = cpr;
        return Status::OK();
    }

    /**
     * For a given query, get a runner.  The runner could be a SingleSolutionRunner, a
     * CachedQueryRunner, or a MultiPlanRunner, depending on the cache/query solver/etc.
     */
    Status getRunner(Collection* collection,
                     CanonicalQuery* rawCanonicalQuery,
                     Runner** out,
                     size_t plannerOptions) {

        verify(rawCanonicalQuery);
        auto_ptr<CanonicalQuery> canonicalQuery(rawCanonicalQuery);

        // This can happen as we're called by internal clients as well.
        if (NULL == collection) {
            const string& ns = canonicalQuery->ns();
            LOG(2) << "Collection " << ns << " does not exist."
                   << " Using EOF runner: " << canonicalQuery->toStringShort();
            *out = new EOFRunner(canonicalQuery.release(), ns);
            return Status::OK();
        }

        // If we have an _id index we can use the idhack runner.
        if (IDHackRunner::supportsQuery(*canonicalQuery) &&
            collection->getIndexCatalog()->findIdIndex()) {
            LOG(2) << "Using idhack: " << canonicalQuery->toStringShort();
            *out = new IDHackRunner(collection, canonicalQuery.release());
            return Status::OK();
        }

        // Tailable: If the query requests tailable the collection must be capped.
        if (canonicalQuery->getParsed().hasOption(QueryOption_CursorTailable)) {
            if (!collection->isCapped()) {
                return Status(ErrorCodes::BadValue,
                              "error processing query: " + canonicalQuery->toString() +
                              " tailable cursor requested on non capped collection");
            }

            // If a sort is specified it must be equal to expectedSort.
            const BSONObj expectedSort = BSON("$natural" << 1);
            const BSONObj& actualSort = canonicalQuery->getParsed().getSort();
            if (!actualSort.isEmpty() && !(actualSort == expectedSort)) {
                return Status(ErrorCodes::BadValue,
                              "error processing query: " + canonicalQuery->toString() +
                              " invalid sort specified for tailable cursor: "
                              + actualSort.toString());
            }
        }

        // Fill out the planning params.  We use these for both cached solutions and non-cached.
        QueryPlannerParams plannerParams;
        plannerParams.options = plannerOptions;
        fillOutPlannerParams(collection, rawCanonicalQuery, &plannerParams);

        // See if the cache has what we're looking for.
        Status cacheStatus = getRunnerFromCache(canonicalQuery.get(),
                                                collection,
                                                plannerParams,
                                                out);

        // This can be not-OK and we can carry on.  It just means the query wasn't cached.
        if (cacheStatus.isOK()) {
            // We got a cached runner.
            canonicalQuery.release();
            return cacheStatus;
        }

        if (internalQueryPlanOrChildrenIndependently
            && SubplanRunner::canUseSubplanRunner(*canonicalQuery)) {

            QLOG() << "Running query as sub-queries: " << canonicalQuery->toStringShort();
            LOG(2) << "Running query as sub-queries: " << canonicalQuery->toStringShort();

            SubplanRunner* runner;
            Status runnerStatus = SubplanRunner::make(collection, plannerParams,
                                                      canonicalQuery.release(), &runner);
            if (!runnerStatus.isOK()) {
                return runnerStatus;
            }

            *out = runner;
            return Status::OK();
        }

        return getRunnerAlwaysPlan(collection, canonicalQuery.release(), plannerParams, out);
    }

    Status getRunnerAlwaysPlan(Collection* collection,
                               CanonicalQuery* rawCanonicalQuery,
                               const QueryPlannerParams& plannerParams,
                               Runner** out) {

        invariant(collection);
        invariant(rawCanonicalQuery);
        auto_ptr<CanonicalQuery> canonicalQuery(rawCanonicalQuery);

        vector<QuerySolution*> solutions;
        Status status = QueryPlanner::plan(*canonicalQuery, plannerParams, &solutions);
        if (!status.isOK()) {
            return Status(ErrorCodes::BadValue,
                          "error processing query: " + canonicalQuery->toString() +
                          " planner returned error: " + status.reason());
        }

        // We cannot figure out how to answer the query.  Perhaps it requires an index
        // we do not have?
        if (0 == solutions.size()) {
            return Status(ErrorCodes::BadValue,
                          str::stream()
                          << "error processing query: "
                          << canonicalQuery->toString()
                          << " No query solutions");
        }

        // See if one of our solutions is a fast count hack in disguise.
        if (plannerParams.options & QueryPlannerParams::PRIVATE_IS_COUNT) {
            for (size_t i = 0; i < solutions.size(); ++i) {
                if (turnIxscanIntoCount(solutions[i])) {
                    // Great, we can use solutions[i].  Clean up the other QuerySolution(s).
                    for (size_t j = 0; j < solutions.size(); ++j) {
                        if (j != i) {
                            delete solutions[j];
                        }
                    }

                    LOG(2) << "Using fast count: " << canonicalQuery->toStringShort()
                           << ", planSummary: " << getPlanSummary(*solutions[i]);

                    // We're not going to cache anything that's fast count.
                    WorkingSet* ws;
                    PlanStage* root;
                    verify(StageBuilder::build(collection, *solutions[i], &root, &ws));
                    *out = new SingleSolutionRunner(collection,
                                                    canonicalQuery.release(),
                                                    solutions[i],
                                                    root,
                                                    ws);
                    return Status::OK();
                }
            }
        }

        if (1 == solutions.size()) {
            LOG(2) << "Only one plan is available; it will be run but will not be cached. "
                   << canonicalQuery->toStringShort()
                   << ", planSummary: " << getPlanSummary(*solutions[0]);

            // Only one possible plan.  Run it.  Build the stages from the solution.
            WorkingSet* ws;
            PlanStage* root;
            verify(StageBuilder::build(collection, *solutions[0], &root, &ws));

            // And, run the plan.
            *out = new SingleSolutionRunner(collection,
                                            canonicalQuery.release(),
                                            solutions[0],
                                            root,
                                            ws);
            return Status::OK();
        }
        else {
            // Many solutions.  Let the MultiPlanRunner pick the best, update the cache, and so on.
            auto_ptr<MultiPlanRunner> mpr(new MultiPlanRunner(collection,canonicalQuery.release()));

            for (size_t i = 0; i < solutions.size(); ++i) {
                WorkingSet* ws;
                PlanStage* root;
                if (solutions[i]->cacheData.get()) {
                    solutions[i]->cacheData->indexFilterApplied = plannerParams.indexFiltersApplied;
                }
                verify(StageBuilder::build(collection, *solutions[i], &root, &ws));
                // Takes ownership of all arguments.
                mpr->addPlan(solutions[i], root, ws);
            }
            *out = mpr.release();
            return Status::OK();
        }
    }

    //
    // Count hack
    //

    namespace {

        /**
         * Returns 'true' if the provided solution 'soln' can be rewritten to use
         * a fast counting stage.  Mutates the tree in 'soln->root'.
         *
         * Otherwise, returns 'false'.
         */
        bool turnIxscanIntoCount(QuerySolution* soln) {
            QuerySolutionNode* root = soln->root.get();

            // Root should be a fetch w/o any filters.
            if (STAGE_FETCH != root->getType()) {
                return false;
            }

            if (NULL != root->filter.get()) {
                return false;
            }

            // Child should be an ixscan.
            if (STAGE_IXSCAN != root->children[0]->getType()) {
                return false;
            }

            IndexScanNode* isn = static_cast<IndexScanNode*>(root->children[0]);

            // No filters allowed and side-stepping isSimpleRange for now.  TODO: do we ever see
            // isSimpleRange here?  because we could well use it.  I just don't think we ever do see
            // it.

            if (NULL != isn->filter.get() || isn->bounds.isSimpleRange) {
                return false;
            }

            // Make sure the bounds are OK.
            BSONObj startKey;
            bool startKeyInclusive;
            BSONObj endKey;
            bool endKeyInclusive;

            if (!IndexBoundsBuilder::isSingleInterval( isn->bounds,
                                                       &startKey,
                                                       &startKeyInclusive,
                                                       &endKey,
                                                       &endKeyInclusive )) {
                return false;
            }

            // Make the count node that we replace the fetch + ixscan with.
            CountNode* cn = new CountNode();
            cn->indexKeyPattern = isn->indexKeyPattern;
            cn->startKey = startKey;
            cn->startKeyInclusive = startKeyInclusive;
            cn->endKey = endKey;
            cn->endKeyInclusive = endKeyInclusive;
            // Takes ownership of 'cn' and deletes the old root.
            soln->root.reset(cn);
            return true;
        }

        /**
         * Returns true if indices contains an index that can be
         * used with DistinctNode. Sets indexOut to the array index
         * of PlannerParams::indices.
         * Look for the index for the fewest fields.
         * Criteria for suitable index is that the index cannot be special
         * (geo, hashed, text, ...).
         *
         * Multikey indices are not suitable for DistinctNode when the projection
         * is on an array element. Arrays are flattened in a multikey index which
         * makes it impossible for the distinct scan stage (plan stage generated from
         * DistinctNode) to select the requested element by array index.
         *
         * Multikey indices cannot be used for the fast distinct hack if the field is dotted.
         * Currently the solution generated for the distinct hack includes a projection stage and
         * the projection stage cannot be covered with a dotted field.
         */
        bool getDistinctNodeIndex(const std::vector<IndexEntry>& indices,
                                  const std::string& field, size_t* indexOut) {
            invariant(indexOut);
            bool isDottedField = str::contains(field, '.');
            int minFields = std::numeric_limits<int>::max();
            for (size_t i = 0; i < indices.size(); ++i) {
                // Skip special indices.
                if (!IndexNames::findPluginName(indices[i].keyPattern).empty()) {
                    continue;
                }
                // Skip multikey indices if we are projecting on a dotted field.
                if (indices[i].multikey && isDottedField) {
                    continue;
                }
                int nFields = indices[i].keyPattern.nFields();
                // Pick the index with the lowest number of fields.
                if (nFields < minFields) {
                    minFields = nFields;
                    *indexOut = i;
                }
            }
            return minFields != std::numeric_limits<int>::max();
        }

        /**
         * Checks dotted field for a projection and truncates the
         * field name if we could be projecting on an array element.
         * Sets 'isIDOut' to true if the projection is on a sub document of _id.
         * For example, _id.a.2, _id.b.c.
         */
        std::string getProjectedDottedField(const std::string& field, bool* isIDOut) {
            // Check if field contains an array index.
            std::vector<std::string> res;
            mongo::splitStringDelim(field, &res, '.');

            // Since we could exit early from the loop,
            // we should check _id here and set '*isIDOut' accordingly.
            *isIDOut = ("_id" == res[0]);

            // Skip the first dotted component. If the field starts
            // with a number, the number cannot be an array index.
            int arrayIndex = 0;
            for (size_t i = 1; i < res.size(); ++i) {
                if (mongo::parseNumberFromStringWithBase(res[i], 10, &arrayIndex).isOK()) {
                    // Array indices cannot be negative numbers (this is not $slice).
                    // Negative numbers are allowed as field names.
                    if (arrayIndex >= 0) {
                        // Generate prefix of field up to (but not including) array index.
                        std::vector<std::string> prefixStrings(res);
                        prefixStrings.resize(i);
                        // Reset projectedField. Instead of overwriting, joinStringDelim() appends joined string
                        // to the end of projectedField.
                        std::string projectedField;
                        mongo::joinStringDelim(prefixStrings, &projectedField, '.');
                        return projectedField;
                    }
                }
            }

            return field;
        }

        /**
         * Creates a projection spec for a distinct command from the requested field.
         * In most cases, the projection spec will be {_id: 0, key: 1}.
         * The exceptions are:
         * 1) When the requested field is '_id', the projection spec will {_id: 1}.
         * 2) When the requested field could be an array element (eg. a.0),
         *    the projected field will be the prefix of the field up to the array element.
         *    For example, a.b.2 => {_id: 0, 'a.b': 1}
         *    Note that we can't use a $slice projection because the distinct command filters
         *    the results from the runner using the dotted field name. Using $slice will
         *    re-order the documents in the array in the results.
         */
        BSONObj getDistinctProjection(const std::string& field) {
            std::string projectedField(field);

            bool isID = false;
            if ("_id" == field) {
                isID = true;
            }
            else if (str::contains(field, '.')) {
                projectedField = getProjectedDottedField(field, &isID);
            }
            BSONObjBuilder bob;
            if (!isID) {
                bob.append("_id", 0);
            }
            bob.append(projectedField, 1);
            return bob.obj();
        }

    }  // namespace

    Status getRunnerCount(Collection* collection,
                          const BSONObj& query,
                          const BSONObj& hintObj,
                          Runner** out) {
        verify(collection);

        const WhereCallbackReal whereCallback(collection->ns().db());

        CanonicalQuery* cq;
        uassertStatusOK(CanonicalQuery::canonicalize(collection->ns().ns(),
                                                     query,
                                                     BSONObj(),
                                                     BSONObj(), 
                                                     0,
                                                     0,
                                                     hintObj,
                                                     &cq,
                                                     whereCallback));

        return getRunner(collection, cq, out, QueryPlannerParams::PRIVATE_IS_COUNT);
    }

    //
    // Distinct hack
    //

    /**
     * If possible, turn the provided QuerySolution into a QuerySolution that uses a DistinctNode
     * to provide results for the distinct command.
     *
     * If the provided solution could be mutated successfully, returns true, otherwise returns
     * false.
     */
    bool turnIxscanIntoDistinctIxscan(QuerySolution* soln, const string& field) {
        QuerySolutionNode* root = soln->root.get();

        // We're looking for a project on top of an ixscan.
        if (STAGE_PROJECTION == root->getType() && (STAGE_IXSCAN == root->children[0]->getType())) {
            IndexScanNode* isn = static_cast<IndexScanNode*>(root->children[0]);

            // An additional filter must be applied to the data in the key, so we can't just skip
            // all the keys with a given value; we must examine every one to find the one that (may)
            // pass the filter.
            if (NULL != isn->filter.get()) {
                return false;
            }

            // We only set this when we have special query modifiers (.max() or .min()) or other
            // special cases.  Don't want to handle the interactions between those and distinct.
            // Don't think this will ever really be true but if it somehow is, just ignore this
            // soln.
            if (isn->bounds.isSimpleRange) {
                return false;
            }

            // Make a new DistinctNode.  We swap this for the ixscan in the provided solution.
            DistinctNode* dn = new DistinctNode();
            dn->indexKeyPattern = isn->indexKeyPattern;
            dn->direction = isn->direction;
            dn->bounds = isn->bounds;

            // Figure out which field we're skipping to the next value of.  TODO: We currently only
            // try to distinct-hack when there is an index prefixed by the field we're distinct-ing
            // over.  Consider removing this code if we stick with that policy.
            dn->fieldNo = 0;
            BSONObjIterator it(isn->indexKeyPattern);
            while (it.more()) {
                if (field == it.next().fieldName()) {
                    break;
                }
                dn->fieldNo++;
            }

            // Delete the old index scan, set the child of project to the fast distinct scan.
            delete root->children[0];
            root->children[0] = dn;
            return true;
        }

        return false;
    }

    Status getRunnerDistinct(Collection* collection,
                             const BSONObj& query,
                             const string& field,
                             Runner** out) {
        // This should'a been checked by the distinct command.
        verify(collection);

        // TODO: check for idhack here?

        // When can we do a fast distinct hack?
        // 1. There is a plan with just one leaf and that leaf is an ixscan.
        // 2. The ixscan indexes the field we're interested in.
        // 2a: We are correct if the index contains the field but for now we look for prefix.
        // 3. The query is covered/no fetch.
        //
        // We go through normal planning (with limited parameters) to see if we can produce
        // a soln with the above properties.

        QueryPlannerParams plannerParams;
        plannerParams.options = QueryPlannerParams::NO_TABLE_SCAN;

        IndexCatalog::IndexIterator ii = collection->getIndexCatalog()->getIndexIterator(false);
        while (ii.more()) {
            const IndexDescriptor* desc = ii.next();
            // The distinct hack can work if any field is in the index but it's not always clear
            // if it's a win unless it's the first field.
            if (desc->keyPattern().firstElement().fieldName() == field) {
                plannerParams.indices.push_back(IndexEntry(desc->keyPattern(),
                                                           desc->getAccessMethodName(),
                                                           desc->isMultikey(),
                                                           desc->isSparse(),
                                                           desc->indexName(),
                                                           desc->infoObj()));
            }
        }

        const WhereCallbackReal whereCallback(collection->ns().db());

        // If there are no suitable indices for the distinct hack bail out now into regular planning
        // with no projection.
        if (plannerParams.indices.empty()) {
            CanonicalQuery* cq;
            Status status = CanonicalQuery::canonicalize(
                                collection->ns().ns(), query, &cq, whereCallback);
            if (!status.isOK()) {
                return status;
            }

            // Takes ownership of cq.
            return getRunner(collection, cq, out);
        }

        //
        // If we're here, we have an index prefixed by the field we're distinct-ing over.
        //

        // Applying a projection allows the planner to try to give us covered plans that we can turn
        // into the projection hack.  getDistinctProjection deals with .find() projection semantics
        // (ie _id:1 being implied by default).
        BSONObj projection = getDistinctProjection(field);

        // Apply a projection of the key.  Empty BSONObj() is for the sort.
        CanonicalQuery* cq;
        Status status = CanonicalQuery::canonicalize(collection->ns().ns(),
                                                     query,
                                                     BSONObj(),
                                                     projection,
                                                     &cq,
                                                     whereCallback);
        if (!status.isOK()) {
            return status;
        }

        // If there's no query, we can just distinct-scan one of the indices.
        // Not every index in plannerParams.indices may be suitable. Refer to
        // getDistinctNodeIndex().
        size_t distinctNodeIndex = 0;
        if (query.isEmpty() &&
            getDistinctNodeIndex(plannerParams.indices, field, &distinctNodeIndex)) {
            DistinctNode* dn = new DistinctNode();
            dn->indexKeyPattern = plannerParams.indices[distinctNodeIndex].keyPattern;
            dn->direction = 1;
            IndexBoundsBuilder::allValuesBounds(dn->indexKeyPattern, &dn->bounds);
            dn->fieldNo = 0;

            QueryPlannerParams params;

            // Takes ownership of 'dn'.
            QuerySolution* soln = QueryPlannerAnalysis::analyzeDataAccess(*cq, params, dn);
            verify(soln);

            LOG(2) << "Using fast distinct: " << cq->toStringShort()
                   << ", planSummary: " << getPlanSummary(*soln);

            WorkingSet* ws;
            PlanStage* root;
            verify(StageBuilder::build(collection, *soln, &root, &ws));
            *out = new SingleSolutionRunner(collection, cq, soln, root, ws);
            return Status::OK();
        }

        // See if we can answer the query in a fast-distinct compatible fashion.
        vector<QuerySolution*> solutions;
        status = QueryPlanner::plan(*cq, plannerParams, &solutions);
        if (!status.isOK()) {
            return getRunner(collection, cq, out);
        }

        // We look for a solution that has an ixscan we can turn into a distinctixscan
        for (size_t i = 0; i < solutions.size(); ++i) {
            if (turnIxscanIntoDistinctIxscan(solutions[i], field)) {
                // Great, we can use solutions[i].  Clean up the other QuerySolution(s).
                for (size_t j = 0; j < solutions.size(); ++j) {
                    if (j != i) {
                        delete solutions[j];
                    }
                }

                LOG(2) << "Using fast distinct: " << cq->toStringShort()
                       << ", planSummary: " << getPlanSummary(*solutions[i]);

                // Build and return the SSR over solutions[i].
                WorkingSet* ws;
                PlanStage* root;
                verify(StageBuilder::build(collection, *solutions[i], &root, &ws));
                *out = new SingleSolutionRunner(collection, cq, solutions[i], root, ws);
                return Status::OK();
            }
        }

        // If we're here, the planner made a soln with the restricted index set but we couldn't
        // translate any of them into a distinct-compatible soln.  So, delete the solutions and just
        // go through normal planning.
        for (size_t i = 0; i < solutions.size(); ++i) {
            delete solutions[i];
        }

        // We drop the projection from the 'cq'.  Unfortunately this is not trivial.
        delete cq;
        status = CanonicalQuery::canonicalize(collection->ns().ns(), query, &cq, whereCallback);
        if (!status.isOK()) {
            return status;
        }

        // Takes ownership of cq.
        return getRunner(collection, cq, out);
    }

    ScopedRunnerRegistration::ScopedRunnerRegistration(Runner* runner)
        : _runner(runner) {
        // Collection can be null for EOFRunner, or other places where registration is not needed
        if ( _runner->collection() )
            _runner->collection()->cursorCache()->registerRunner( runner );
    }

    ScopedRunnerRegistration::~ScopedRunnerRegistration() {
        if ( _runner->collection() )
            _runner->collection()->cursorCache()->deregisterRunner( _runner );
    }

}  // namespace mongo