summaryrefslogtreecommitdiff
path: root/src/mongo/db/query/plan_cache_key_info_test.cpp
blob: 5a2a42845a68fab4c33ca1ca30f316b5d8d73e4f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
/**
 *    Copyright (C) 2018-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#include "mongo/db/index/wildcard_key_generator.h"
#include "mongo/db/pipeline/expression_context_for_test.h"
#include "mongo/db/query/canonical_query_test_util.h"
#include "mongo/db/query/collation/collator_interface_mock.h"
#include "mongo/db/query/plan_cache_key_factory.h"
#include "mongo/db/query/plan_cache_key_info.h"
#include "mongo/idl/server_parameter_test_util.h"
#include "mongo/unittest/unittest.h"

namespace mongo {

using std::string;
using std::unique_ptr;
using std::vector;

using unittest::assertGet;

std::ostream& operator<<(std::ostream& stream, const PlanCacheKeyInfo& key) {
    stream << key.toString();
    return stream;
}

namespace {
PlanCacheKeyInfo makeKey(const CanonicalQuery& cq,
                         const std::vector<CoreIndexInfo>& indexCores = {}) {
    PlanCacheIndexabilityState indexabilityState;
    indexabilityState.updateDiscriminators(indexCores);

    StringBuilder indexabilityKeyBuilder;
    plan_cache_detail::encodeIndexability(cq.root(), indexabilityState, &indexabilityKeyBuilder);

    return {cq.encodeKey(), indexabilityKeyBuilder.str()};
}

/**
 * Utility function to create MatchExpression
 */
unique_ptr<MatchExpression> parseMatchExpression(const BSONObj& obj) {
    boost::intrusive_ptr<ExpressionContextForTest> expCtx(new ExpressionContextForTest());
    StatusWithMatchExpression status =
        MatchExpressionParser::parse(obj,
                                     std::move(expCtx),
                                     ExtensionsCallbackNoop(),
                                     MatchExpressionParser::kAllowAllSpecialFeatures);
    if (!status.isOK()) {
        str::stream ss;
        ss << "failed to parse query: " << obj.toString()
           << ". Reason: " << status.getStatus().toString();
        FAIL(ss);
    }

    return std::move(status.getValue());
}


// A version of the above for CoreIndexInfo, used for plan cache update tests.
std::pair<CoreIndexInfo, std::unique_ptr<WildcardProjection>> makeWildcardUpdate(
    BSONObj keyPattern) {
    auto wcProj = std::make_unique<WildcardProjection>(
        WildcardKeyGenerator::createProjectionExecutor(keyPattern, {}));
    return {CoreIndexInfo(keyPattern,
                          IndexNames::nameToType(IndexNames::findPluginName(keyPattern)),
                          false,                                // sparse
                          IndexEntry::Identifier{"indexName"},  // name
                          nullptr,                              // filterExpr
                          nullptr,                              // collation
                          wcProj.get()),                        // wildcard
            std::move(wcProj)};
}

/**
 * Check that the stable keys of 'a' and 'b' are not equal because of the last character.
 */
void assertPlanCacheKeysUnequalDueToForceClassicEngineValue(const PlanCacheKeyInfo& a,
                                                            const PlanCacheKeyInfo& b) {
    auto aUnstablePart = a.getIndexabilityDiscriminators();
    auto bUnstablePart = b.getIndexabilityDiscriminators();
    auto aStablePart = a.getQueryShape();
    auto bStablePart = b.getQueryShape();

    ASSERT_EQ(aUnstablePart, bUnstablePart);
    // The last character of the stable part encodes the engine that uses this PlanCacheKey. So the
    // stable parts except for the last character should be identical.
    ASSERT_EQ(aStablePart.substr(0, aStablePart.size() - 1),
              bStablePart.substr(0, bStablePart.size() - 1));

    // Should have at least 1 byte to represent whether we must use the classic engine.
    ASSERT_GTE(aStablePart.size(), 1);

    // The indexability discriminators should match.
    ASSERT_EQ(a.getIndexabilityDiscriminators(), b.getIndexabilityDiscriminators());

    // The stable parts should not match because of the last character.
    ASSERT_NE(aStablePart, bStablePart);
    ASSERT_NE(aStablePart.back(), bStablePart.back());
}

/**
 * Check that the stable keys of 'a' and 'b' are equal, but the index discriminators are not.
 */
void assertPlanCacheKeysUnequalDueToDiscriminators(const PlanCacheKeyInfo& a,
                                                   const PlanCacheKeyInfo& b) {
    ASSERT_EQ(a.getQueryShapeStringData(), b.getQueryShapeStringData());
    ASSERT_EQ(a.getIndexabilityDiscriminators().size(), b.getIndexabilityDiscriminators().size());
    ASSERT_NE(a.getIndexabilityDiscriminators(), b.getIndexabilityDiscriminators());

    // Should always have the begin and end delimiters.
    ASSERT_GTE(a.getIndexabilityDiscriminators().size(), 2u);
}

}  // namespace

// When a sparse index is present, computeKey() should generate different keys depending on
// whether or not the predicates in the given query can use the index.
TEST(PlanCacheKeyInfoTest, ComputeKeySparseIndex) {
    const auto keyPattern = BSON("a" << 1);
    const std::vector<CoreIndexInfo> indexCores = {
        CoreIndexInfo(keyPattern,
                      IndexNames::nameToType(IndexNames::findPluginName(keyPattern)),
                      true,                          // sparse
                      IndexEntry::Identifier{""})};  // name

    unique_ptr<CanonicalQuery> cqEqNumber(canonicalize("{a: 0}}"));
    unique_ptr<CanonicalQuery> cqEqString(canonicalize("{a: 'x'}}"));
    unique_ptr<CanonicalQuery> cqEqNull(canonicalize("{a: null}}"));

    // 'cqEqNumber' and 'cqEqString' get the same key, since both are compatible with this
    // index.
    const auto eqNumberKey = makeKey(*cqEqNumber, indexCores);
    const auto eqStringKey = makeKey(*cqEqString, indexCores);
    ASSERT_EQ(eqNumberKey, eqStringKey);

    // 'cqEqNull' gets a different key, since it is not compatible with this index.
    const auto eqNullKey = makeKey(*cqEqNull, indexCores);
    ASSERT_NOT_EQUALS(eqNullKey, eqNumberKey);

    assertPlanCacheKeysUnequalDueToDiscriminators(eqNullKey, eqNumberKey);
    assertPlanCacheKeysUnequalDueToDiscriminators(eqNullKey, eqStringKey);
}

// When a partial index is present, computeKey() should generate different keys depending on
// whether or not the predicates in the given query "match" the predicates in the partial index
// filter.
TEST(PlanCacheKeyInfoTest, ComputeKeyPartialIndex) {
    BSONObj filterObj = BSON("f" << BSON("$gt" << 0));
    unique_ptr<MatchExpression> filterExpr(parseMatchExpression(filterObj));

    const auto keyPattern = BSON("a" << 1);
    const std::vector<CoreIndexInfo> indexCores = {
        CoreIndexInfo(keyPattern,
                      IndexNames::nameToType(IndexNames::findPluginName(keyPattern)),
                      false,                       // sparse
                      IndexEntry::Identifier{""},  // name
                      filterExpr.get())};          // filterExpr

    unique_ptr<CanonicalQuery> cqGtNegativeFive(canonicalize("{f: {$gt: -5}}"));
    unique_ptr<CanonicalQuery> cqGtZero(canonicalize("{f: {$gt: 0}}"));
    unique_ptr<CanonicalQuery> cqGtFive(canonicalize("{f: {$gt: 5}}"));

    // 'cqGtZero' and 'cqGtFive' get the same key, since both are compatible with this index.
    ASSERT_EQ(makeKey(*cqGtZero, indexCores), makeKey(*cqGtFive, indexCores));

    // 'cqGtNegativeFive' gets a different key, since it is not compatible with this index.
    assertPlanCacheKeysUnequalDueToDiscriminators(makeKey(*cqGtNegativeFive, indexCores),
                                                  makeKey(*cqGtZero, indexCores));
}

TEST(PlanCacheKeyInfoTest, ComputeKeyPartialIndexConjunction) {
    BSONObj filterObj = fromjson("{f: {$gt: 0, $lt: 10}}");
    unique_ptr<MatchExpression> filterExpr(parseMatchExpression(filterObj));

    const auto keyPattern = BSON("a" << 1);
    const std::vector<CoreIndexInfo> indexCores = {
        CoreIndexInfo(keyPattern,
                      IndexNames::nameToType(IndexNames::findPluginName(keyPattern)),
                      false,                       // sparse
                      IndexEntry::Identifier{""},  // name
                      filterExpr.get())};          // filterExpr

    unique_ptr<CanonicalQuery> satisfySinglePredicate(canonicalize("{f: {$gt: 0}}"));
    ASSERT_EQ(makeKey(*satisfySinglePredicate, indexCores).getIndexabilityDiscriminators(), "(0)");

    unique_ptr<CanonicalQuery> satisfyBothPredicates(canonicalize("{f: {$eq: 5}}"));
    ASSERT_EQ(makeKey(*satisfyBothPredicates, indexCores).getIndexabilityDiscriminators(), "(1)");

    unique_ptr<CanonicalQuery> conjSingleField(canonicalize("{f: {$gt: 2, $lt: 9}}"));
    ASSERT_EQ(makeKey(*conjSingleField, indexCores).getIndexabilityDiscriminators(), "(1)");

    unique_ptr<CanonicalQuery> conjSingleFieldNoMatch(canonicalize("{f: {$gt: 2, $lt: 11}}"));
    ASSERT_EQ(makeKey(*conjSingleFieldNoMatch, indexCores).getIndexabilityDiscriminators(), "(0)");

    // Note that these queries get optimized to a single $in over 'f'.
    unique_ptr<CanonicalQuery> disjSingleFieldBothSatisfy(
        canonicalize("{$or: [{f: {$eq: 2}}, {f: {$eq: 3}}]}"));
    ASSERT_EQ(makeKey(*disjSingleFieldBothSatisfy, indexCores).getIndexabilityDiscriminators(),
              "(1)");

    unique_ptr<CanonicalQuery> disjSingleFieldNotSubset(
        canonicalize("{$or: [{f: {$eq: 2}}, {f: {$eq: 11}}]}"));
    ASSERT_EQ(makeKey(*disjSingleFieldNotSubset, indexCores).getIndexabilityDiscriminators(),
              "(0)");
}

TEST(PlanCacheKeyInfoTest, ComputeKeyPartialIndexDisjunction) {
    BSONObj filterObj = fromjson("{$or: [{f: {$gt: 10}}, {f: {$lt: 0}}]}");
    unique_ptr<MatchExpression> filterExpr(parseMatchExpression(filterObj));

    const auto keyPattern = BSON("a" << 1);
    const std::vector<CoreIndexInfo> indexCores = {
        CoreIndexInfo(keyPattern,
                      IndexNames::nameToType(IndexNames::findPluginName(keyPattern)),
                      false,                       // sparse
                      IndexEntry::Identifier{""},  // name
                      filterExpr.get())};          // filterExpr

    unique_ptr<CanonicalQuery> satisfySinglePredicate(canonicalize("{f: {$eq: 11}}"));
    ASSERT_EQ(makeKey(*satisfySinglePredicate, indexCores).getIndexabilityDiscriminators(), "(1)");

    unique_ptr<CanonicalQuery> satisfyNeither(canonicalize("{f: {$eq: 5}}"));
    ASSERT_EQ(makeKey(*satisfyNeither, indexCores).getIndexabilityDiscriminators(), "(0)");

    unique_ptr<CanonicalQuery> conjSingleFieldMatch(canonicalize("{f: {$lt: 20, $gt: 10}}"));
    ASSERT_EQ(makeKey(*conjSingleFieldMatch, indexCores).getIndexabilityDiscriminators(), "(1)");

    unique_ptr<CanonicalQuery> conjSingleFieldNoMatch(canonicalize("{f: {$gt: 2, $lt: 10}}"));
    ASSERT_EQ(makeKey(*conjSingleFieldNoMatch, indexCores).getIndexabilityDiscriminators(), "(0)");

    unique_ptr<CanonicalQuery> conjSingleFieldOverlap(canonicalize("{f: {$gt: 2, $lt: 12}}"));
    ASSERT_EQ(makeKey(*conjSingleFieldOverlap, indexCores).getIndexabilityDiscriminators(), "(0)");

    // Although this query is technically a subset of the partial filter, the logic to determine
    // such ('isSubsetOf' in the code) is conservative in how it compares certain shapes of
    // expression trees.
    unique_ptr<CanonicalQuery> disjSingleFieldBothSatisfy(
        canonicalize("{$or: [{f: {$eq: -1}}, {f: {$gt: 10}}]}"));
    ASSERT_EQ(makeKey(*disjSingleFieldBothSatisfy, indexCores).getIndexabilityDiscriminators(),
              "(0)");

    unique_ptr<CanonicalQuery> disjSingleFieldNotSubset(
        canonicalize("{$or: [{f: {$eq: 2}}, {f: {$eq: 11}}]}"));
    ASSERT_EQ(makeKey(*disjSingleFieldNotSubset, indexCores).getIndexabilityDiscriminators(),
              "(0)");
}

TEST(PlanCacheKeyInfoTest, ComputeKeyPartialIndexNestedDisjunction) {
    BSONObj filterObj = fromjson(R"(
        {$and: [
            {$or: [{f: {$gt: 10}}, {f: {$lt: 0}}]}, 
            {$or: [{f: {$gt: 11}}, {f: {$lt: 1}}]} 
        ]})");
    unique_ptr<MatchExpression> filterExpr(parseMatchExpression(filterObj));

    const auto keyPattern = BSON("a" << 1);
    const std::vector<CoreIndexInfo> indexCores = {
        CoreIndexInfo(keyPattern,
                      IndexNames::nameToType(IndexNames::findPluginName(keyPattern)),
                      false,                       // sparse
                      IndexEntry::Identifier{""},  // name
                      filterExpr.get())};          // filterExpr


    unique_ptr<CanonicalQuery> satisfySinglePredicate(canonicalize("{f: {$eq: 11}}"));
    ASSERT_EQ(makeKey(*satisfySinglePredicate, indexCores).getIndexabilityDiscriminators(), "(0)");

    unique_ptr<CanonicalQuery> notCompat(canonicalize("{f: {$eq: 12}}"));
    ASSERT_EQ(makeKey(*notCompat, indexCores).getIndexabilityDiscriminators(), "(1)");
}

// Query shapes should get the same plan cache key if they have the same collation indexability.
TEST(PlanCacheKeyInfoTest, ComputeKeyCollationIndex) {
    CollatorInterfaceMock collator(CollatorInterfaceMock::MockType::kReverseString);

    const auto keyPattern = BSON("a" << 1);
    const std::vector<CoreIndexInfo> indexCores = {
        CoreIndexInfo(keyPattern,
                      IndexNames::nameToType(IndexNames::findPluginName(keyPattern)),
                      false,                       // sparse
                      IndexEntry::Identifier{""},  // name
                      nullptr,                     // filterExpr
                      &collator)};                 // collation

    unique_ptr<CanonicalQuery> containsString(canonicalize("{a: 'abc'}"));
    unique_ptr<CanonicalQuery> containsObject(canonicalize("{a: {b: 'abc'}}"));
    unique_ptr<CanonicalQuery> containsArray(canonicalize("{a: ['abc', 'xyz']}"));
    unique_ptr<CanonicalQuery> noStrings(canonicalize("{a: 5}"));
    unique_ptr<CanonicalQuery> containsStringHasCollation(
        canonicalize("{a: 'abc'}", "{}", "{}", "{locale: 'mock_reverse_string'}"));

    // 'containsString', 'containsObject', and 'containsArray' have the same key, since none are
    // compatible with the index.
    ASSERT_EQ(makeKey(*containsString, indexCores), makeKey(*containsObject, indexCores));
    ASSERT_EQ(makeKey(*containsString, indexCores), makeKey(*containsArray, indexCores));

    // 'noStrings' gets a different key since it is compatible with the index.
    assertPlanCacheKeysUnequalDueToDiscriminators(makeKey(*containsString, indexCores),
                                                  makeKey(*noStrings, indexCores));
    ASSERT_EQ(makeKey(*containsString, indexCores).getIndexabilityDiscriminators(), "<0>");
    ASSERT_EQ(makeKey(*noStrings, indexCores).getIndexabilityDiscriminators(), "<1>");

    // 'noStrings' and 'containsStringHasCollation' get different keys, since the collation
    // specified in the query is considered part of its shape. However, they have the same index
    // compatibility, so the unstable part of their PlanCacheKeys should be the same.
    auto noStringKey = makeKey(*noStrings, indexCores);
    auto withStringAndCollationKey = makeKey(*containsStringHasCollation, indexCores);
    ASSERT_NE(noStringKey, withStringAndCollationKey);
    ASSERT_EQ(noStringKey.getIndexabilityDiscriminators(),
              withStringAndCollationKey.getIndexabilityDiscriminators());
    ASSERT_NE(noStringKey.getQueryShapeStringData(),
              withStringAndCollationKey.getQueryShapeStringData());

    unique_ptr<CanonicalQuery> inContainsString(canonicalize("{a: {$in: [1, 'abc', 2]}}"));
    unique_ptr<CanonicalQuery> inContainsObject(canonicalize("{a: {$in: [1, {b: 'abc'}, 2]}}"));
    unique_ptr<CanonicalQuery> inContainsArray(canonicalize("{a: {$in: [1, ['abc', 'xyz'], 2]}}"));
    unique_ptr<CanonicalQuery> inNoStrings(canonicalize("{a: {$in: [1, 2]}}"));
    unique_ptr<CanonicalQuery> inContainsStringHasCollation(
        canonicalize("{a: {$in: [1, 'abc', 2]}}", "{}", "{}", "{locale: 'mock_reverse_string'}"));

    // 'inContainsString', 'inContainsObject', and 'inContainsArray' have the same key, since none
    // are compatible with the index.
    ASSERT_EQ(makeKey(*inContainsString, indexCores), makeKey(*inContainsObject, indexCores));
    ASSERT_EQ(makeKey(*inContainsString, indexCores), makeKey(*inContainsArray, indexCores));

    // 'inNoStrings' gets a different key since it is compatible with the index.
    assertPlanCacheKeysUnequalDueToDiscriminators(makeKey(*inContainsString, indexCores),
                                                  makeKey(*inNoStrings, indexCores));
    ASSERT_EQ(makeKey(*inContainsString, indexCores).getIndexabilityDiscriminators(), "<0>");
    ASSERT_EQ(makeKey(*inNoStrings, indexCores).getIndexabilityDiscriminators(), "<1>");

    // 'inNoStrings' and 'inContainsStringHasCollation' get the same key since they compatible with
    // the index.
    ASSERT_NE(makeKey(*inNoStrings, indexCores),
              makeKey(*inContainsStringHasCollation, indexCores));
    ASSERT_EQ(makeKey(*inNoStrings, indexCores).getIndexabilityDiscriminators(),
              makeKey(*inContainsStringHasCollation, indexCores).getIndexabilityDiscriminators());
}

TEST(PlanCacheKeyInfoTest, ComputeKeyWildcardIndex) {
    auto entryProjUpdatePair = makeWildcardUpdate(BSON("a.$**" << 1));

    const std::vector<CoreIndexInfo> indexCores = {entryProjUpdatePair.first};

    // Used to check that two queries have the same shape when no indexes are present.
    PlanCache planCacheWithNoIndexes(5000);

    // Compatible with index.
    unique_ptr<CanonicalQuery> usesPathWithScalar(canonicalize("{a: 'abcdef'}"));
    unique_ptr<CanonicalQuery> usesPathWithEmptyArray(canonicalize("{a: []}"));

    // Not compatible with index.
    unique_ptr<CanonicalQuery> usesPathWithObject(canonicalize("{a: {b: 'abc'}}"));
    unique_ptr<CanonicalQuery> usesPathWithArray(canonicalize("{a: [1, 2]}"));
    unique_ptr<CanonicalQuery> usesPathWithArrayContainingObject(canonicalize("{a: [1, {b: 1}]}"));
    unique_ptr<CanonicalQuery> usesPathWithEmptyObject(canonicalize("{a: {}}"));
    unique_ptr<CanonicalQuery> doesNotUsePath(canonicalize("{b: 1234}"));

    // Check that the queries which are compatible with the index have the same key.
    ASSERT_EQ(makeKey(*usesPathWithScalar, indexCores),
              makeKey(*usesPathWithEmptyArray, indexCores));

    // Check that the queries which have the same path as the index, but aren't supported, have
    // different keys.
    ASSERT_EQ(makeKey(*usesPathWithScalar), makeKey(*usesPathWithObject));
    assertPlanCacheKeysUnequalDueToDiscriminators(makeKey(*usesPathWithScalar, indexCores),
                                                  makeKey(*usesPathWithObject, indexCores));
    ASSERT_EQ(makeKey(*usesPathWithScalar, indexCores).getIndexabilityDiscriminators(), "<1>");
    ASSERT_EQ(makeKey(*usesPathWithObject, indexCores).getIndexabilityDiscriminators(), "<0>");

    ASSERT_EQ(makeKey(*usesPathWithObject, indexCores), makeKey(*usesPathWithArray, indexCores));
    ASSERT_EQ(makeKey(*usesPathWithObject, indexCores),
              makeKey(*usesPathWithArrayContainingObject, indexCores));

    // The query on 'b' should have a completely different plan cache key (both with and without a
    // wildcard index).
    ASSERT_NE(makeKey(*usesPathWithScalar), makeKey(*doesNotUsePath));
    ASSERT_NE(makeKey(*usesPathWithScalar, indexCores), makeKey(*doesNotUsePath, indexCores));
    ASSERT_NE(makeKey(*usesPathWithObject), makeKey(*doesNotUsePath));
    ASSERT_NE(makeKey(*usesPathWithObject, indexCores), makeKey(*doesNotUsePath, indexCores));

    // More complex queries with similar shapes. This is to ensure that plan cache key encoding
    // correctly traverses the expression tree.
    auto orQueryWithOneBranchAllowed = canonicalize("{$or: [{a: 3}, {a: {$gt: [1,2]}}]}");
    // Same shape except 'a' is compared to an object.
    auto orQueryWithNoBranchesAllowed =
        canonicalize("{$or: [{a: {someobject: 1}}, {a: {$gt: [1,2]}}]}");
    // The two queries should have the same shape when no indexes are present, but different shapes
    // when a $** index is present.
    ASSERT_EQ(makeKey(*orQueryWithOneBranchAllowed), makeKey(*orQueryWithNoBranchesAllowed));
    assertPlanCacheKeysUnequalDueToDiscriminators(
        makeKey(*orQueryWithOneBranchAllowed, indexCores),
        makeKey(*orQueryWithNoBranchesAllowed, indexCores));
    ASSERT_EQ(makeKey(*orQueryWithOneBranchAllowed, indexCores).getIndexabilityDiscriminators(),
              "<1><0>");
    ASSERT_EQ(makeKey(*orQueryWithNoBranchesAllowed, indexCores).getIndexabilityDiscriminators(),
              "<0><0>");
}

TEST(PlanCacheKeyInfoTest, ComputeKeyWildcardIndexDiscriminatesEqualityToEmptyObj) {
    auto entryProjUpdatePair = makeWildcardUpdate(BSON("a.$**" << 1));

    const std::vector<CoreIndexInfo> indexCores = {entryProjUpdatePair.first};

    // Equality to empty obj and equality to non-empty obj have different plan cache keys.
    std::unique_ptr<CanonicalQuery> equalsEmptyObj(canonicalize("{a: {}}"));
    std::unique_ptr<CanonicalQuery> equalsNonEmptyObj(canonicalize("{a: {b: 1}}"));
    assertPlanCacheKeysUnequalDueToDiscriminators(makeKey(*equalsEmptyObj, indexCores),
                                                  makeKey(*equalsNonEmptyObj, indexCores));
    ASSERT_EQ(makeKey(*equalsNonEmptyObj, indexCores).getIndexabilityDiscriminators(), "<0>");
    ASSERT_EQ(makeKey(*equalsEmptyObj, indexCores).getIndexabilityDiscriminators(), "<1>");

    // $in with empty obj and $in with non-empty obj have different plan cache keys.
    std::unique_ptr<CanonicalQuery> inWithEmptyObj(canonicalize("{a: {$in: [{}]}}"));
    std::unique_ptr<CanonicalQuery> inWithNonEmptyObj(canonicalize("{a: {$in: [{b: 1}]}}"));
    assertPlanCacheKeysUnequalDueToDiscriminators(makeKey(*inWithEmptyObj, indexCores),
                                                  makeKey(*inWithNonEmptyObj, indexCores));
    ASSERT_EQ(makeKey(*inWithNonEmptyObj, indexCores).getIndexabilityDiscriminators(), "<0>");
    ASSERT_EQ(makeKey(*inWithEmptyObj, indexCores).getIndexabilityDiscriminators(), "<1>");
}

TEST(PlanCacheKeyInfoTest, ComputeKeyWildcardDiscriminatesCorrectlyBasedOnPartialFilterExpression) {
    BSONObj filterObj = BSON("x" << BSON("$gt" << 0));
    std::unique_ptr<MatchExpression> filterExpr(parseMatchExpression(filterObj));

    auto entryProjUpdatePair = makeWildcardUpdate(BSON("$**" << 1));
    auto indexInfo = std::move(entryProjUpdatePair.first);
    indexInfo.filterExpr = filterExpr.get();

    const std::vector<CoreIndexInfo> indexCores = {indexInfo};

    // Test that queries on field 'x' are discriminated based on their relationship with the partial
    // filter expression.
    {
        auto compatibleWithFilter = canonicalize("{x: {$eq: 5}}");
        auto incompatibleWithFilter = canonicalize("{x: {$eq: -5}}");
        auto compatibleKey = makeKey(*compatibleWithFilter, indexCores);
        auto incompatibleKey = makeKey(*incompatibleWithFilter, indexCores);

        assertPlanCacheKeysUnequalDueToDiscriminators(compatibleKey, incompatibleKey);
        // The discriminator strings have the format "<xx>". That is, there are two discriminator
        // bits for the "x" predicate, the first pertaining to the partialFilterExpression and the
        // second around applicability to the wildcard index.
        ASSERT_EQ(compatibleKey.getIndexabilityDiscriminators(), "(1)<1>");
        ASSERT_EQ(incompatibleKey.getIndexabilityDiscriminators(), "(0)<1>");
    }

    // The partialFilterExpression should lead to a discriminator over field 'x', but not over 'y'.
    // (Separately, there are wildcard-related discriminator bits for both 'x' and 'y'.)
    {
        auto compatibleWithFilter = canonicalize("{x: {$eq: 5}, y: 1}");
        auto incompatibleWithFilter = canonicalize("{x: {$eq: -5}, y: 1}");
        auto compatibleKey = makeKey(*compatibleWithFilter, indexCores);
        auto incompatibleKey = makeKey(*incompatibleWithFilter, indexCores);

        assertPlanCacheKeysUnequalDueToDiscriminators(compatibleKey, incompatibleKey);
        // The discriminator strings have the format "<xx><y>". That is, there are two discriminator
        // bits for the "x" predicate (the first pertaining to the partialFilterExpression, the
        // second around applicability to the wildcard index) and one discriminator bit for "y".
        ASSERT_EQ(compatibleKey.getIndexabilityDiscriminators(), "(1)<1><1>");
        ASSERT_EQ(incompatibleKey.getIndexabilityDiscriminators(), "(0)<1><1>");
    }

    // $eq:null predicates cannot be assigned to a wildcard index. Make sure that this is
    // discrimated correctly. This test is designed to reproduce SERVER-48614.
    {
        auto compatibleQuery = canonicalize("{x: {$eq: 5}, y: 1}");
        auto incompatibleQuery = canonicalize("{x: {$eq: 5}, y: null}");
        auto compatibleKey = makeKey(*compatibleQuery, indexCores);
        auto incompatibleKey = makeKey(*incompatibleQuery, indexCores);

        assertPlanCacheKeysUnequalDueToDiscriminators(compatibleKey, incompatibleKey);
        // The discriminator strings have the format "<xx><y>". That is, there are two discriminator
        // bits for the "x" predicate (the first pertaining to the partialFilterExpression, the
        // second around applicability to the wildcard index) and one discriminator bit for "y".
        ASSERT_EQ(compatibleKey.getIndexabilityDiscriminators(), "(1)<1><1>");
        ASSERT_EQ(incompatibleKey.getIndexabilityDiscriminators(), "(1)<1><0>");
    }

    // Test that the discriminators are correct for an $eq:null predicate on 'x'. This predicate is
    // imcompatible for two reasons: null equality predicates cannot be answered by wildcard
    // indexes, and the predicate is not compatible with the partial filter expression. This should
    // result in two "0" bits inside the discriminator string.
    {
        auto key = makeKey(*canonicalize("{x: {$eq: null}}"), indexCores);
        ASSERT_EQ(key.getIndexabilityDiscriminators(), "(0)<0>");
    }
}

TEST(PlanCacheKeyInfoTest, DifferentQueryEngines) {
    const auto keyPattern = BSON("a" << 1);
    const std::vector<CoreIndexInfo> indexCores = {
        CoreIndexInfo(keyPattern,
                      IndexNames::nameToType(IndexNames::findPluginName(keyPattern)),
                      false,                         // sparse
                      IndexEntry::Identifier{""})};  // name

    // Helper to construct a plan cache key given the 'forceClassicEngine' flag.
    auto constructPlanCacheKey = [&](bool forceClassicEngine) {
        RAIIServerParameterControllerForTest controller{"internalQueryFrameworkControl",
                                                        forceClassicEngine ? "forceClassicEngine"
                                                                           : "trySbeEngine"};
        const auto queryStr = "{a: 0}";
        unique_ptr<CanonicalQuery> cq(canonicalize(queryStr));
        return makeKey(*cq, indexCores);
    };

    const auto classicEngineKey = constructPlanCacheKey(true);
    const auto noClassicEngineKey = constructPlanCacheKey(false);

    // Check that the two plan cache keys are not equal because the plans were created under
    // different engines.
    assertPlanCacheKeysUnequalDueToForceClassicEngineValue(classicEngineKey, noClassicEngineKey);
}

TEST(PlanCacheKeyInfoTest, ComputeKeyWildcardDiscriminatesCorrectlyWithPartialFilterAndExpression) {
    // Partial filter is an AND of multiple conditions.
    BSONObj filterObj = BSON("x" << BSON("$gt" << 0) << "y" << BSON("$gt" << 0));
    std::unique_ptr<MatchExpression> filterExpr(parseMatchExpression(filterObj));

    auto entryProjUpdatePair = makeWildcardUpdate(BSON("$**" << 1));
    auto indexInfo = std::move(entryProjUpdatePair.first);
    indexInfo.filterExpr = filterExpr.get();

    const std::vector<CoreIndexInfo> indexCores = {indexInfo};

    {
        // TODO update The discriminators should have the format <xx><yy><z>. The 'z' predicate has
        // just one discriminator because it is not referenced in the partial filter expression. All
        // predicates are compatible.
        auto key = makeKey(*canonicalize("{x: {$eq: 1}, y: {$eq: 2}, z: {$eq: 3}}"), indexCores);
        ASSERT_EQ(key.getIndexabilityDiscriminators(), "(1)<1><1><1>");
    }

    {
        // The discriminators should have the format <xx><yy><z>. The 'y' predicate is not
        // compatible with the partial filter expression, leading to one of the 'y' bits being set
        // to zero.
        auto key = makeKey(*canonicalize("{x: {$eq: 1}, y: {$eq: -2}, z: {$eq: 3}}"), indexCores);
        ASSERT_EQ(key.getIndexabilityDiscriminators(), "(0)<1><1><1>");
    }
}

TEST(PlanCacheKeyInfoTest, ComputeKeyDiscriminatesCorrectlyWithPartialFilterAndWildcardProjection) {
    BSONObj filterObj = BSON("x" << BSON("$gt" << 0));
    std::unique_ptr<MatchExpression> filterExpr(parseMatchExpression(filterObj));

    auto entryProjUpdatePair = makeWildcardUpdate(BSON("y.$**" << 1));
    auto indexInfo = std::move(entryProjUpdatePair.first);
    indexInfo.filterExpr = filterExpr.get();

    const std::vector<CoreIndexInfo> indexCores = {indexInfo};

    {
        // The discriminators have the format <x><y>. The discriminator for 'x' indicates whether
        // the predicate is compatible with the partial filter expression, whereas the disciminator
        // for 'y' is about compatibility with the wildcard index.
        auto key = makeKey(*canonicalize("{x: {$eq: 1}, y: {$eq: 2}, z: {$eq: 3}}"), indexCores);
        ASSERT_EQ(key.getIndexabilityDiscriminators(), "(1)<1>");
    }

    {
        // Similar to the previous case, except with an 'x' predicate that is incompatible with the
        // partial filter expression.
        auto key = makeKey(*canonicalize("{x: {$eq: -1}, y: {$eq: 2}, z: {$eq: 3}}"), indexCores);
        ASSERT_EQ(key.getIndexabilityDiscriminators(), "(0)<1>");
    }

    {
        // Case where the 'y' predicate is not compatible with the wildcard index.
        auto key = makeKey(*canonicalize("{x: {$eq: 1}, y: {$eq: null}, z: {$eq: 3}}"), indexCores);
        ASSERT_EQ(key.getIndexabilityDiscriminators(), "(1)<0>");
    }
}

TEST(PlanCacheKeyInfoTest, ComputeKeyWildcardDiscriminatesCorrectlyWithPartialFilterOnNestedField) {
    BSONObj filterObj = BSON("x.y" << BSON("$gt" << 0));
    std::unique_ptr<MatchExpression> filterExpr(parseMatchExpression(filterObj));

    auto entryProjUpdatePair = makeWildcardUpdate(BSON("$**" << 1));
    auto indexInfo = std::move(entryProjUpdatePair.first);
    indexInfo.filterExpr = filterExpr.get();

    const std::vector<CoreIndexInfo> indexCores = {indexInfo};

    {
        // The discriminators have the format <x><(x.y)(x.y)<y>. All predicates are compatible
        auto key =
            makeKey(*canonicalize("{x: {$eq: 1}, y: {$eq: 2}, 'x.y': {$eq: 3}}"), indexCores);
        ASSERT_EQ(key.getIndexabilityDiscriminators(), "(1)<1><1><1>");
    }

    {
        // Here, the predicate on "x.y" is not compatible with the partial filter expression.
        auto key =
            makeKey(*canonicalize("{x: {$eq: 1}, y: {$eq: 2}, 'x.y': {$eq: -3}}"), indexCores);
        ASSERT_EQ(key.getIndexabilityDiscriminators(), "(0)<1><1><1>");
    }
}

TEST(PlanCacheKeyInfoTest, StableKeyDoesNotChangeAcrossIndexCreation) {
    unique_ptr<CanonicalQuery> cq(canonicalize("{a: 0}}"));
    const auto preIndexKey = makeKey(*cq);
    const auto preIndexStableKey = preIndexKey.getQueryShape();
    ASSERT_EQ(preIndexKey.getIndexabilityDiscriminators(), "");

    const auto keyPattern = BSON("a" << 1);
    // Create a sparse index (which requires a discriminator).
    const std::vector<CoreIndexInfo> indexCores = {
        CoreIndexInfo(keyPattern,
                      IndexNames::nameToType(IndexNames::findPluginName(keyPattern)),
                      true,                          // sparse
                      IndexEntry::Identifier{""})};  // name

    const auto postIndexKey = makeKey(*cq, indexCores);
    const auto postIndexStableKey = postIndexKey.getQueryShape();
    ASSERT_NE(preIndexKey, postIndexKey);
    ASSERT_EQ(preIndexStableKey, postIndexStableKey);
    ASSERT_EQ(postIndexKey.getIndexabilityDiscriminators(), "<1>");
}

TEST(PlanCacheKeyInfoTest, ComputeKeyNotEqualsArray) {
    unique_ptr<CanonicalQuery> cqNeArray(canonicalize("{a: {$ne: [1]}}"));
    unique_ptr<CanonicalQuery> cqNeScalar(canonicalize("{a: {$ne: 123}}"));

    const auto noIndexNeArrayKey = makeKey(*cqNeArray);
    const auto noIndexNeScalarKey = makeKey(*cqNeScalar);
    ASSERT_EQ(noIndexNeArrayKey.getIndexabilityDiscriminators(), "<0>");
    ASSERT_EQ(noIndexNeScalarKey.getIndexabilityDiscriminators(), "<1>");
    ASSERT_EQ(noIndexNeScalarKey.getQueryShape(), noIndexNeArrayKey.getQueryShape());

    const auto keyPattern = BSON("a" << 1);
    // Create a normal btree index. It will have a discriminator.
    const std::vector<CoreIndexInfo> indexCores = {
        CoreIndexInfo(keyPattern,
                      IndexNames::nameToType(IndexNames::findPluginName(keyPattern)),
                      false,                         // sparse
                      IndexEntry::Identifier{""})};  // name*/

    const auto withIndexNeArrayKey = makeKey(*cqNeArray, indexCores);
    const auto withIndexNeScalarKey = makeKey(*cqNeScalar, indexCores);

    ASSERT_NE(noIndexNeArrayKey, withIndexNeArrayKey);
    ASSERT_EQ(noIndexNeArrayKey.getQueryShape(), withIndexNeArrayKey.getQueryShape());

    ASSERT_EQ(noIndexNeScalarKey.getQueryShape(), withIndexNeScalarKey.getQueryShape());
    // There will be one discriminator for the $not and another for the leaf node ({$eq: 123}).
    ASSERT_EQ(withIndexNeScalarKey.getIndexabilityDiscriminators(), "<1><1>");
    // There will be one discriminator for the $not and another for the leaf node ({$eq: [1]}).
    // Since the index can support equality to an array, the second discriminator will have a value
    // of '1'.
    ASSERT_EQ(withIndexNeArrayKey.getIndexabilityDiscriminators(), "<0><1>");
}

TEST(PlanCacheKeyInfoTest, ComputeKeyNinArray) {
    unique_ptr<CanonicalQuery> cqNinArray(canonicalize("{a: {$nin: [123, [1]]}}"));
    unique_ptr<CanonicalQuery> cqNinScalar(canonicalize("{a: {$nin: [123, 456]}}"));

    const auto noIndexNinArrayKey = makeKey(*cqNinArray);
    const auto noIndexNinScalarKey = makeKey(*cqNinScalar);
    ASSERT_EQ(noIndexNinArrayKey.getIndexabilityDiscriminators(), "<0>");
    ASSERT_EQ(noIndexNinScalarKey.getIndexabilityDiscriminators(), "<1>");
    ASSERT_EQ(noIndexNinScalarKey.getQueryShape(), noIndexNinArrayKey.getQueryShape());

    const auto keyPattern = BSON("a" << 1);
    // Create a normal btree index. It will have a discriminator.
    const std::vector<CoreIndexInfo> indexCores = {
        CoreIndexInfo(keyPattern,
                      IndexNames::nameToType(IndexNames::findPluginName(keyPattern)),
                      false,                         // sparse
                      IndexEntry::Identifier{""})};  // name

    const auto withIndexNinArrayKey = makeKey(*cqNinArray, indexCores);
    const auto withIndexNinScalarKey = makeKey(*cqNinScalar, indexCores);

    // The unstable part of the key for $nin: [<array>] should have changed. The stable part,
    // however, should not.
    ASSERT_EQ(noIndexNinArrayKey.getQueryShape(), withIndexNinArrayKey.getQueryShape());
    ASSERT_NE(noIndexNinArrayKey.getIndexabilityDiscriminators(),
              withIndexNinArrayKey.getIndexabilityDiscriminators());

    ASSERT_EQ(noIndexNinScalarKey.getQueryShape(), withIndexNinScalarKey.getQueryShape());
    ASSERT_EQ(withIndexNinArrayKey.getIndexabilityDiscriminators(), "<0><1>");
    ASSERT_EQ(withIndexNinScalarKey.getIndexabilityDiscriminators(), "<1><1>");
}

// Test for a bug which would be easy to introduce. If we only inserted discriminators for some
// nodes, we would have a problem. For example if our "stable" key was:
// (or[nt[eqa],nt[eqa]])
// And there was just one discriminator:
// <0>

// Whether the discriminator referred to the first not-eq node or the second would be
// ambiguous. This would make it possible for two queries with different shapes (and different
// plans) to get the same plan cache key. We test that this does not happen for a simple example.
TEST(PlanCacheKeyInfoTest, PlanCacheKeyCollision) {
    unique_ptr<CanonicalQuery> cqNeA(canonicalize("{$or: [{a: {$ne: 5}}, {a: {$ne: [12]}}]}"));
    unique_ptr<CanonicalQuery> cqNeB(canonicalize("{$or: [{a: {$ne: [12]}}, {a: {$ne: 5}}]}"));

    const auto keyA = makeKey(*cqNeA);
    const auto keyB = makeKey(*cqNeB);
    ASSERT_EQ(keyA.getQueryShape(), keyB.getQueryShape());
    ASSERT_NE(keyA.getIndexabilityDiscriminators(), keyB.getIndexabilityDiscriminators());
    const auto keyPattern = BSON("a" << 1);
    // Create a normal btree index. It will have a discriminator.
    std::vector<CoreIndexInfo> indexCores = {
        CoreIndexInfo(keyPattern,
                      IndexNames::nameToType(IndexNames::findPluginName(keyPattern)),
                      false,                         // sparse
                      IndexEntry::Identifier{""})};  // name
    const auto keyAWithIndex = makeKey(*cqNeA, indexCores);
    const auto keyBWithIndex = makeKey(*cqNeB, indexCores);

    ASSERT_EQ(keyAWithIndex.getQueryShape(), keyBWithIndex.getQueryShape());
    ASSERT_NE(keyAWithIndex.getIndexabilityDiscriminators(),
              keyBWithIndex.getIndexabilityDiscriminators());
}
}  // namespace mongo