summaryrefslogtreecommitdiff
path: root/src/mongo/db/query/optimizer/cascades/logical_rewriter.cpp
blob: 01f2bc84c77dfb8748a2d445660406b2576ddbe4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
/**
 *    Copyright (C) 2022-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#include "mongo/db/query/optimizer/cascades/logical_rewriter.h"

#include "mongo/db/query/optimizer/cascades/rewriter_rules.h"
#include "mongo/db/query/optimizer/reference_tracker.h"
#include "mongo/db/query/optimizer/utils/path_utils.h"
#include "mongo/db/query/optimizer/utils/reftracker_utils.h"


namespace mongo::optimizer::cascades {

LogicalRewriter::RewriteSet LogicalRewriter::_explorationSet = {
    {LogicalRewriteType::GroupByExplore, 1},
    {LogicalRewriteType::SargableSplit, 2},
    {LogicalRewriteType::FilterRIDIntersectReorder, 2},
    {LogicalRewriteType::EvaluationRIDIntersectReorder, 2}};

LogicalRewriter::RewriteSet LogicalRewriter::_substitutionSet = {
    {LogicalRewriteType::FilterEvaluationReorder, 1},
    {LogicalRewriteType::FilterCollationReorder, 1},
    {LogicalRewriteType::EvaluationCollationReorder, 1},
    {LogicalRewriteType::EvaluationLimitSkipReorder, 1},

    {LogicalRewriteType::FilterGroupByReorder, 1},
    {LogicalRewriteType::GroupCollationReorder, 1},

    {LogicalRewriteType::FilterUnwindReorder, 1},
    {LogicalRewriteType::EvaluationUnwindReorder, 1},
    {LogicalRewriteType::UnwindCollationReorder, 1},

    {LogicalRewriteType::FilterExchangeReorder, 1},
    {LogicalRewriteType::ExchangeEvaluationReorder, 1},

    {LogicalRewriteType::FilterUnionReorder, 1},

    {LogicalRewriteType::CollationMerge, 1},
    {LogicalRewriteType::LimitSkipMerge, 1},

    {LogicalRewriteType::SargableFilterReorder, 1},
    {LogicalRewriteType::SargableEvaluationReorder, 1},

    {LogicalRewriteType::FilterValueScanPropagate, 1},
    {LogicalRewriteType::EvaluationValueScanPropagate, 1},
    {LogicalRewriteType::SargableValueScanPropagate, 1},
    {LogicalRewriteType::CollationValueScanPropagate, 1},
    {LogicalRewriteType::LimitSkipValueScanPropagate, 1},
    {LogicalRewriteType::ExchangeValueScanPropagate, 1},

    {LogicalRewriteType::LimitSkipSubstitute, 1},

    {LogicalRewriteType::FilterSubstitute, 2},
    {LogicalRewriteType::EvaluationSubstitute, 2},
    {LogicalRewriteType::SargableMerge, 2}};

LogicalRewriter::LogicalRewriter(const Metadata& metadata,
                                 Memo& memo,
                                 PrefixId& prefixId,
                                 const RewriteSet rewriteSet,
                                 const DebugInfo& debugInfo,
                                 const QueryHints& hints,
                                 const PathToIntervalFn& pathToInterval,
                                 const ConstFoldFn& constFold,
                                 const LogicalPropsInterface& logicalPropsDerivation,
                                 const CardinalityEstimator& cardinalityEstimator)
    : _activeRewriteSet(std::move(rewriteSet)),
      _groupsPending(),
      _metadata(metadata),
      _memo(memo),
      _prefixId(prefixId),
      _debugInfo(debugInfo),
      _hints(hints),
      _pathToInterval(pathToInterval),
      _constFold(constFold),
      _logicalPropsDerivation(logicalPropsDerivation),
      _cardinalityEstimator(cardinalityEstimator) {
    initializeRewrites();

    if (_activeRewriteSet.count(LogicalRewriteType::SargableSplit) > 0) {
        // If we are performing SargableSplit exploration rewrite, populate helper map.
        for (const auto& [scanDefName, scanDef] : _metadata._scanDefs) {
            for (const auto& [indexDefName, indexDef] : scanDef.getIndexDefs()) {
                for (const IndexCollationEntry& entry : indexDef.getCollationSpec()) {
                    if (auto pathPtr = entry._path.cast<PathGet>(); pathPtr != nullptr) {
                        _indexFieldPrefixMap[scanDefName].insert(pathPtr->name());
                    }
                }
            }
        }
    }
}

GroupIdType LogicalRewriter::addRootNode(const ABT& node) {
    return addNode(node, -1, LogicalRewriteType::Root, false /*addExistingNodeWithNewChild*/).first;
}

std::pair<GroupIdType, NodeIdSet> LogicalRewriter::addNode(const ABT& node,
                                                           const GroupIdType targetGroupId,
                                                           const LogicalRewriteType rule,
                                                           const bool addExistingNodeWithNewChild) {
    NodeIdSet insertNodeIds;

    Memo::NodeTargetGroupMap targetGroupMap;
    if (targetGroupId >= 0) {
        targetGroupMap = {{node.ref(), targetGroupId}};
    }

    const GroupIdType resultGroupId = _memo.integrate(
        Memo::Context{&_metadata, &_debugInfo, &_logicalPropsDerivation, &_cardinalityEstimator},
        node,
        std::move(targetGroupMap),
        insertNodeIds,
        rule,
        addExistingNodeWithNewChild);

    uassert(6624046,
            "Result group is not the same as target group",
            targetGroupId < 0 || targetGroupId == resultGroupId);

    for (const MemoLogicalNodeId& nodeMemoId : insertNodeIds) {
        if (addExistingNodeWithNewChild && nodeMemoId._groupId == targetGroupId) {
            continue;
        }

        for (const auto [type, priority] : _activeRewriteSet) {
            auto& groupQueue = _memo.getLogicalRewriteQueue(nodeMemoId._groupId);
            groupQueue.push(std::make_unique<LogicalRewriteEntry>(priority, type, nodeMemoId));

            _groupsPending.insert(nodeMemoId._groupId);
        }
    }

    return {resultGroupId, std::move(insertNodeIds)};
}

void LogicalRewriter::clearGroup(const GroupIdType groupId) {
    _memo.clearLogicalNodes(groupId);
}

class RewriteContext {
public:
    RewriteContext(LogicalRewriter& rewriter,
                   const LogicalRewriteType rule,
                   const MemoLogicalNodeId aboveNodeId,
                   const MemoLogicalNodeId belowNodeId)
        : RewriteContext(rewriter, rule, aboveNodeId, true /*hasBelowNodeId*/, belowNodeId){};

    RewriteContext(LogicalRewriter& rewriter,
                   const LogicalRewriteType rule,
                   const MemoLogicalNodeId aboveNodeId)
        : RewriteContext(rewriter, rule, aboveNodeId, false /*hasBelowNodeId*/, {}){};

    std::pair<GroupIdType, NodeIdSet> addNode(const ABT& node,
                                              const bool substitute,
                                              const bool addExistingNodeWithNewChild = false) {
        if (substitute) {
            uassert(6624110, "Cannot substitute twice", !_hasSubstituted);
            _hasSubstituted = true;

            _rewriter.clearGroup(_aboveNodeId._groupId);
            if (_hasBelowNodeId) {
                _rewriter.clearGroup(_belowNodeId._groupId);
            }
        }
        return _rewriter.addNode(node, _aboveNodeId._groupId, _rule, addExistingNodeWithNewChild);
    }

    Memo& getMemo() const {
        return _rewriter._memo;
    }

    const Metadata& getMetadata() const {
        return _rewriter._metadata;
    }

    PrefixId& getPrefixId() const {
        return _rewriter._prefixId;
    }

    const QueryHints& getHints() const {
        return _rewriter._hints;
    }

    auto& getIndexFieldPrefixMap() const {
        return _rewriter._indexFieldPrefixMap;
    }

    const properties::LogicalProps& getAboveLogicalProps() const {
        return getMemo().getLogicalProps(_aboveNodeId._groupId);
    }

    bool hasSubstituted() const {
        return _hasSubstituted;
    }

    MemoLogicalNodeId getAboveNodeId() const {
        return _aboveNodeId;
    }

    auto& getSargableSplitCountMap() const {
        return _rewriter._sargableSplitCountMap;
    }

    const auto& getPathToInterval() const {
        return _rewriter._pathToInterval;
    }

    const auto& getConstFold() const {
        return _rewriter._constFold;
    }

private:
    RewriteContext(LogicalRewriter& rewriter,
                   const LogicalRewriteType rule,
                   const MemoLogicalNodeId aboveNodeId,
                   const bool hasBelowNodeId,
                   const MemoLogicalNodeId belowNodeId)
        : _aboveNodeId(aboveNodeId),
          _hasBelowNodeId(hasBelowNodeId),
          _belowNodeId(belowNodeId),
          _rewriter(rewriter),
          _hasSubstituted(false),
          _rule(rule){};

    const MemoLogicalNodeId _aboveNodeId;
    const bool _hasBelowNodeId;
    const MemoLogicalNodeId _belowNodeId;

    // We don't own this.
    LogicalRewriter& _rewriter;

    bool _hasSubstituted;

    const LogicalRewriteType _rule;
};

struct ReorderDependencies {
    bool _hasNodeRef = false;
    bool _hasChildRef = false;
    bool _hasNodeAndChildRef = false;
};

template <class AboveType,
          class BelowType,
          template <class> class BelowChildAccessor = DefaultChildAccessor>
ReorderDependencies computeDependencies(ABT::reference_type aboveNodeRef,
                                        ABT::reference_type belowNodeRef,
                                        RewriteContext& ctx) {
    // Get variables from above node and check if they are bound at below node, or at below node's
    // child.
    const auto aboveNodeVarNames = collectVariableReferences(aboveNodeRef);

    ABT belowNode = belowNodeRef;
    VariableEnvironment env = VariableEnvironment::build(belowNode, &ctx.getMemo());
    const DefinitionsMap belowNodeDefs = env.hasDefinitions(belowNode.ref())
        ? env.getDefinitions(belowNode.ref())
        : DefinitionsMap{};
    ABT::reference_type belowChild = BelowChildAccessor<BelowType>()(belowNode).ref();
    const DefinitionsMap belowChildNodeDefs =
        env.hasDefinitions(belowChild) ? env.getDefinitions(belowChild) : DefinitionsMap{};

    ReorderDependencies dependencies;
    for (const ProjectionName& varName : aboveNodeVarNames) {
        auto it = belowNodeDefs.find(varName);
        // Variable is exclusively defined in the below node.
        const bool refersToNode = it != belowNodeDefs.cend() && it->second.definedBy == belowNode;
        // Variable is defined in the belowNode's child subtree.
        const bool refersToChild = belowChildNodeDefs.find(varName) != belowChildNodeDefs.cend();

        if (refersToNode) {
            if (refersToChild) {
                dependencies._hasNodeAndChildRef = true;
            } else {
                dependencies._hasNodeRef = true;
            }
        } else if (refersToChild) {
            dependencies._hasChildRef = true;
        } else {
            // Lambda variable. Ignore.
        }
    }

    return dependencies;
}

static ABT createEmptyValueScanNode(const RewriteContext& ctx) {
    using namespace properties;

    const ProjectionNameSet& projNameSet =
        getPropertyConst<ProjectionAvailability>(ctx.getAboveLogicalProps()).getProjections();
    ProjectionNameVector projNameVector;
    projNameVector.insert(projNameVector.begin(), projNameSet.cbegin(), projNameSet.cend());
    return make<ValueScanNode>(std::move(projNameVector), ctx.getAboveLogicalProps());
}

static void addEmptyValueScanNode(RewriteContext& ctx) {
    ABT newNode = createEmptyValueScanNode(ctx);
    ctx.addNode(newNode, true /*substitute*/);
}

static void defaultPropagateEmptyValueScanNode(const ABT& n, RewriteContext& ctx) {
    if (n.cast<ValueScanNode>()->getArraySize() == 0) {
        addEmptyValueScanNode(ctx);
    }
}

template <class AboveType,
          class BelowType,
          template <class> class AboveChildAccessor = DefaultChildAccessor,
          template <class> class BelowChildAccessor = DefaultChildAccessor,
          bool substitute = true>
void defaultReorder(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) {
    ABT newParent = belowNode;
    ABT newChild = aboveNode;

    std::swap(BelowChildAccessor<BelowType>()(newParent),
              AboveChildAccessor<AboveType>()(newChild));
    BelowChildAccessor<BelowType>()(newParent) = std::move(newChild);

    ctx.addNode(newParent, substitute);
}

template <class AboveType, class BelowType>
void defaultReorderWithDependenceCheck(ABT::reference_type aboveNode,
                                       ABT::reference_type belowNode,
                                       RewriteContext& ctx) {
    const ReorderDependencies dependencies =
        computeDependencies<AboveType, BelowType>(aboveNode, belowNode, ctx);
    if (dependencies._hasNodeRef) {
        // Above node refers to a variable bound by below node.
        return;
    }

    defaultReorder<AboveType, BelowType>(aboveNode, belowNode, ctx);
}

template <class AboveType, class BelowType>
struct SubstituteReorder {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const {
        defaultReorderWithDependenceCheck<AboveType, BelowType>(aboveNode, belowNode, ctx);
    }
};

template <>
struct SubstituteReorder<FilterNode, FilterNode> {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const {
        defaultReorder<FilterNode, FilterNode>(aboveNode, belowNode, ctx);
    }
};

template <>
struct SubstituteReorder<FilterNode, UnionNode> {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const {
        ABT newParent = belowNode;

        for (auto& childOfChild : newParent.cast<UnionNode>()->nodes()) {
            ABT aboveCopy = aboveNode;
            std::swap(aboveCopy.cast<FilterNode>()->getChild(), childOfChild);
            std::swap(childOfChild, aboveCopy);
        }

        ctx.addNode(newParent, true /*substitute*/);
    }
};

template <class AboveType>
void unwindBelowReorder(ABT::reference_type aboveNode,
                        ABT::reference_type unwindNode,
                        RewriteContext& ctx) {
    const ReorderDependencies dependencies =
        computeDependencies<AboveType, UnwindNode>(aboveNode, unwindNode, ctx);
    if (dependencies._hasNodeRef || dependencies._hasNodeAndChildRef) {
        // Above node refers to projection being unwound. Reject rewrite.
        return;
    }

    defaultReorder<AboveType, UnwindNode>(aboveNode, unwindNode, ctx);
}

template <>
struct SubstituteReorder<FilterNode, UnwindNode> {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const {
        unwindBelowReorder<FilterNode>(aboveNode, belowNode, ctx);
    }
};

template <>
struct SubstituteReorder<EvaluationNode, UnwindNode> {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const {
        unwindBelowReorder<EvaluationNode>(aboveNode, belowNode, ctx);
    }
};

template <>
struct SubstituteReorder<UnwindNode, CollationNode> {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const {
        const ProjectionNameSet& collationProjections =
            belowNode.cast<CollationNode>()->getProperty().getAffectedProjectionNames();
        if (collationProjections.find(aboveNode.cast<UnwindNode>()->getProjectionName()) !=
            collationProjections.cend()) {
            // A projection being affected by the collation is being unwound. Reject rewrite.
            return;
        }

        defaultReorder<UnwindNode, CollationNode>(aboveNode, belowNode, ctx);
    }
};

template <>
struct SubstituteReorder<FilterNode, ValueScanNode> {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const {
        defaultPropagateEmptyValueScanNode(belowNode, ctx);
    }
};

template <>
struct SubstituteReorder<EvaluationNode, ValueScanNode> {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const {
        defaultPropagateEmptyValueScanNode(belowNode, ctx);
    }
};

template <>
struct SubstituteReorder<SargableNode, ValueScanNode> {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const {
        defaultPropagateEmptyValueScanNode(belowNode, ctx);
    }
};

template <>
struct SubstituteReorder<CollationNode, ValueScanNode> {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const {
        defaultPropagateEmptyValueScanNode(belowNode, ctx);
    }
};

template <>
struct SubstituteReorder<LimitSkipNode, ValueScanNode> {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const {
        defaultPropagateEmptyValueScanNode(belowNode, ctx);
    }
};

template <>
struct SubstituteReorder<ExchangeNode, ValueScanNode> {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const {
        defaultPropagateEmptyValueScanNode(belowNode, ctx);
    }
};

template <class AboveType, class BelowType>
struct SubstituteMerge {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) = delete;
};

template <>
struct SubstituteMerge<CollationNode, CollationNode> {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const {
        ABT newRoot = aboveNode;
        // Retain above property.
        newRoot.cast<CollationNode>()->getChild() = belowNode.cast<CollationNode>()->getChild();

        ctx.addNode(newRoot, true /*substitute*/);
    }
};

template <>
struct SubstituteMerge<LimitSkipNode, LimitSkipNode> {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const {
        using namespace properties;

        ABT newRoot = aboveNode;
        LimitSkipNode& aboveCollationNode = *newRoot.cast<LimitSkipNode>();
        const LimitSkipNode& belowCollationNode = *belowNode.cast<LimitSkipNode>();

        aboveCollationNode.getChild() = belowCollationNode.getChild();
        combineLimitSkipProperties(aboveCollationNode.getProperty(),
                                   belowCollationNode.getProperty());

        ctx.addNode(newRoot, true /*substitute*/);
    }
};

static boost::optional<ABT> mergeSargableNodes(
    const properties::IndexingAvailability& indexingAvailability,
    const MultikeynessTrie& multikeynessTrie,
    const SargableNode& aboveNode,
    const SargableNode& belowNode,
    RewriteContext& ctx) {
    if (indexingAvailability.getScanGroupId() !=
        belowNode.getChild().cast<MemoLogicalDelegatorNode>()->getGroupId()) {
        // Do not merge if child is not another Sargable node, or the child's child is not a
        // ScanNode.
        return {};
    }

    PartialSchemaRequirements mergedReqs = belowNode.getReqMap();
    ProjectionRenames projectionRenames;
    if (!intersectPartialSchemaReq(mergedReqs, aboveNode.getReqMap(), projectionRenames)) {
        return {};
    }

    const ProjectionName& scanProjName = indexingAvailability.getScanProjection();
    bool hasEmptyInterval = simplifyPartialSchemaReqPaths(
        scanProjName, multikeynessTrie, mergedReqs, ctx.getConstFold());
    if (hasEmptyInterval) {
        return createEmptyValueScanNode(ctx);
    }

    if (mergedReqs.numLeaves() > SargableNode::kMaxPartialSchemaReqs) {
        return {};
    }

    const ScanDefinition& scanDef =
        ctx.getMetadata()._scanDefs.at(indexingAvailability.getScanDefName());
    auto candidateIndexes = computeCandidateIndexes(ctx.getPrefixId(),
                                                    scanProjName,
                                                    mergedReqs,
                                                    scanDef,
                                                    ctx.getHints(),
                                                    hasEmptyInterval,
                                                    ctx.getConstFold());
    if (hasEmptyInterval) {
        return createEmptyValueScanNode(ctx);
    }

    auto scanParams = computeScanParams(ctx.getPrefixId(), mergedReqs, scanProjName);
    ABT result = make<SargableNode>(std::move(mergedReqs),
                                    std::move(candidateIndexes),
                                    std::move(scanParams),
                                    IndexReqTarget::Complete,
                                    belowNode.getChild());
    applyProjectionRenames(std::move(projectionRenames), result);
    return result;
}

template <>
struct SubstituteMerge<SargableNode, SargableNode> {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const {
        using namespace properties;

        const LogicalProps& props = ctx.getAboveLogicalProps();
        tassert(6624170,
                "At this point we should have IndexingAvailability",
                hasProperty<IndexingAvailability>(props));

        const auto& indexingAvailability = getPropertyConst<IndexingAvailability>(props);
        const ScanDefinition& scanDef =
            ctx.getMetadata()._scanDefs.at(indexingAvailability.getScanDefName());
        tassert(6624171, "At this point the collection must exist", scanDef.exists());

        const auto& result = mergeSargableNodes(indexingAvailability,
                                                scanDef.getMultikeynessTrie(),
                                                *aboveNode.cast<SargableNode>(),
                                                *belowNode.cast<SargableNode>(),
                                                ctx);
        if (result) {
            ctx.addNode(*result, true /*substitute*/);
        }
    }
};

template <class Type>
struct SubstituteConvert {
    void operator()(ABT::reference_type nodeRef, RewriteContext& ctx) = delete;
};

template <>
struct SubstituteConvert<LimitSkipNode> {
    void operator()(ABT::reference_type node, RewriteContext& ctx) {
        if (node.cast<LimitSkipNode>()->getProperty().getLimit() == 0) {
            addEmptyValueScanNode(ctx);
        }
    }
};

static void convertFilterToSargableNode(ABT::reference_type node,
                                        const FilterNode& filterNode,
                                        RewriteContext& ctx,
                                        const ProjectionName& scanProjName) {
    using namespace properties;

    const LogicalProps& props = ctx.getAboveLogicalProps();
    if (!hasProperty<IndexingAvailability>(props)) {
        // Can only convert to sargable node if we have indexing availability.
        return;
    }
    const auto& indexingAvailability = getPropertyConst<IndexingAvailability>(props);
    const ScanDefinition& scanDef =
        ctx.getMetadata()._scanDefs.at(indexingAvailability.getScanDefName());
    if (!scanDef.exists()) {
        // Do not attempt to optimize for non-existing collections.
        return;
    }

    auto conversion = convertExprToPartialSchemaReq(
        filterNode.getFilter(), true /*isFilterContext*/, ctx.getPathToInterval());
    if (!conversion) {
        return;
    }

    // Remove any partial schema requirements which do not constrain their input.

    conversion->_reqMap.simplify([](const PartialSchemaKey& key, PartialSchemaRequirement& req) {
        uassert(6624111,
                "Filter partial schema requirement must contain a variable name.",
                key._projectionName);
        uassert(6624112,
                "Filter partial schema requirement cannot bind.",
                !req.getBoundProjectionName());
        return true;
    });

    if (conversion->_reqMap.empty()) {
        // If the filter has no constraints after removing no-ops, then replace with its child. We
        // need to copy the child since we hold it by reference from the memo, and during
        // subtitution the current group will be erased.

        ABT newNode = filterNode.getChild();
        ctx.addNode(newNode, true /*substitute*/);
        return;
    }

    bool hasEmptyInterval = simplifyPartialSchemaReqPaths(
        scanProjName, scanDef.getMultikeynessTrie(), conversion->_reqMap, ctx.getConstFold());
    if (hasEmptyInterval) {
        addEmptyValueScanNode(ctx);
        return;
    }
    if (conversion->_reqMap.numLeaves() > SargableNode::kMaxPartialSchemaReqs) {
        // Too many requirements.
        return;
    }

    auto candidateIndexes = computeCandidateIndexes(ctx.getPrefixId(),
                                                    scanProjName,
                                                    conversion->_reqMap,
                                                    scanDef,
                                                    ctx.getHints(),
                                                    hasEmptyInterval,
                                                    ctx.getConstFold());

    if (hasEmptyInterval) {
        addEmptyValueScanNode(ctx);
        return;
    }

    auto scanParams = computeScanParams(ctx.getPrefixId(), conversion->_reqMap, scanProjName);
    ABT sargableNode = make<SargableNode>(std::move(conversion->_reqMap),
                                          std::move(candidateIndexes),
                                          std::move(scanParams),
                                          IndexReqTarget::Complete,
                                          filterNode.getChild());
    if (conversion->_retainPredicate) {
        ABT newNode = node;
        newNode.cast<FilterNode>()->getChild() = std::move(sargableNode);
        ctx.addNode(newNode, true /*substitute*/, true /*addExistingNodeWithNewChild*/);
    } else {
        ctx.addNode(sargableNode, true /*substitute*/);
    }
}

/**
 * Takes an expression or path and attempts to remove Not nodes by pushing them
 * down toward the leaves. We only remove a Not if we can combine it into a
 * PathCompare, or cancel it out with another Not.
 *
 * Caller provides:
 * - an input ABT
 * - 'negate': true if we want the new ABT to be the negation of the input.
 *
 * Callee can reply with either:
 * - boost::none, meaning we can't make the ABT any simpler.
 * - struct Simplified, which means we can make the ABT simpler.
 *     - 'newNode' is the replacement.
 *     - 'negated' says whether 'newNode' is the negation of the original.
 *       For example, we can simplify the child of Traverse but not push
 *       a Not through it.
 */
class NotPushdown {
public:
    struct Simplified {
        // True if 'newNode' is the negation of the original node.
        bool negated;
        ABT newNode;
    };
    using Result = boost::optional<Simplified>;

    Result operator()(const ABT& /*n*/, const PathGet& get, const bool negate) {
        if (auto simplified = get.getPath().visit(*this, negate)) {
            return {
                {simplified->negated, make<PathGet>(get.name(), std::move(simplified->newNode))}};
        }
        return {};
    }

    Result operator()(const ABT& /*n*/, const PathCompare& comp, const bool negate) {
        if (!negate) {
            // No rewrite necessary.
            return {};
        }

        if (auto op = negateComparisonOp(comp.op())) {
            return {{true, make<PathCompare>(*op, comp.getVal())}};
        }
        return {};
    }

    Result operator()(const ABT& /*n*/, const UnaryOp& unary, const bool negate) {
        // Only handle Not.
        if (unary.op() != Operations::Not) {
            return {};
        }

        const bool negateChild = !negate;
        if (auto simplified = unary.getChild().visit(*this, negateChild)) {
            // Remove the 'Not' if either:
            // - it can cancel with a Not in some ancestor ('negate')
            // - it can cancel with a Not in the child ('simplified->negated')
            // The 'either' is exclusive because the child is only 'negated' if we
            // requested it ('negateChild').
            const bool removeNot = negate || simplified->negated;
            if (removeNot) {
                // We cancelled with a Not in some ancestor iff the caller asked us to.
                simplified->negated = negate;
            } else {
                simplified->newNode =
                    make<UnaryOp>(Operations::Not, std::move(simplified->newNode));
            }
            return simplified;
        } else {
            // We failed to simplify the child.
            if (negate) {
                // But we can still simplify 'n' by unwrapping the 'Not'.
                return {{true, unary.getChild()}};
            } else {
                // Therefore we failed to simplify 'n'.
                return {};
            }
        }
    }

    Result operator()(const ABT& /*n*/, const PathLambda& pathLambda, const bool negate) {
        const LambdaAbstraction* lambda = pathLambda.getLambda().cast<LambdaAbstraction>();
        if (!lambda) {
            // Shouldn't happen; just don't simplify.
            return {};
        }

        // Try to simplify the lambda body.
        // If that succeeds, it may expose 'PathLambda Lambda [x] EvalFilter p (Variable [x])',
        // which we can simplify to just 'p'. That's only valid if the Variable [x] is the
        // only occurrence of 'x'.

        if (auto simplified = lambda->getBody().visit(*this, negate)) {
            auto&& [negated, newBody] = std::move(*simplified);
            // If the lambda var is used only once, simplifying the body may have exposed
            // 'PathLambda Lambda [x] EvalFilter p (Variable [x])', which we can replace
            // with just 'p'.
            if (auto iter = _varCounts.find(lambda->varName());
                iter != _varCounts.end() && iter->second == 1) {
                if (EvalFilter* evalF = newBody.cast<EvalFilter>()) {
                    if (Variable* input = evalF->getInput().cast<Variable>();
                        input && input->name() == lambda->varName()) {
                        return {{negated, std::exchange(evalF->getPath(), make<Blackhole>())}};
                    }
                }
            }
            return {{
                negated,
                make<PathLambda>(make<LambdaAbstraction>(lambda->varName(), std::move(newBody))),
            }};
        }
        return {};
    }

    Result operator()(const ABT& /*n*/, const PathTraverse& traverse, bool /*negate*/) {
        // We actually don't care whether the caller is asking us to negate.
        // We can't negate a Traverse; the best we can do is simplify the child.
        if (auto simplified = traverse.getPath().visit(*this, false /*negate*/)) {
            tassert(7022400,
                    "NotPushdown unexpectedly negated when asked only to simplify",
                    !simplified->negated);
            simplified->newNode =
                make<PathTraverse>(traverse.getMaxDepth(), std::move(simplified->newNode));
            return simplified;
        } else {
            return {};
        }
    }

    Result operator()(const ABT& /*n*/, const PathComposeM& compose, const bool negate) {
        auto simplified1 = compose.getPath1().visit(*this, negate);
        auto simplified2 = compose.getPath2().visit(*this, negate);
        if (!simplified1 && !simplified2) {
            // Neither child is simplified.
            return {};
        }
        // At least one child is simplified, so we're going to rebuild a node.
        // If either child was not simplified, we're going to copy the original
        // unsimplified child.
        if (!simplified1) {
            simplified1 = {{false, compose.getPath1()}};
        }
        if (!simplified2) {
            simplified2 = {{false, compose.getPath2()}};
        }

        if (!simplified1->negated && !simplified2->negated) {
            // Neither is negated: keep the ComposeM.
            return {{false,
                     make<PathComposeM>(std::move(simplified1->newNode),
                                        std::move(simplified2->newNode))}};
        }
        // At least one child is negated, so we're going to rewrite to ComposeA.
        // If either child was not able to aborb a Not, we'll add an explicit Not to its root.
        if (!simplified1->negated) {
            simplified1 = {{true, negatePath(std::move(simplified1->newNode))}};
        }
        if (!simplified2->negated) {
            simplified2 = {{true, negatePath(std::move(simplified2->newNode))}};
        }
        return {
            {true,
             make<PathComposeA>(std::move(simplified1->newNode), std::move(simplified2->newNode))}};
    }

    Result operator()(const ABT& /*n*/, const EvalFilter& evalF, const bool negate) {
        if (auto simplified = evalF.getPath().visit(*this, negate)) {
            simplified->newNode =
                make<EvalFilter>(std::move(simplified->newNode), evalF.getInput());
            return simplified;
        }
        return {};
    }

    template <typename T>
    Result operator()(const ABT& /*n*/, const T& /*nodeSubclass*/, bool /*negate*/) {
        // We don't know how to simplify this node.
        return {};
    }

    static boost::optional<ABT> simplify(const ABT& n, PrefixId& prefixId) {
        ProjectionNameMap<size_t> varCounts;
        VariableEnvironment::walkVariables(n,
                                           [&](const Variable& var) { ++varCounts[var.name()]; });


        NotPushdown instance{varCounts, prefixId};
        if (auto simplified = n.visit(instance, false /*negate*/)) {
            auto&& [negated, newNode] = std::move(*simplified);
            tassert(7022401,
                    "NotPushdown unexpectedly negated when asked only to simplify",
                    !simplified->negated);
            return newNode;
        }
        return {};
    }

private:
    NotPushdown(const ProjectionNameMap<size_t>& varCounts, PrefixId& prefixId)
        : _varCounts(varCounts), _prefixId(prefixId) {}

    // Take a Path and negate it.  Use Lambda / EvalFilter to toggle between expressions and paths.
    ABT negatePath(ABT path) {
        ProjectionName freshVar = _prefixId.getNextId("tmp_bool");
        return make<PathLambda>(make<LambdaAbstraction>(
            freshVar,
            make<UnaryOp>(Operations::Not,
                          make<EvalFilter>(std::move(path), make<Variable>(freshVar)))));
    }

    const ProjectionNameMap<size_t>& _varCounts;
    PrefixId& _prefixId;
};

/**
 * Attempt to remove Traverse nodes from a FilterNode.
 *
 * If we succeed, add a replacement node to the RewriteContext and return true.
 */
static bool simplifyFilterPath(const FilterNode& filterNode,
                               RewriteContext& ctx,
                               const ProjectionName& scanProjName,
                               const MultikeynessTrie& trie) {
    // Expect the filter to be EvalFilter, or UnaryOp [Not] EvalFilter.
    const ABT& filter = filterNode.getFilter();
    const bool toplevelNot =
        filter.is<UnaryOp>() && filter.cast<UnaryOp>()->op() == Operations::Not;
    const ABT& argument = toplevelNot ? filter.cast<UnaryOp>()->getChild() : filter;
    if (const auto* evalFilter = argument.cast<EvalFilter>()) {
        if (const auto* variable = evalFilter->getInput().cast<Variable>()) {
            // If EvalFilter is applied to the whole-document binding then
            // we can simplify the path using what we know about the multikeyness
            // of the collection.
            if (variable->name() != scanProjName) {
                return false;
            }

            ABT path = evalFilter->getPath();
            if (simplifyTraverseNonArray(path, trie)) {
                ABT newPredicate = make<EvalFilter>(std::move(path), evalFilter->getInput());
                if (toplevelNot) {
                    newPredicate = make<UnaryOp>(Operations::Not, std::move(newPredicate));
                }
                ctx.addNode(make<FilterNode>(std::move(newPredicate), filterNode.getChild()),
                            true /*substitute*/);
                return true;
            }
        }
    }

    return false;
}

template <>
struct SubstituteConvert<FilterNode> {
    void operator()(ABT::reference_type node, RewriteContext& ctx) {
        const FilterNode& filterNode = *node.cast<FilterNode>();

        // Sub-rewrite: attempt to de-compose filter into at least two new filter nodes.
        if (auto* evalFilter = filterNode.getFilter().cast<EvalFilter>()) {
            if (auto result = decomposeToFilterNodes(filterNode.getChild(),
                                                     evalFilter->getPath(),
                                                     evalFilter->getInput(),
                                                     2 /*minDepth*/)) {
                ctx.addNode(*result, true /*substitute*/);
                return;
            }
        }


        using namespace properties;
        const LogicalProps& props = ctx.getAboveLogicalProps();
        if (!hasProperty<IndexingAvailability>(props)) {
            return;
        }
        const auto& indexingAvailability = getPropertyConst<IndexingAvailability>(props);
        const ProjectionName& scanProjName = indexingAvailability.getScanProjection();

        const ScanDefinition& scanDef =
            ctx.getMetadata()._scanDefs.at(indexingAvailability.getScanDefName());
        if (!scanDef.exists()) {
            return;
        }
        const MultikeynessTrie& trie = scanDef.getMultikeynessTrie();

        if (simplifyFilterPath(filterNode, ctx, scanProjName, trie)) {
            return;
        }

        if (auto filter = NotPushdown::simplify(filterNode.getFilter(), ctx.getPrefixId())) {
            ctx.addNode(make<FilterNode>(std::move(*filter), filterNode.getChild()),
                        true /*substitute*/);
            return;
        }

        convertFilterToSargableNode(node, filterNode, ctx, scanProjName);
    }
};

template <>
struct SubstituteConvert<EvaluationNode> {
    void operator()(ABT::reference_type node, RewriteContext& ctx) {
        using namespace properties;

        const LogicalProps props = ctx.getAboveLogicalProps();
        if (!hasProperty<IndexingAvailability>(props)) {
            // Can only convert to sargable node if we have indexing availability.
            return;
        }

        const auto& indexingAvailability = getPropertyConst<IndexingAvailability>(props);
        const ProjectionName& scanProjName = indexingAvailability.getScanProjection();

        const ScanDefinition& scanDef =
            ctx.getMetadata()._scanDefs.at(indexingAvailability.getScanDefName());
        if (!scanDef.exists()) {
            // Do not attempt to optimize for non-existing collections.
            return;
        }

        const EvaluationNode& evalNode = *node.cast<EvaluationNode>();

        // Sub-rewrite: attempt to convert Keep to a chain of individual evaluations.
        // TODO: consider using a standalone rewrite.
        if (auto evalPathPtr = evalNode.getProjection().cast<EvalPath>(); evalPathPtr != nullptr) {
            if (auto inputPtr = evalPathPtr->getInput().cast<Variable>();
                inputPtr != nullptr && inputPtr->name() == scanProjName) {
                if (auto pathKeepPtr = evalPathPtr->getPath().cast<PathKeep>();
                    pathKeepPtr != nullptr &&
                    pathKeepPtr->getNames().size() < SargableNode::kMaxPartialSchemaReqs) {
                    // Optimization. If we are retaining fields on the root level, generate
                    // EvalNodes with the intention of converting later to a SargableNode after
                    // reordering, in order to be able to cover the fields using a physical scan or
                    // index.

                    ABT result = evalNode.getChild();
                    ABT keepPath = make<PathIdentity>();

                    FieldNameOrderedSet orderedSet;
                    for (const FieldNameType& fieldName : pathKeepPtr->getNames()) {
                        orderedSet.insert(fieldName);
                    }
                    for (const FieldNameType& fieldName : orderedSet) {
                        ProjectionName projName{ctx.getPrefixId().getNextId("fieldProj")};
                        result = make<EvaluationNode>(
                            projName,
                            make<EvalPath>(make<PathGet>(fieldName, make<PathIdentity>()),
                                           evalPathPtr->getInput()),
                            std::move(result));

                        maybeComposePath(keepPath,
                                         make<PathField>(fieldName,
                                                         make<PathConstant>(
                                                             make<Variable>(std::move(projName)))));
                    }

                    result = make<EvaluationNode>(
                        evalNode.getProjectionName(),
                        make<EvalPath>(std::move(keepPath), Constant::emptyObject()),
                        std::move(result));
                    ctx.addNode(result, true /*substitute*/);
                    return;
                }
            }
        }

        // We still want to extract sargable nodes from EvalNode to use for PhysicalScans.
        auto conversion = convertExprToPartialSchemaReq(
            evalNode.getProjection(), false /*isFilterContext*/, ctx.getPathToInterval());
        if (!conversion) {
            return;
        }
        uassert(6624165,
                "Should not be getting retainPredicate set for EvalNodes",
                !conversion->_retainPredicate);
        if (conversion->_reqMap.numLeaves() != 1) {
            // For evaluation nodes we expect to create a single entry.
            return;
        }

        conversion->_reqMap.transform([&](const PartialSchemaKey& key,
                                          PartialSchemaRequirement& req) {
            req = {
                evalNode.getProjectionName(), std::move(req.getIntervals()), req.getIsPerfOnly()};

            uassert(6624114,
                    "Eval partial schema requirement must contain a variable name.",
                    key._projectionName);
            uassert(6624115,
                    "Eval partial schema requirement cannot have a range",
                    isIntervalReqFullyOpenDNF(req.getIntervals()));
        });

        bool hasEmptyInterval = false;
        auto candidateIndexes = computeCandidateIndexes(ctx.getPrefixId(),
                                                        scanProjName,
                                                        conversion->_reqMap,
                                                        scanDef,
                                                        ctx.getHints(),
                                                        hasEmptyInterval,
                                                        ctx.getConstFold());

        if (hasEmptyInterval) {
            addEmptyValueScanNode(ctx);
            return;
        }

        auto scanParams = computeScanParams(ctx.getPrefixId(), conversion->_reqMap, scanProjName);
        ABT newNode = make<SargableNode>(std::move(conversion->_reqMap),
                                         std::move(candidateIndexes),
                                         std::move(scanParams),
                                         IndexReqTarget::Complete,
                                         evalNode.getChild());
        ctx.addNode(newNode, true /*substitute*/);
    }
};

static void lowerSargableNode(const SargableNode& node, RewriteContext& ctx) {
    PhysPlanBuilder builder{node.getChild()};
    const auto& reqMap = node.getReqMap();
    for (const auto& [key, req] : reqMap.conjuncts()) {
        lowerPartialSchemaRequirement(
            key, req, ctx.getPathToInterval(), boost::none /*residualCE*/, builder);
    }
    ctx.addNode(builder._node, true /*clear*/);
}

template <class Type>
struct ExploreConvert {
    void operator()(ABT::reference_type nodeRef, RewriteContext& ctx) = delete;
};

struct SplitRequirementsResult {
    PartialSchemaRequirements _leftReqs;
    PartialSchemaRequirements _rightReqs;

    bool _hasFieldCoverage = true;
};

/**
 * Used to split requirements into left and right side. If "isIndex" is false, this is a separation
 * between "index" and "fetch" predicates, otherwise it is a separation between the two sides of
 * index intersection. The separation handles cases where we may have intervals which include Null
 * and return the value, in which case instead of moving the requirement on the left, we insert a
 * copy on the right side which will fetch the value from the collection. We convert perf-only
 * requirements to non-perf when inserting on the left under "isIndex", otherwise we drop them. The
 * mask parameter represents a bitmask indicating which requirements go on the left (bit is 1) and
 * which go on the right.
 */
static SplitRequirementsResult splitRequirements(
    const size_t mask,
    const bool isIndex,
    const QueryHints& hints,
    const std::vector<bool>& isFullyOpen,
    const std::vector<bool>& mayReturnNull,
    const boost::optional<FieldNameSet>& indexFieldPrefixMapForScanDef,
    const PartialSchemaRequirements& reqMap) {
    SplitRequirementsResult result;
    auto& leftReqs = result._leftReqs;
    auto& rightReqs = result._rightReqs;

    const auto addRequirement = [](PartialSchemaRequirements& reqMap,
                                   PartialSchemaKey key,
                                   boost::optional<ProjectionName> boundProjectionName,
                                   IntervalReqExpr::Node intervals) {
        // We always strip out the perf-only flag.
        reqMap.add(key,
                   PartialSchemaRequirement{
                       std::move(boundProjectionName), std::move(intervals), false /*isPerfOnly*/});
    };

    size_t index = 0;
    for (const auto& [key, req] : reqMap.conjuncts()) {

        if (((1ull << index) & mask) != 0) {
            bool addedToLeft = false;
            if (isIndex || hints._fastIndexNullHandling || !mayReturnNull.at(index)) {
                // We can never return Null values from the requirement.
                if (isIndex || hints._disableYieldingTolerantPlans || req.getIsPerfOnly()) {
                    // Insert into left side unchanged.
                    addRequirement(leftReqs, key, req.getBoundProjectionName(), req.getIntervals());
                } else {
                    // Insert a requirement on the right side too, left side is non-binding.
                    addRequirement(
                        leftReqs, key, boost::none /*boundProjectionName*/, req.getIntervals());
                    addRequirement(
                        rightReqs, key, req.getBoundProjectionName(), req.getIntervals());
                }
                addedToLeft = true;
            } else {
                // At this point we should not be seeing perf-only predicates.
                invariant(!req.getIsPerfOnly());

                // We cannot return index values if our interval can possibly contain Null. Instead,
                // we remove the output binding for the left side, and return the value from the
                // right (seek) side.
                if (!isFullyOpen.at(index)) {
                    addRequirement(
                        leftReqs, key, boost::none /*boundProjectionName*/, req.getIntervals());
                    addedToLeft = true;
                }
                addRequirement(rightReqs,
                               key,
                               req.getBoundProjectionName(),
                               hints._disableYieldingTolerantPlans
                                   ? IntervalReqExpr::makeSingularDNF()
                                   : req.getIntervals());
            }

            if (addedToLeft) {
                if (indexFieldPrefixMapForScanDef) {
                    if (auto pathPtr = key._path.cast<PathGet>(); pathPtr != nullptr &&
                        indexFieldPrefixMapForScanDef->count(pathPtr->name()) == 0) {
                        // We have found a left requirement which cannot be covered with an
                        // index.
                        result._hasFieldCoverage = false;
                        break;
                    }
                }
            }
        } else if (isIndex || !req.getIsPerfOnly()) {
            addRequirement(rightReqs, key, req.getBoundProjectionName(), req.getIntervals());
        }
        index++;
    }

    return result;
}

template <>
struct ExploreConvert<SargableNode> {
    void operator()(ABT::reference_type node, RewriteContext& ctx) {
        using namespace properties;

        const SargableNode& sargableNode = *node.cast<SargableNode>();
        const IndexReqTarget target = sargableNode.getTarget();
        if (target == IndexReqTarget::Seek) {
            return;
        }

        const LogicalProps& props = ctx.getAboveLogicalProps();
        const auto& indexingAvailability = getPropertyConst<IndexingAvailability>(props);
        const GroupIdType scanGroupId = indexingAvailability.getScanGroupId();
        if (sargableNode.getChild().cast<MemoLogicalDelegatorNode>()->getGroupId() != scanGroupId ||
            !ctx.getMemo().getLogicalNodes(scanGroupId).front().is<ScanNode>()) {
            // We are not sitting above a ScanNode.
            lowerSargableNode(sargableNode, ctx);
            return;
        }

        const std::string& scanDefName = indexingAvailability.getScanDefName();
        const ScanDefinition& scanDef = ctx.getMetadata()._scanDefs.at(scanDefName);
        if (scanDef.getIndexDefs().empty()) {
            // Do not insert RIDIntersect if we do not have indexes available.
            return;
        }

        const auto aboveNodeId = ctx.getAboveNodeId();
        auto& sargableSplitCountMap = ctx.getSargableSplitCountMap();
        const size_t splitCount = sargableSplitCountMap[aboveNodeId];
        if (splitCount > LogicalRewriter::kMaxSargableNodeSplitCount) {
            // We cannot split this node further.
            return;
        }

        const ProjectionName& scanProjectionName = indexingAvailability.getScanProjection();
        if (collectVariableReferences(node) != ProjectionNameSet{scanProjectionName}) {
            // Rewrite not applicable if we refer projections other than the scan projection.
            return;
        }

        const bool isIndex = target == IndexReqTarget::Index;

        const auto& indexFieldPrefixMap = ctx.getIndexFieldPrefixMap();
        boost::optional<FieldNameSet> indexFieldPrefixMapForScanDef;
        if (auto it = indexFieldPrefixMap.find(scanDefName);
            it != indexFieldPrefixMap.cend() && !isIndex) {
            indexFieldPrefixMapForScanDef = it->second;
        }

        const auto& reqMap = sargableNode.getReqMap();
        const auto& hints = ctx.getHints();

        std::vector<bool> isFullyOpen;
        std::vector<bool> mayReturnNull;
        {
            // Pre-compute if a requirement's interval is fully open.
            isFullyOpen.reserve(reqMap.numLeaves());
            for (const auto& [key, req] : reqMap.conjuncts()) {
                isFullyOpen.push_back(isIntervalReqFullyOpenDNF(req.getIntervals()));
            }

            if (!hints._fastIndexNullHandling && !isIndex) {
                // Pre-compute if a requirement's interval may contain nulls, and also has an output
                // binding.
                mayReturnNull.reserve(reqMap.numLeaves());
                for (const auto& [key, req] : reqMap.conjuncts()) {
                    mayReturnNull.push_back(req.mayReturnNull(ctx.getConstFold()));
                }
            }
        }

        // We iterate over the possible ways to split N predicates into 2^N subsets, one goes to the
        // left, and the other to the right side. If splitting into Index+Seek (isIndex = false), we
        // try having at least one predicate on the left (mask = 1), and we try all possible
        // subsets. For index intersection however (isIndex = true), we try symmetric partitioning
        // (thus the high bound is 2^(N-1)).
        const size_t reqSize = reqMap.numConjuncts();
        const size_t highMask = isIndex ? (1ull << (reqSize - 1)) : (1ull << reqSize);
        for (size_t mask = 1; mask < highMask; mask++) {
            SplitRequirementsResult splitResult = splitRequirements(mask,
                                                                    isIndex,
                                                                    hints,
                                                                    isFullyOpen,
                                                                    mayReturnNull,
                                                                    indexFieldPrefixMapForScanDef,
                                                                    reqMap);

            if (splitResult._leftReqs.empty()) {
                // Can happen if we have intervals containing null.
                invariant(!hints._fastIndexNullHandling && !isIndex);
                continue;
            }

            // Reject. Must have at least one proper interval on either side.
            if (isIndex &&
                (!hasProperIntervals(splitResult._leftReqs) ||
                 !hasProperIntervals(splitResult._rightReqs))) {
                continue;
            }

            if (!splitResult._hasFieldCoverage) {
                // Reject rewrite. No suitable indexes.
                continue;
            }

            bool hasEmptyLeftInterval = false;
            auto leftCandidateIndexes = computeCandidateIndexes(ctx.getPrefixId(),
                                                                scanProjectionName,
                                                                splitResult._leftReqs,
                                                                scanDef,
                                                                hints,
                                                                hasEmptyLeftInterval,
                                                                ctx.getConstFold());
            if (isIndex && leftCandidateIndexes.empty()) {
                // Reject rewrite.
                continue;
            }

            bool hasEmptyRightInterval = false;
            auto rightCandidateIndexes = computeCandidateIndexes(ctx.getPrefixId(),
                                                                 scanProjectionName,
                                                                 splitResult._rightReqs,
                                                                 scanDef,
                                                                 hints,
                                                                 hasEmptyRightInterval,
                                                                 ctx.getConstFold());
            if (isIndex && rightCandidateIndexes.empty()) {
                // With empty candidate map, reject only if we cannot implement as Seek.
                continue;
            }
            uassert(6624116,
                    "Empty intervals should already be rewritten to empty ValueScan nodes",
                    !hasEmptyLeftInterval && !hasEmptyRightInterval);

            ABT scanDelegator = make<MemoLogicalDelegatorNode>(scanGroupId);
            ABT leftChild = make<SargableNode>(std::move(splitResult._leftReqs),
                                               std::move(leftCandidateIndexes),
                                               boost::none,
                                               IndexReqTarget::Index,
                                               scanDelegator);

            auto rightScanParams =
                computeScanParams(ctx.getPrefixId(), splitResult._rightReqs, scanProjectionName);
            ABT rightChild = splitResult._rightReqs.empty()
                ? scanDelegator
                : make<SargableNode>(std::move(splitResult._rightReqs),
                                     std::move(rightCandidateIndexes),
                                     std::move(rightScanParams),
                                     isIndex ? IndexReqTarget::Index : IndexReqTarget::Seek,
                                     scanDelegator);

            ABT newRoot = make<RIDIntersectNode>(
                scanProjectionName, std::move(leftChild), std::move(rightChild));

            const auto& result = ctx.addNode(newRoot, false /*substitute*/);
            for (const MemoLogicalNodeId nodeId : result.second) {
                if (!(nodeId == aboveNodeId)) {
                    sargableSplitCountMap[nodeId] = splitCount + 1;
                }
            }
        }
    }
};

template <>
struct ExploreConvert<GroupByNode> {
    void operator()(ABT::reference_type node, RewriteContext& ctx) {
        const GroupByNode& groupByNode = *node.cast<GroupByNode>();
        if (groupByNode.getType() != GroupNodeType::Complete) {
            return;
        }

        ProjectionNameVector preaggVariableNames;
        ABTVector preaggExpressions;

        const ABTVector& aggExpressions = groupByNode.getAggregationExpressions();
        for (const ABT& expr : aggExpressions) {
            const FunctionCall* aggPtr = expr.cast<FunctionCall>();
            if (aggPtr == nullptr) {
                return;
            }

            // In order to be able to pre-aggregate for now we expect a simple aggregate like
            // SUM(x).
            const auto& aggFnName = aggPtr->name();
            if (aggFnName != "$sum" && aggFnName != "$min" && aggFnName != "$max") {
                // TODO: allow more functions.
                return;
            }
            uassert(6624117, "Invalid argument count", aggPtr->nodes().size() == 1);

            preaggVariableNames.push_back(ctx.getPrefixId().getNextId("preagg"));
            preaggExpressions.emplace_back(
                make<FunctionCall>(aggFnName, makeSeq(make<Variable>(preaggVariableNames.back()))));
        }

        ABT localGroupBy = make<GroupByNode>(groupByNode.getGroupByProjectionNames(),
                                             std::move(preaggVariableNames),
                                             aggExpressions,
                                             GroupNodeType::Local,
                                             groupByNode.getChild());

        ABT newRoot = make<GroupByNode>(groupByNode.getGroupByProjectionNames(),
                                        groupByNode.getAggregationProjectionNames(),
                                        std::move(preaggExpressions),
                                        GroupNodeType::Global,
                                        std::move(localGroupBy));

        ctx.addNode(newRoot, false /*substitute*/);
    }
};

template <class AboveType, class BelowType>
struct ExploreReorder {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const = delete;
};

template <class AboveNode>
void reorderAgainstRIDIntersectNode(ABT::reference_type aboveNode,
                                    ABT::reference_type belowNode,
                                    RewriteContext& ctx) {
    const ReorderDependencies leftDeps =
        computeDependencies<AboveNode, RIDIntersectNode, LeftChildAccessor>(
            aboveNode, belowNode, ctx);
    uassert(6624118, "RIDIntersect cannot bind projections", !leftDeps._hasNodeRef);
    const bool hasLeftRef = leftDeps._hasChildRef;

    const ReorderDependencies rightDeps =
        computeDependencies<AboveNode, RIDIntersectNode, RightChildAccessor>(
            aboveNode, belowNode, ctx);
    uassert(6624119, "RIDIntersect cannot bind projections", !rightDeps._hasNodeRef);
    const bool hasRightRef = rightDeps._hasChildRef;

    if (hasLeftRef == hasRightRef) {
        // Both left and right reorderings available means that we refer to both left and right
        // sides.
        return;
    }

    const RIDIntersectNode& node = *belowNode.cast<RIDIntersectNode>();
    const GroupIdType groupIdLeft =
        node.getLeftChild().cast<MemoLogicalDelegatorNode>()->getGroupId();
    const bool hasProperIntervalLeft =
        properties::getPropertyConst<properties::IndexingAvailability>(
            ctx.getMemo().getLogicalProps(groupIdLeft))
            .hasProperInterval();
    if (hasProperIntervalLeft && hasLeftRef) {
        defaultReorder<AboveNode,
                       RIDIntersectNode,
                       DefaultChildAccessor,
                       LeftChildAccessor,
                       false /*substitute*/>(aboveNode, belowNode, ctx);
    }

    const GroupIdType groupIdRight =
        node.getRightChild().cast<MemoLogicalDelegatorNode>()->getGroupId();
    const bool hasProperIntervalRight =
        properties::getPropertyConst<properties::IndexingAvailability>(
            ctx.getMemo().getLogicalProps(groupIdRight))
            .hasProperInterval();
    if (hasProperIntervalRight && hasRightRef) {
        defaultReorder<AboveNode,
                       RIDIntersectNode,
                       DefaultChildAccessor,
                       RightChildAccessor,
                       false /*substitute*/>(aboveNode, belowNode, ctx);
    }
};

template <>
struct ExploreReorder<FilterNode, RIDIntersectNode> {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const {
        reorderAgainstRIDIntersectNode<FilterNode>(aboveNode, belowNode, ctx);
    }
};

template <>
struct ExploreReorder<EvaluationNode, RIDIntersectNode> {
    void operator()(ABT::reference_type aboveNode,
                    ABT::reference_type belowNode,
                    RewriteContext& ctx) const {
        reorderAgainstRIDIntersectNode<EvaluationNode>(aboveNode, belowNode, ctx);
    }
};

void LogicalRewriter::registerRewrite(const LogicalRewriteType rewriteType, RewriteFn fn) {
    if (_activeRewriteSet.find(rewriteType) != _activeRewriteSet.cend()) {
        const bool inserted = _rewriteMap.emplace(rewriteType, fn).second;
        invariant(inserted);
    }
}

void LogicalRewriter::initializeRewrites() {
    registerRewrite(
        LogicalRewriteType::FilterEvaluationReorder,
        &LogicalRewriter::bindAboveBelow<FilterNode, EvaluationNode, SubstituteReorder>);
    registerRewrite(LogicalRewriteType::FilterCollationReorder,
                    &LogicalRewriter::bindAboveBelow<FilterNode, CollationNode, SubstituteReorder>);
    registerRewrite(
        LogicalRewriteType::EvaluationCollationReorder,
        &LogicalRewriter::bindAboveBelow<EvaluationNode, CollationNode, SubstituteReorder>);
    registerRewrite(
        LogicalRewriteType::EvaluationLimitSkipReorder,
        &LogicalRewriter::bindAboveBelow<EvaluationNode, LimitSkipNode, SubstituteReorder>);
    registerRewrite(LogicalRewriteType::FilterGroupByReorder,
                    &LogicalRewriter::bindAboveBelow<FilterNode, GroupByNode, SubstituteReorder>);
    registerRewrite(
        LogicalRewriteType::GroupCollationReorder,
        &LogicalRewriter::bindAboveBelow<GroupByNode, CollationNode, SubstituteReorder>);
    registerRewrite(LogicalRewriteType::FilterUnwindReorder,
                    &LogicalRewriter::bindAboveBelow<FilterNode, UnwindNode, SubstituteReorder>);
    registerRewrite(
        LogicalRewriteType::EvaluationUnwindReorder,
        &LogicalRewriter::bindAboveBelow<EvaluationNode, UnwindNode, SubstituteReorder>);
    registerRewrite(LogicalRewriteType::UnwindCollationReorder,
                    &LogicalRewriter::bindAboveBelow<UnwindNode, CollationNode, SubstituteReorder>);

    registerRewrite(LogicalRewriteType::FilterExchangeReorder,
                    &LogicalRewriter::bindAboveBelow<FilterNode, ExchangeNode, SubstituteReorder>);
    registerRewrite(
        LogicalRewriteType::ExchangeEvaluationReorder,
        &LogicalRewriter::bindAboveBelow<ExchangeNode, EvaluationNode, SubstituteReorder>);

    registerRewrite(LogicalRewriteType::FilterUnionReorder,
                    &LogicalRewriter::bindAboveBelow<FilterNode, UnionNode, SubstituteReorder>);

    registerRewrite(
        LogicalRewriteType::CollationMerge,
        &LogicalRewriter::bindAboveBelow<CollationNode, CollationNode, SubstituteMerge>);
    registerRewrite(
        LogicalRewriteType::LimitSkipMerge,
        &LogicalRewriter::bindAboveBelow<LimitSkipNode, LimitSkipNode, SubstituteMerge>);

    registerRewrite(LogicalRewriteType::SargableFilterReorder,
                    &LogicalRewriter::bindAboveBelow<SargableNode, FilterNode, SubstituteReorder>);
    registerRewrite(
        LogicalRewriteType::SargableEvaluationReorder,
        &LogicalRewriter::bindAboveBelow<SargableNode, EvaluationNode, SubstituteReorder>);

    registerRewrite(LogicalRewriteType::LimitSkipSubstitute,
                    &LogicalRewriter::bindSingleNode<LimitSkipNode, SubstituteConvert>);

    registerRewrite(LogicalRewriteType::SargableMerge,
                    &LogicalRewriter::bindAboveBelow<SargableNode, SargableNode, SubstituteMerge>);
    registerRewrite(LogicalRewriteType::FilterSubstitute,
                    &LogicalRewriter::bindSingleNode<FilterNode, SubstituteConvert>);
    registerRewrite(LogicalRewriteType::EvaluationSubstitute,
                    &LogicalRewriter::bindSingleNode<EvaluationNode, SubstituteConvert>);

    registerRewrite(LogicalRewriteType::FilterValueScanPropagate,
                    &LogicalRewriter::bindAboveBelow<FilterNode, ValueScanNode, SubstituteReorder>);
    registerRewrite(
        LogicalRewriteType::EvaluationValueScanPropagate,
        &LogicalRewriter::bindAboveBelow<EvaluationNode, ValueScanNode, SubstituteReorder>);
    registerRewrite(
        LogicalRewriteType::SargableValueScanPropagate,
        &LogicalRewriter::bindAboveBelow<SargableNode, ValueScanNode, SubstituteReorder>);
    registerRewrite(
        LogicalRewriteType::CollationValueScanPropagate,
        &LogicalRewriter::bindAboveBelow<CollationNode, ValueScanNode, SubstituteReorder>);
    registerRewrite(
        LogicalRewriteType::LimitSkipValueScanPropagate,
        &LogicalRewriter::bindAboveBelow<LimitSkipNode, ValueScanNode, SubstituteReorder>);
    registerRewrite(
        LogicalRewriteType::ExchangeValueScanPropagate,
        &LogicalRewriter::bindAboveBelow<ExchangeNode, ValueScanNode, SubstituteReorder>);

    registerRewrite(LogicalRewriteType::GroupByExplore,
                    &LogicalRewriter::bindSingleNode<GroupByNode, ExploreConvert>);
    registerRewrite(LogicalRewriteType::SargableSplit,
                    &LogicalRewriter::bindSingleNode<SargableNode, ExploreConvert>);

    registerRewrite(LogicalRewriteType::FilterRIDIntersectReorder,
                    &LogicalRewriter::bindAboveBelow<FilterNode, RIDIntersectNode, ExploreReorder>);
    registerRewrite(
        LogicalRewriteType::EvaluationRIDIntersectReorder,
        &LogicalRewriter::bindAboveBelow<EvaluationNode, RIDIntersectNode, ExploreReorder>);
}

bool LogicalRewriter::rewriteToFixPoint() {
    int iterationCount = 0;

    while (!_groupsPending.empty()) {
        iterationCount++;
        if (_debugInfo.exceedsIterationLimit(iterationCount)) {
            // Iteration limit exceeded.
            return false;
        }

        const GroupIdType groupId = *_groupsPending.begin();
        rewriteGroup(groupId);
        _groupsPending.erase(groupId);
    }

    return true;
}

void LogicalRewriter::rewriteGroup(const GroupIdType groupId) {
    auto& queue = _memo.getLogicalRewriteQueue(groupId);
    while (!queue.empty()) {
        LogicalRewriteEntry rewriteEntry = std::move(*queue.top());
        // TODO: check if rewriteEntry is different than previous (remove duplicates).
        queue.pop();

        _rewriteMap.at(rewriteEntry._type)(this, rewriteEntry._nodeId, rewriteEntry._type);
    }
}

template <class AboveType, class BelowType, template <class, class> class R>
void LogicalRewriter::bindAboveBelow(const MemoLogicalNodeId nodeMemoId,
                                     const LogicalRewriteType rule) {
    // Get a reference to the node instead of the node itself.
    // Rewrites insert into the memo and can move it.
    ABT::reference_type node = _memo.getNode(nodeMemoId);
    const GroupIdType currentGroupId = nodeMemoId._groupId;

    if (node.is<AboveType>()) {
        // Try to bind as parent.
        const GroupIdType targetGroupId = node.cast<AboveType>()
                                              ->getChild()
                                              .template cast<MemoLogicalDelegatorNode>()
                                              ->getGroupId();

        for (size_t i = 0; i < _memo.getLogicalNodes(targetGroupId).size(); i++) {
            const MemoLogicalNodeId targetNodeId{targetGroupId, i};
            auto targetNode = _memo.getNode(targetNodeId);
            if (targetNode.is<BelowType>()) {
                RewriteContext ctx(*this, rule, nodeMemoId, targetNodeId);
                R<AboveType, BelowType>()(node, targetNode, ctx);
                if (ctx.hasSubstituted()) {
                    return;
                }
            }
        }
    }

    if (node.is<BelowType>()) {
        // Try to bind as child.
        NodeIdSet usageNodeIdSet;
        {
            const auto& inputGroupsToNodeId = _memo.getInputGroupsToNodeIdMap();
            auto it = inputGroupsToNodeId.find({currentGroupId});
            if (it != inputGroupsToNodeId.cend()) {
                usageNodeIdSet = it->second;
            }
        }

        for (const MemoLogicalNodeId& parentNodeId : usageNodeIdSet) {
            auto targetNode = _memo.getNode(parentNodeId);
            if (targetNode.is<AboveType>()) {
                uassert(6624047,
                        "Parent child groupId mismatch (usage map index incorrect?)",
                        targetNode.cast<AboveType>()
                                ->getChild()
                                .template cast<MemoLogicalDelegatorNode>()
                                ->getGroupId() == currentGroupId);

                RewriteContext ctx(*this, rule, parentNodeId, nodeMemoId);
                R<AboveType, BelowType>()(targetNode, node, ctx);
                if (ctx.hasSubstituted()) {
                    return;
                }
            }
        }
    }
}

template <class Type, template <class> class R>
void LogicalRewriter::bindSingleNode(const MemoLogicalNodeId nodeMemoId,
                                     const LogicalRewriteType rule) {
    // Get a reference to the node instead of the node itself.
    // Rewrites insert into the memo and can move it.
    ABT::reference_type node = _memo.getNode(nodeMemoId);
    if (node.is<Type>()) {
        RewriteContext ctx(*this, rule, nodeMemoId);
        R<Type>()(node, ctx);
    }
}

const LogicalRewriter::RewriteSet& LogicalRewriter::getExplorationSet() {
    return _explorationSet;
}

const LogicalRewriter::RewriteSet& LogicalRewriter::getSubstitutionSet() {
    return _substitutionSet;
}

}  // namespace mongo::optimizer::cascades