summaryrefslogtreecommitdiff
path: root/src/mongo/db/query/plan_cache.cpp
blob: 0f2871e2f29b8202078f02699c213b35cb838796 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
/**
 *    Copyright (C) 2013 10gen Inc.
 *
 *    This program is free software: you can redistribute it and/or  modify
 *    it under the terms of the GNU Affero General Public License, version 3,
 *    as published by the Free Software Foundation.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU Affero General Public License for more details.
 *
 *    You should have received a copy of the GNU Affero General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the GNU Affero General Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kQuery

#include "mongo/platform/basic.h"

#include "mongo/db/query/plan_cache.h"

#include <algorithm>
#include <math.h>
#include <memory>
#include "boost/thread/locks.hpp"
#include "mongo/base/owned_pointer_vector.h"
#include "mongo/client/dbclientinterface.h"   // For QueryOption_foobar
#include "mongo/db/matcher/expression_array.h"
#include "mongo/db/matcher/expression_geo.h"
#include "mongo/db/query/plan_ranker.h"
#include "mongo/db/query/query_solution.h"
#include "mongo/db/query/query_knobs.h"
#include "mongo/util/assert_util.h"
#include "mongo/util/log.h"
#include "mongo/util/mongoutils/str.h"

namespace mongo {
namespace {

    // Delimiters for cache key encoding.
    const char kEncodeDiscriminatorsBegin = '<';
    const char kEncodeDiscriminatorsEnd = '>';
    const char kEncodeChildrenBegin = '[';
    const char kEncodeChildrenEnd = ']';
    const char kEncodeChildrenSeparator = ',';
    const char kEncodeSortSection = '~';
    const char kEncodeProjectionSection = '|';

    /**
     * Encode user-provided string. Cache key delimiters seen in the
     * user string are escaped with a backslash.
     */
    void encodeUserString(StringData s, StringBuilder* keyBuilder) {
        for (size_t i = 0; i < s.size(); ++i) {
            char c = s[i];
            switch (c) {
            case kEncodeDiscriminatorsBegin:
            case kEncodeDiscriminatorsEnd:
            case kEncodeChildrenBegin:
            case kEncodeChildrenEnd:
            case kEncodeChildrenSeparator:
            case kEncodeSortSection:
            case kEncodeProjectionSection:
            case '\\':
                  *keyBuilder << '\\';
                // Fall through to default case.
            default:
                *keyBuilder << c;
            }
        }
    }

    /**
     * 2-character encoding of MatchExpression::MatchType.
     */
    const char* encodeMatchType(MatchExpression::MatchType mt) {
        switch(mt) {
        case MatchExpression::AND: return "an"; break;
        case MatchExpression::OR: return "or"; break;
        case MatchExpression::NOR: return "nr"; break;
        case MatchExpression::NOT: return "nt"; break;
        case MatchExpression::ELEM_MATCH_OBJECT: return "eo"; break;
        case MatchExpression::ELEM_MATCH_VALUE: return "ev"; break;
        case MatchExpression::SIZE: return "sz"; break;
        case MatchExpression::LTE: return "le"; break;
        case MatchExpression::LT: return "lt"; break;
        case MatchExpression::EQ: return "eq"; break;
        case MatchExpression::GT: return "gt"; break;
        case MatchExpression::GTE: return "ge"; break;
        case MatchExpression::REGEX: return "re"; break;
        case MatchExpression::MOD: return "mo"; break;
        case MatchExpression::EXISTS: return "ex"; break;
        case MatchExpression::MATCH_IN: return "in"; break;
        case MatchExpression::TYPE_OPERATOR: return "ty"; break;
        case MatchExpression::GEO: return "go"; break;
        case MatchExpression::WHERE: return "wh"; break;
        case MatchExpression::ATOMIC: return "at"; break;
        case MatchExpression::ALWAYS_FALSE: return "af"; break;
        case MatchExpression::GEO_NEAR: return "gn"; break;
        case MatchExpression::TEXT: return "te"; break;
        default: verify(0); return "";
        }
    }

    /**
     * Encodes GEO match expression.
     * Encoding includes:
     * - type of geo query (within/intersect/near)
     * - geometry type
     * - CRS (flat or spherical)
     */
    void encodeGeoMatchExpression(const GeoMatchExpression* tree, StringBuilder* keyBuilder) {
        const GeoExpression& geoQuery = tree->getGeoExpression();

        // Type of geo query.
        switch (geoQuery.getPred()) {
        case GeoExpression::WITHIN: *keyBuilder << "wi"; break;
        case GeoExpression::INTERSECT: *keyBuilder << "in"; break;
        case GeoExpression::INVALID: *keyBuilder << "id"; break;
        }

        // Geometry type.
        // Only one of the shared_ptrs in GeoContainer may be non-NULL.
        *keyBuilder << geoQuery.getGeometry().getDebugType();

        // CRS (flat or spherical)
        if (FLAT == geoQuery.getGeometry().getNativeCRS()) {
            *keyBuilder << "fl";
        }
        else if (SPHERE == geoQuery.getGeometry().getNativeCRS()) {
            *keyBuilder << "sp";
        }
        else if (STRICT_SPHERE == geoQuery.getGeometry().getNativeCRS()) {
            *keyBuilder << "ss";
        }
        else {
            error() << "unknown CRS type " << (int)geoQuery.getGeometry().getNativeCRS()
                    << " in geometry of type " << geoQuery.getGeometry().getDebugType();
            invariant(false);
        }
    }

    /**
     * Encodes GEO_NEAR match expression.
     * Encode:
     * - isNearSphere
     * - CRS (flat or spherical)
     */
    void encodeGeoNearMatchExpression(const GeoNearMatchExpression* tree,
                                      StringBuilder* keyBuilder) {
        const GeoNearExpression& nearQuery = tree->getData();

        // isNearSphere
        *keyBuilder << (nearQuery.isNearSphere ? "ns" : "nr");

        // CRS (flat or spherical or strict-winding spherical)
        switch (nearQuery.centroid->crs) {
        case FLAT: *keyBuilder << "fl"; break;
        case SPHERE: *keyBuilder << "sp"; break;
        case STRICT_SPHERE: *keyBuilder << "ss"; break;
        case UNSET:
            error() << "unknown CRS type " << (int)nearQuery.centroid->crs
                    << " in point geometry for near query";
            invariant(false);
            break;
        }
    }

}  // namespace

    //
    // Cache-related functions for CanonicalQuery
    //

    bool PlanCache::shouldCacheQuery(const CanonicalQuery& query) {
        const LiteParsedQuery& lpq = query.getParsed();
        const MatchExpression* expr = query.root();

        // Collection scan
        // No sort order requested
        if (lpq.getSort().isEmpty() &&
            expr->matchType() == MatchExpression::AND && expr->numChildren() == 0) {
            return false;
        }

        // Hint provided
        if (!lpq.getHint().isEmpty()) {
            return false;
        }

        // Min provided
        // Min queries are a special case of hinted queries.
        if (!lpq.getMin().isEmpty()) {
            return false;
        }

        // Max provided
        // Similar to min, max queries are a special case of hinted queries.
        if (!lpq.getMax().isEmpty()) {
            return false;
        }

        // Explain queries are not-cacheable. This is primarily because of
        // the need to generate current and accurate information in allPlans.
        // If the explain report is generated by the cached plan runner using
        // stale information from the cache for the losing plans, allPlans would
        // simply be wrong.
        if (lpq.isExplain()) {
            return false;
        }

        // Tailable cursors won't get cached, just turn into collscans.
        if (query.getParsed().isTailable()) {
            return false;
        }

        // Snapshot is really a hint.
        if (query.getParsed().isSnapshot()) {
            return false;
        }

        return true;
    }

    //
    // CachedSolution
    //

    CachedSolution::CachedSolution(const PlanCacheKey& key, const PlanCacheEntry& entry)
        : plannerData(entry.plannerData.size()),
          key(key),
          query(entry.query.getOwned()),
          sort(entry.sort.getOwned()),
          projection(entry.projection.getOwned()),
          decisionWorks(entry.decision->stats[0]->common.works) {
        // CachedSolution should not having any references into
        // cache entry. All relevant data should be cloned/copied.
        for (size_t i = 0; i < entry.plannerData.size(); ++i) {
            verify(entry.plannerData[i]);
            plannerData[i] = entry.plannerData[i]->clone();
        }
    }

    CachedSolution::~CachedSolution() {
        for (std::vector<SolutionCacheData*>::const_iterator i = plannerData.begin();
             i != plannerData.end(); ++i) {
            SolutionCacheData* scd = *i;
            delete scd;
        }
    }

    //
    // PlanCacheEntry
    //

    PlanCacheEntry::PlanCacheEntry(const std::vector<QuerySolution*>& solutions,
                                   PlanRankingDecision* why)
        : plannerData(solutions.size()),
          decision(why) {
        invariant(why);

        // The caller of this constructor is responsible for ensuring
        // that the QuerySolution 's' has valid cacheData. If there's no
        // data to cache you shouldn't be trying to construct a PlanCacheEntry.

        // Copy the solution's cache data into the plan cache entry.
        for (size_t i = 0; i < solutions.size(); ++i) {
            invariant(solutions[i]->cacheData.get());
            plannerData[i] = solutions[i]->cacheData->clone();
        }
    }

    PlanCacheEntry::~PlanCacheEntry() {
        for (size_t i = 0; i < feedback.size(); ++i) {
            delete feedback[i];
        }
        for (size_t i = 0; i < plannerData.size(); ++i) {
            delete plannerData[i];
        }
    }

    PlanCacheEntry* PlanCacheEntry::clone() const {
        OwnedPointerVector<QuerySolution> solutions;
        for (size_t i = 0; i < plannerData.size(); ++i) {
            QuerySolution* qs = new QuerySolution();
            qs->cacheData.reset(plannerData[i]->clone());
            solutions.mutableVector().push_back(qs);
        }
        PlanCacheEntry* entry = new PlanCacheEntry(solutions.vector(), decision->clone());

        // Copy query shape.
        entry->query = query.getOwned();
        entry->sort = sort.getOwned();
        entry->projection = projection.getOwned();

        // Copy performance stats.
        for (size_t i = 0; i < feedback.size(); ++i) {
            PlanCacheEntryFeedback* fb = new PlanCacheEntryFeedback();
            fb->stats.reset(feedback[i]->stats->clone());
            fb->score = feedback[i]->score;
            entry->feedback.push_back(fb);
        }
        return entry;
    }

    std::string PlanCacheEntry::toString() const {
        return str::stream()
            << "(query: " << query.toString()
            << ";sort: " << sort.toString()
            << ";projection: " << projection.toString()
            << ";solutions: " << plannerData.size()
            << ")";
    }

    std::string CachedSolution::toString() const {
        return str::stream() << "key: " << key << '\n';
    }

    //
    // PlanCacheIndexTree
    //

    void PlanCacheIndexTree::setIndexEntry(const IndexEntry& ie) {
        entry.reset(new IndexEntry(ie));
    }

    PlanCacheIndexTree* PlanCacheIndexTree::clone() const {
        PlanCacheIndexTree* root = new PlanCacheIndexTree();
        if (NULL != entry.get()) {
            root->index_pos = index_pos;
            root->setIndexEntry(*entry.get());
        }

        for (std::vector<PlanCacheIndexTree*>::const_iterator it = children.begin();
                it != children.end(); ++it) {
            PlanCacheIndexTree* clonedChild = (*it)->clone();
            root->children.push_back(clonedChild);
        }
        return root;
    }

    std::string PlanCacheIndexTree::toString(int indents) const {
        StringBuilder result;
        if (!children.empty()) {
            result << std::string(3 * indents, '-') << "Node\n";
            int newIndent = indents + 1;
            for (std::vector<PlanCacheIndexTree*>::const_iterator it = children.begin();
                    it != children.end(); ++it) {
                result << (*it)->toString(newIndent);
            }
            return result.str();
        }
        else {
            result << std::string(3 * indents, '-') << "Leaf ";
            if (NULL != entry.get()) {
                result << entry->keyPattern.toString() << ", pos: " << index_pos;
            }
            result << '\n';
        }
        return result.str();
    }

    //
    // SolutionCacheData
    //

    SolutionCacheData* SolutionCacheData::clone() const {
        SolutionCacheData* other = new SolutionCacheData();
        if (NULL != this->tree.get()) {
            // 'tree' could be NULL if the cached solution
            // is a collection scan.
            other->tree.reset(this->tree->clone());
        }
        other->solnType = this->solnType;
        other->wholeIXSolnDir = this->wholeIXSolnDir;
        other->indexFilterApplied = this->indexFilterApplied;
        return other;
    }

    std::string SolutionCacheData::toString() const {
        switch (this->solnType) {
        case WHOLE_IXSCAN_SOLN:
            verify(this->tree.get());
            return str::stream()
                << "(whole index scan solution: "
                << "dir=" << this->wholeIXSolnDir << "; "
                << "tree=" << this->tree->toString()
                << ")";
        case COLLSCAN_SOLN:
            return "(collection scan)";
        case USE_INDEX_TAGS_SOLN:
            verify(this->tree.get());
            return str::stream()
                << "(index-tagged expression tree: "
                << "tree=" << this->tree->toString()
                << ")";
        }
        MONGO_UNREACHABLE;
    }

    //
    // PlanCache
    //

    PlanCache::PlanCache() : _cache(internalQueryCacheSize) { }

    PlanCache::PlanCache(const std::string& ns) : _cache(internalQueryCacheSize), _ns(ns) { }

    PlanCache::~PlanCache() { }

    /**
     * Traverses expression tree pre-order.
     * Appends an encoding of each node's match type and path name
     * to the output stream.
     */
    void PlanCache::encodeKeyForMatch(const MatchExpression* tree,
                                      StringBuilder* keyBuilder) const {
        // Encode match type and path.
        *keyBuilder << encodeMatchType(tree->matchType());

        encodeUserString(tree->path(), keyBuilder);

        // GEO and GEO_NEAR require additional encoding.
        if (MatchExpression::GEO == tree->matchType()) {
            encodeGeoMatchExpression(static_cast<const GeoMatchExpression*>(tree), keyBuilder);
        }
        else if (MatchExpression::GEO_NEAR == tree->matchType()) {
            encodeGeoNearMatchExpression(static_cast<const GeoNearMatchExpression*>(tree),
                                         keyBuilder);
        }

        // Encode indexability.
        const IndexabilityDiscriminators& discriminators =
            _indexabilityState.getDiscriminators(tree->path());
        if (!discriminators.empty()) {
            *keyBuilder << kEncodeDiscriminatorsBegin;
            // For each discriminator on this path, append the character '0' or '1'.
            for (const IndexabilityDiscriminator& discriminator : discriminators) {
                *keyBuilder << discriminator(tree);
            }
            *keyBuilder << kEncodeDiscriminatorsEnd;
        }

        // Traverse child nodes.
        // Enclose children in [].
        if (tree->numChildren() > 0) {
            *keyBuilder << kEncodeChildrenBegin;
        }
        // Use comma to separate children encoding.
        for (size_t i = 0; i < tree->numChildren(); ++i) {
            if (i > 0) {
                *keyBuilder << kEncodeChildrenSeparator;
            }
            encodeKeyForMatch(tree->getChild(i), keyBuilder);
        }
        if (tree->numChildren() > 0) {
            *keyBuilder << kEncodeChildrenEnd;
        }
    }

    /**
     * Encodes sort order into cache key.
     * Sort order is normalized because it provided by
     * LiteParsedQuery.
     */
    void PlanCache::encodeKeyForSort(const BSONObj& sortObj, StringBuilder* keyBuilder) const {
        if (sortObj.isEmpty()) {
            return;
        }

        *keyBuilder << kEncodeSortSection;

        BSONObjIterator it(sortObj);
        while (it.more()) {
            BSONElement elt = it.next();
            // $meta text score
            if (LiteParsedQuery::isTextScoreMeta(elt)) {
                *keyBuilder << "t";
            }
            // Ascending
            else if (elt.numberInt() == 1) {
                *keyBuilder << "a";
            }
            // Descending
            else {
                *keyBuilder << "d";
            }
            encodeUserString(elt.fieldName(), keyBuilder);

            // Sort argument separator
            if (it.more()) {
                *keyBuilder << ",";
            }
        }
    }

    /**
     * Encodes parsed projection into cache key.
     * Does a simple toString() on each projected field
     * in the BSON object.
     * Orders the encoded elements in the projection by field name.
     * This handles all the special projection types ($meta, $elemMatch, etc.)
     */
    void PlanCache::encodeKeyForProj(const BSONObj& projObj, StringBuilder* keyBuilder) const {
        if (projObj.isEmpty()) {
            return;
        }

        *keyBuilder << kEncodeProjectionSection;

        // Sorts the BSON elements by field name using a map.
        std::map<StringData, BSONElement> elements;

        BSONObjIterator it(projObj);
        while (it.more()) {
            BSONElement elt = it.next();
            StringData fieldName = elt.fieldNameStringData();
            elements[fieldName] = elt;
        }

        // Read elements in order of field name
        for (std::map<StringData, BSONElement>::const_iterator i = elements.begin();
             i != elements.end(); ++i) {
            const BSONElement& elt = (*i).second;

            if (elt.isSimpleType()) {
                // For inclusion/exclusion projections, we encode as "i" or "e".
                *keyBuilder << (elt.trueValue() ? "i" : "e");
            }
            else {
                // For projection operators, we use the verbatim string encoding of the element.
                encodeUserString(elt.toString(false, // includeFieldName
                                              false), // full
                                 keyBuilder);
            }

            encodeUserString(elt.fieldName(), keyBuilder);
        }
    }

    Status PlanCache::add(const CanonicalQuery& query,
                          const std::vector<QuerySolution*>& solns,
                          PlanRankingDecision* why) {
        invariant(why);

        if (solns.empty()) {
            return Status(ErrorCodes::BadValue, "no solutions provided");
        }

        if (why->stats.size() != solns.size()) {
            return Status(ErrorCodes::BadValue,
                          "number of stats in decision must match solutions");
        }

        if (why->scores.size() != solns.size()) {
            return Status(ErrorCodes::BadValue,
                          "number of scores in decision must match solutions");
        }

        if (why->candidateOrder.size() != solns.size()) {
            return Status(ErrorCodes::BadValue,
                          "candidate ordering entries in decision must match solutions");
        }

        PlanCacheEntry* entry = new PlanCacheEntry(solns, why);
        const LiteParsedQuery& pq = query.getParsed();
        entry->query = pq.getFilter().getOwned();
        entry->sort = pq.getSort().getOwned();
        entry->projection = pq.getProj().getOwned();

        boost::lock_guard<boost::mutex> cacheLock(_cacheMutex);
        std::unique_ptr<PlanCacheEntry> evictedEntry = _cache.add(computeKey(query), entry);

        if (NULL != evictedEntry.get()) {
            LOG(1) << _ns << ": plan cache maximum size exceeded - "
                   << "removed least recently used entry "
                   << evictedEntry->toString();
        }

        return Status::OK();
    }

    Status PlanCache::get(const CanonicalQuery& query, CachedSolution** crOut) const {
        PlanCacheKey key = computeKey(query);
        verify(crOut);

        boost::lock_guard<boost::mutex> cacheLock(_cacheMutex);
        PlanCacheEntry* entry;
        Status cacheStatus = _cache.get(key, &entry);
        if (!cacheStatus.isOK()) {
            return cacheStatus;
        }
        invariant(entry);

        *crOut = new CachedSolution(key, *entry);

        return Status::OK();
    }

    Status PlanCache::feedback(const CanonicalQuery& cq, PlanCacheEntryFeedback* feedback) {
        if (NULL == feedback) {
            return Status(ErrorCodes::BadValue, "feedback is NULL");
        }
        std::unique_ptr<PlanCacheEntryFeedback> autoFeedback(feedback);
        PlanCacheKey ck = computeKey(cq);

        boost::lock_guard<boost::mutex> cacheLock(_cacheMutex);
        PlanCacheEntry* entry;
        Status cacheStatus = _cache.get(ck, &entry);
        if (!cacheStatus.isOK()) {
            return cacheStatus;
        }
        invariant(entry);

        // We store up to a constant number of feedback entries.
        if (entry->feedback.size() < size_t(internalQueryCacheFeedbacksStored)) {
            entry->feedback.push_back(autoFeedback.release());
        }

        return Status::OK();
    }

    Status PlanCache::remove(const CanonicalQuery& canonicalQuery) {
        boost::lock_guard<boost::mutex> cacheLock(_cacheMutex);
        return _cache.remove(computeKey(canonicalQuery));
    }

    void PlanCache::clear() {
        boost::lock_guard<boost::mutex> cacheLock(_cacheMutex);
        _cache.clear();
        _writeOperations.store(0);
    }

    PlanCacheKey PlanCache::computeKey(const CanonicalQuery& cq) const {
        StringBuilder keyBuilder;
        encodeKeyForMatch(cq.root(), &keyBuilder);
        encodeKeyForSort(cq.getParsed().getSort(), &keyBuilder);
        encodeKeyForProj(cq.getParsed().getProj(), &keyBuilder);
        return keyBuilder.str();
    }

    Status PlanCache::getEntry(const CanonicalQuery& query, PlanCacheEntry** entryOut) const {
        PlanCacheKey key = computeKey(query);
        verify(entryOut);

        boost::lock_guard<boost::mutex> cacheLock(_cacheMutex);
        PlanCacheEntry* entry;
        Status cacheStatus = _cache.get(key, &entry);
        if (!cacheStatus.isOK()) {
            return cacheStatus;
        }
        invariant(entry);

        *entryOut = entry->clone();

        return Status::OK();
    }

    std::vector<PlanCacheEntry*> PlanCache::getAllEntries() const {
        boost::lock_guard<boost::mutex> cacheLock(_cacheMutex);
        std::vector<PlanCacheEntry*> entries;
        typedef std::list< std::pair<PlanCacheKey, PlanCacheEntry*> >::const_iterator ConstIterator;
        for (ConstIterator i = _cache.begin(); i != _cache.end(); i++) {
            PlanCacheEntry* entry = i->second;
            entries.push_back(entry->clone());
        }

        return entries;
    }

    bool PlanCache::contains(const CanonicalQuery& cq) const {
        boost::lock_guard<boost::mutex> cacheLock(_cacheMutex);
        return _cache.hasKey(computeKey(cq));
    }

    size_t PlanCache::size() const {
        boost::lock_guard<boost::mutex> cacheLock(_cacheMutex);
        return _cache.size();
    }

    void PlanCache::notifyOfWriteOp() {
        // It's fine to clear the cache multiple times if multiple threads
        // increment the counter to kPlanCacheMaxWriteOperations or greater.
        if (_writeOperations.addAndFetch(1) < internalQueryCacheWriteOpsBetweenFlush) {
            return;
        }

        LOG(1) << _ns << ": clearing collection plan cache - "
               << internalQueryCacheWriteOpsBetweenFlush
               << " write operations detected since last refresh.";
        clear();
    }

    void PlanCache::notifyOfIndexEntries(const std::vector<IndexEntry>& indexEntries) {
        _indexabilityState.updateDiscriminators(indexEntries);
    }

}  // namespace mongo