summaryrefslogtreecommitdiff
path: root/src/mongo/db/query/planner_access.cpp
blob: bb63b5106ef49f0e2c738161dd11f8b39ec691f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
/**
 *    Copyright (C) 2013 10gen Inc.
 *
 *    This program is free software: you can redistribute it and/or  modify
 *    it under the terms of the GNU Affero General Public License, version 3,
 *    as published by the Free Software Foundation.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU Affero General Public License for more details.
 *
 *    You should have received a copy of the GNU Affero General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the GNU Affero General Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#include "mongo/db/query/planner_access.h"

#include <vector>

#include "mongo/db/matcher/expression_array.h"
#include "mongo/db/matcher/expression_geo.h"
#include "mongo/db/matcher/expression_text.h"
#include "mongo/db/query/indexability.h"
#include "mongo/db/query/index_bounds_builder.h"
#include "mongo/db/query/index_tag.h"
#include "mongo/db/query/qlog.h"
#include "mongo/db/query/query_planner.h"
#include "mongo/db/query/query_planner_common.h"

namespace mongo {

    // static
    QuerySolutionNode* QueryPlannerAccess::makeCollectionScan(const CanonicalQuery& query,
                                                              bool tailable,
                                                              const QueryPlannerParams& params) {
        // Make the (only) node, a collection scan.
        CollectionScanNode* csn = new CollectionScanNode();
        csn->name = query.ns();
        csn->filter.reset(query.root()->shallowClone());
        csn->tailable = tailable;

        // If the sort is {$natural: +-1} this changes the direction of the collection scan.
        const BSONObj& sortObj = query.getParsed().getSort();
        if (!sortObj.isEmpty()) {
            BSONElement natural = sortObj.getFieldDotted("$natural");
            if (!natural.eoo()) {
                csn->direction = natural.numberInt() >= 0 ? 1 : -1;
            }
        }

        // The hint can specify $natural as well.
        if (!query.getParsed().getHint().isEmpty()) {
            BSONElement natural = query.getParsed().getHint().getFieldDotted("$natural");
            if (!natural.eoo()) {
                csn->direction = natural.numberInt() >= 0 ? 1 : -1;
            }
        }

        // QLOG() << "Outputting collscan " << soln->toString() << endl;
        return csn;
    }

    // static
    QuerySolutionNode* QueryPlannerAccess::makeLeafNode(const IndexEntry& index,
                                                        MatchExpression* expr,
                                                        IndexBoundsBuilder::BoundsTightness* tightnessOut) {
        // QLOG() << "making leaf node for " << expr->toString() << endl;
        // We're guaranteed that all GEO_NEARs are first.  This slightly violates the "sort index
        // predicates by their position in the compound index" rule but GEO_NEAR isn't an ixscan.
        // This saves our bacon when we have {foo: 1, bar: "2dsphere"} and the predicate on bar is a
        // $near.  If we didn't get the GEO_NEAR first we'd create an IndexScanNode and later cast
        // it to a GeoNear2DSphereNode
        //
        // This should gracefully deal with the case where we have a pred over foo but no geo clause
        // over bar.  In that case there is no GEO_NEAR to appear first and it's treated like a
        // straight ixscan.
        BSONElement elt = index.keyPattern.firstElement();
        bool indexIs2D = (String == elt.type() && "2d" == elt.String());

        if (MatchExpression::GEO_NEAR == expr->matchType()) {
            // We must not keep the expression node around.
            *tightnessOut = IndexBoundsBuilder::EXACT;
            GeoNearMatchExpression* nearExpr = static_cast<GeoNearMatchExpression*>(expr);
            // 2d geoNear requires a hard limit and as such we take it out before it gets here.  If
            // this happens it's a bug.
            verify(!indexIs2D);
            GeoNear2DSphereNode* ret = new GeoNear2DSphereNode();
            ret->indexKeyPattern = index.keyPattern;
            ret->nq = nearExpr->getData();
            ret->baseBounds.fields.resize(index.keyPattern.nFields());
            return ret;
        }
        else if (indexIs2D) {
            // We must not keep the expression node around.
            *tightnessOut = IndexBoundsBuilder::EXACT;
            verify(MatchExpression::GEO == expr->matchType());
            GeoMatchExpression* nearExpr = static_cast<GeoMatchExpression*>(expr);
            verify(indexIs2D);
            Geo2DNode* ret = new Geo2DNode();
            ret->indexKeyPattern = index.keyPattern;
            ret->gq = nearExpr->getGeoQuery();
            return ret;
        }
        else if (MatchExpression::TEXT == expr->matchType()) {
            // We must not keep the expression node around.
            *tightnessOut = IndexBoundsBuilder::EXACT;
            TextMatchExpression* textExpr = static_cast<TextMatchExpression*>(expr);
            TextNode* ret = new TextNode();
            ret->_indexKeyPattern = index.keyPattern;
            ret->_query = textExpr->getQuery();
            ret->_language = textExpr->getLanguage();
            return ret;
        }
        else {
            // QLOG() << "making ixscan for " << expr->toString() << endl;

            // Note that indexKeyPattern.firstElement().fieldName() may not equal expr->path()
            // because expr might be inside an array operator that provides a path prefix.
            IndexScanNode* isn = new IndexScanNode();
            isn->indexKeyPattern = index.keyPattern;
            isn->indexIsMultiKey = index.multikey;
            isn->bounds.fields.resize(index.keyPattern.nFields());

            IndexBoundsBuilder::translate(expr, index.keyPattern.firstElement(),
                                          &isn->bounds.fields[0], tightnessOut);

            // QLOG() << "bounds are " << isn->bounds.toString() << " exact " << *exact << endl;
            return isn;
        }
    }

    void QueryPlannerAccess::mergeWithLeafNode(MatchExpression* expr, const IndexEntry& index,
                                         size_t pos, IndexBoundsBuilder::BoundsTightness* tightnessOut,
                                         QuerySolutionNode* node, MatchExpression::MatchType mergeType) {

        const StageType type = node->getType();
        verify(STAGE_GEO_NEAR_2D != type);

        if (STAGE_GEO_2D == type) {
            // XXX: 'expr' is possibly indexed by 'node'.  Right now we don't take advantage
            // of covering for 2d indices.
            *tightnessOut = IndexBoundsBuilder::INEXACT_FETCH;
            return;
        }

        IndexBounds* boundsToFillOut = NULL;

        if (STAGE_GEO_NEAR_2DSPHERE == type) {
            GeoNear2DSphereNode* gn = static_cast<GeoNear2DSphereNode*>(node);
            boundsToFillOut = &gn->baseBounds;
        }
        else {
            verify(type == STAGE_IXSCAN);
            IndexScanNode* scan = static_cast<IndexScanNode*>(node);
            boundsToFillOut = &scan->bounds;
        }

        // Get the ixtag->pos-th element of the index key pattern.
        // TODO: cache this instead/with ixtag->pos?
        BSONObjIterator it(index.keyPattern);
        BSONElement keyElt = it.next();
        for (size_t i = 0; i < pos; ++i) {
            verify(it.more());
            keyElt = it.next();
        }
        verify(!keyElt.eoo());
        *tightnessOut = IndexBoundsBuilder::INEXACT_FETCH;

        //QLOG() << "current bounds are " << currentScan->bounds.toString() << endl;
        //QLOG() << "node merging in " << child->toString() << endl;
        //QLOG() << "merging with field " << keyElt.toString(true, true) << endl;
        //QLOG() << "taking advantage of compound index "
        //<< indices[currentIndexNumber].keyPattern.toString() << endl;

        verify(boundsToFillOut->fields.size() > pos);

        OrderedIntervalList* oil = &boundsToFillOut->fields[pos];

        if (boundsToFillOut->fields[pos].name.empty()) {
            IndexBoundsBuilder::translate(expr, keyElt, oil, tightnessOut);
        }
        else {
            if (MatchExpression::AND == mergeType) {
                IndexBoundsBuilder::translateAndIntersect(expr, keyElt, oil, tightnessOut);
            }
            else {
                verify(MatchExpression::OR == mergeType);
                IndexBoundsBuilder::translateAndUnion(expr, keyElt, oil, tightnessOut);
            }
        }
    }

    // static
    void QueryPlannerAccess::alignBounds(IndexBounds* bounds, const BSONObj& kp, int scanDir) {
        BSONObjIterator it(kp);
        size_t oilIdx = 0;
        while (it.more()) {
            BSONElement elt = it.next();
            int direction = (elt.numberInt() >= 0) ? 1 : -1;
            direction *= scanDir;
            if (-1 == direction) {
                vector<Interval>& iv = bounds->fields[oilIdx].intervals;
                // Step 1: reverse the list.
                std::reverse(iv.begin(), iv.end());
                // Step 2: reverse each interval.
                for (size_t i = 0; i < iv.size(); ++i) {
                    QLOG() << "reversing " << iv[i].toString() << endl;
                    iv[i].reverse();
                }
            }
            ++oilIdx;
        }

        if (!bounds->isValidFor(kp, scanDir)) {
            QLOG() << "INVALID BOUNDS: " << bounds->toString() << endl;
            QLOG() << "kp = " << kp.toString() << endl;
            QLOG() << "scanDir = " << scanDir << endl;
            verify(0);
        }
    }

    // static
    void QueryPlannerAccess::finishLeafNode(QuerySolutionNode* node, const IndexEntry& index) {
        const StageType type = node->getType();
        verify(STAGE_GEO_NEAR_2D != type);

        if (STAGE_GEO_2D == type || STAGE_TEXT == type) {
            return;
        }

        IndexBounds* bounds = NULL;

        if (STAGE_GEO_NEAR_2DSPHERE == type) {
            GeoNear2DSphereNode* gnode = static_cast<GeoNear2DSphereNode*>(node);
            bounds = &gnode->baseBounds;
        }
        else {
            verify(type == STAGE_IXSCAN);
            IndexScanNode* scan = static_cast<IndexScanNode*>(node);
            bounds = &scan->bounds;
        }

        // XXX: this currently fills out minkey/maxkey bounds for near queries, fix that.  just
        // set the field name of the near query field when starting a near scan.

        // Find the first field in the scan's bounds that was not filled out.
        // TODO: could cache this.
        size_t firstEmptyField = 0;
        for (firstEmptyField = 0; firstEmptyField < bounds->fields.size(); ++firstEmptyField) {
            if ("" == bounds->fields[firstEmptyField].name) {
                verify(bounds->fields[firstEmptyField].intervals.empty());
                break;
            }
        }

        // All fields are filled out with bounds, nothing to do.
        if (firstEmptyField == bounds->fields.size()) {
            alignBounds(bounds, index.keyPattern);
            return;
        }

        // Skip ahead to the firstEmptyField-th element, where we begin filling in bounds.
        BSONObjIterator it(index.keyPattern);
        for (size_t i = 0; i < firstEmptyField; ++i) {
            verify(it.more());
            it.next();
        }

        // For each field in the key...
        while (it.more()) {
            BSONElement kpElt = it.next();
            // There may be filled-in fields to the right of the firstEmptyField.
            // Example:
            // The index {loc:"2dsphere", x:1}
            // With a predicate over x and a near search over loc.
            if ("" == bounds->fields[firstEmptyField].name) {
                verify(bounds->fields[firstEmptyField].intervals.empty());
                // ...build the "all values" interval.
                IndexBoundsBuilder::allValuesForField(kpElt,
                                                      &bounds->fields[firstEmptyField]);
            }
            ++firstEmptyField;
        }

        // Make sure that the length of the key is the length of the bounds we started.
        verify(firstEmptyField == bounds->fields.size());

        // We create bounds assuming a forward direction but can easily reverse bounds to align
        // according to our desired direction.
        alignBounds(bounds, index.keyPattern);
    }

    // static
    bool QueryPlannerAccess::processIndexScans(const CanonicalQuery& query,
                                         MatchExpression* root,
                                         bool inArrayOperator,
                                         const vector<IndexEntry>& indices,
                                         vector<QuerySolutionNode*>* out) {

        auto_ptr<QuerySolutionNode> currentScan;
        size_t currentIndexNumber = IndexTag::kNoIndex;
        size_t curChild = 0;

        // This 'while' processes all IXSCANs, possibly merging scans by combining the bounds.  We
        // can merge scans in two cases:
        // 1. Filling out subsequent fields in a compound index.
        // 2. Intersecting bounds.  Currently unimplemented.
        while (curChild < root->numChildren()) {
            MatchExpression* child = root->getChild(curChild);

            // If there is no tag, it's not using an index.  We've sorted our children such that the
            // children with tags are first, so we stop now.
            if (NULL == child->getTag()) { break; }

            IndexTag* ixtag = static_cast<IndexTag*>(child->getTag());
            // If there's a tag it must be valid.
            verify(IndexTag::kNoIndex != ixtag->index);

            // If the child can't use an index on its own field, it's indexed by virtue of one of
            // its children having an index.  We don't do anything special here, just add it to
            // the output as-is.
            //
            // NOTE: If the child is logical, it could possibly collapse into a single ixscan.  we
            // ignore this for now.
            if (!Indexability::nodeCanUseIndexOnOwnField(child)) {
                if (!inArrayOperator) {
                    // The logical sub-tree is responsible for fully evaluating itself.  Any
                    // required filters or fetches are already hung on it.  As such, we remove the
                    // filter branch from our tree.  buildIndexedDataAccess takes ownership of the
                    // child.
                    root->getChildVector()->erase(root->getChildVector()->begin() + curChild);
                    // The curChild of today is the curChild+1 of yesterday.
                }
                else {
                    ++curChild;
                }

                // If inArrayOperator: takes ownership of child, which is OK, since we detached
                // child from root.
                QuerySolutionNode* childSolution = buildIndexedDataAccess(query,
                                                                          child,
                                                                          inArrayOperator,
                                                                          indices);
                if (NULL == childSolution) { return false; }
                out->push_back(childSolution);
                continue;
            }

            // If we're here, we now know that 'child' can use an index directly and the index is
            // over the child's field.

            // If the child we're looking at uses a different index than the current index scan, add
            // the current index scan to the output as we're done with it.  The index scan created
            // by the child then becomes our new current index scan.  Note that the current scan
            // could be NULL, in which case we don't output it.  The rest of the logic is identical.
            //
            // If the child uses the same index as the current index scan, we may be able to merge
            // the bounds for the two scans.
            //
            // Guiding principle: must the values we're testing come from the same array in the
            // document?  If so, we can combine bounds (via intersection or compounding).  If not,
            // we can't.
            //
            // If the index is NOT multikey, it's always semantically correct to combine bounds,
            // as there are no arrays to worry about.
            //
            // If the index is multikey, there are arrays of values.  There are three issues:
            //
            // 1. We can't intersect bounds even if the bounds are not on a compound index.
            //    Example:
            //    Let's say we have the document {a: [5, 7]}.
            //    This document satisfies the query {$and: [ {a: 5}, {a: 7} ] }
            //    For the index {a:1} we have the keys {"": 5} and {"": 7}.
            //    Each child of the AND is tagged with the index {a: 1}
            //    The interval for the {a: 5} branch is [5, 5].  It is exact.
            //    The interval for the {a: 7} branch is [7, 7].  It is exact.
            //    The intersection of the intervals is {}.
            //    If we scan over {}, the intersection of the intervals, we will retrieve nothing.
            //
            // 2. If we're using a compound index, we can only specify bounds for the first field.
            //    Example:
            //    Let's say we have the document {a: [ {b: 3}, {c: 4} ] }
            //    This document satisfies the query {'a.b': 3, 'a.c': 4}.
            //    For the index {'a.b': 1, 'a.c': 1} we have the keys {"": 3, "": null} and
            //                                                        {"": null, "": 4}.
            //    Let's use the aforementioned index to answer the query.
            //    The bounds for 'a.b' are [3,3], and the bounds for 'a.c' are [4,4].
            //    If we combine the bounds, we would only look at keys {"": 3, "":4 }.
            //    Therefore we wouldn't look at the document's keys in the index.
            //    Therefore we don't combine bounds.
            //
            // 3. There is an exception to (2), and that is when we're evaluating an $elemMatch.
            //    Example:
            //    Our query is a: {$elemMatch: {b:3, c:4}}.
            //    Let's say that we have the index {'a.b': 1, 'a.c': 1} as in (2).
            //    $elemMatch requires if a.b==3 and a.c==4, the predicates must be satisfied from
            //    the same array entry.
            //    If those values are both present in the same array, the index key for the
            //    aforementioned index will be {"":3, "":4}
            //    Therefore we can intersect bounds.

            // TODO: we should also merge if we're in an array operator, but only when we figure out index13.js.
            if (NULL != currentScan.get() && (currentIndexNumber == ixtag->index) && !indices[currentIndexNumber].multikey) {
                // The child uses the same index we're currently building a scan for.  Merge
                // the bounds and filters.
                verify(currentIndexNumber == ixtag->index);

                IndexBoundsBuilder::BoundsTightness tightness = IndexBoundsBuilder::INEXACT_FETCH;
                mergeWithLeafNode(child, indices[currentIndexNumber], ixtag->pos, &tightness,
                                  currentScan.get(), root->matchType());

                if (tightness == IndexBoundsBuilder::EXACT) {
                    root->getChildVector()->erase(root->getChildVector()->begin()
                                                  + curChild);
                    delete child;
                }
                else if (tightness == IndexBoundsBuilder::INEXACT_COVERED) {
                    // The bounds are not exact, but the information needed to
                    // evaluate the predicate is in the index key. Remove the
                    // MatchExpression from its parent and attach it to the filter
                    // of the index scan we're building.
                    root->getChildVector()->erase(root->getChildVector()->begin()
                                                  + curChild);

                    _addFilterToSolutionNode(currentScan.get(), child, root->matchType());
                }
                else if (root->matchType() == MatchExpression::OR) {
                    // In the AND case, the filter can be brought above the AND node.
                    // But in the OR case, the filter only applies to one branch, so
                    // we must affix curChild's filter now. In order to apply the filter
                    // to the proper OR branch, create a FETCH node with the filter whose
                    // child is the IXSCAN.
                    finishLeafNode(currentScan.get(), indices[currentIndexNumber]);
                    root->getChildVector()->erase(root->getChildVector()->begin()
                                                  + curChild);

                    FetchNode* fetch = new FetchNode();
                    // takes ownership
                    fetch->filter.reset(child);
                    // takes ownership
                    fetch->children.push_back(currentScan.release());
                    // takes ownership
                    out->push_back(fetch);

                    currentIndexNumber = IndexTag::kNoIndex;
                }
                else {
                    // We keep curChild in the AND for affixing later.
                    ++curChild;
                }
            }
            else {
                if (NULL != currentScan.get()) {
                    finishLeafNode(currentScan.get(), indices[currentIndexNumber]);
                    out->push_back(currentScan.release());
                }
                else {
                    verify(IndexTag::kNoIndex == currentIndexNumber);
                }

                currentIndexNumber = ixtag->index;

                IndexBoundsBuilder::BoundsTightness tightness = IndexBoundsBuilder::INEXACT_FETCH;
                currentScan.reset(makeLeafNode(indices[currentIndexNumber],
                                                child, &tightness));

                if (tightness == IndexBoundsBuilder::EXACT && !inArrayOperator) {
                    // The bounds answer the predicate, and we can remove the expression from the
                    // root.  NOTE(opt): Erasing entry 0, 1, 2, ... could be kind of n^2, maybe
                    // optimize later.
                    root->getChildVector()->erase(root->getChildVector()->begin()
                                                  + curChild);
                    delete child;
                    // Don't increment curChild.
                }
                else if (tightness == IndexBoundsBuilder::INEXACT_COVERED) {
                    // The bounds are not exact, but the information needed to
                    // evaluate the predicate is in the index key. Remove the
                    // MatchExpression from its parent and attach it to the filter
                    // of the index scan we're building.
                    root->getChildVector()->erase(root->getChildVector()->begin()
                                                  + curChild);

                    _addFilterToSolutionNode(currentScan.get(), child, root->matchType());
                }
                else if (root->matchType() == MatchExpression::OR) {
                    // In the AND case, the filter can be brought above the AND node.
                    // But in the OR case, the filter only applies to one branch, so
                    // we must affix curChild's filter now. In order to apply the filter
                    // to the proper OR branch, create a FETCH node with the filter whose
                    // child is the IXSCAN.
                    finishLeafNode(currentScan.get(), indices[currentIndexNumber]);
                    root->getChildVector()->erase(root->getChildVector()->begin()
                                                  + curChild);

                    FetchNode* fetch = new FetchNode();
                    // takes ownership
                    fetch->filter.reset(child);
                    // takes ownership
                    fetch->children.push_back(currentScan.release());
                    // takes ownership
                    out->push_back(fetch);

                    currentIndexNumber = IndexTag::kNoIndex;
                }
                else {
                    // We keep curChild in the AND for affixing later as a filter.
                    ++curChild;
                }
            }
        }

        // Output the scan we're done with, if it exists.
        if (NULL != currentScan.get()) {
            finishLeafNode(currentScan.get(), indices[currentIndexNumber]);
            out->push_back(currentScan.release());
        }

        return true;
    }

    // static
    QuerySolutionNode* QueryPlannerAccess::buildIndexedAnd(const CanonicalQuery& query,
                                                     MatchExpression* root,
                                                     bool inArrayOperator,
                                                     const vector<IndexEntry>& indices) {
        auto_ptr<MatchExpression> autoRoot;
        if (!inArrayOperator) {
            autoRoot.reset(root);
        }

        vector<QuerySolutionNode*> ixscanNodes;
        if (!processIndexScans(query, root, inArrayOperator, indices, &ixscanNodes)) {
            return NULL;
        }

        //
        // Process all non-indexed predicates.  We hang these above the AND with a fetch and
        // filter.
        //

        // This is the node we're about to return.
        QuerySolutionNode* andResult;

        // We must use an index for at least one child of the AND.  We shouldn't be here if this
        // isn't the case.
        verify(ixscanNodes.size() >= 1);

        // Short-circuit: an AND of one child is just the child.
        if (ixscanNodes.size() == 1) {
            andResult = ixscanNodes[0];
        }
        else {
            // Figure out if we want AndHashNode or AndSortedNode.
            bool allSortedByDiskLoc = true;
            for (size_t i = 0; i < ixscanNodes.size(); ++i) {
                if (!ixscanNodes[i]->sortedByDiskLoc()) {
                    allSortedByDiskLoc = false;
                    break;
                }
            }
            if (allSortedByDiskLoc) {
                AndSortedNode* asn = new AndSortedNode();
                asn->children.swap(ixscanNodes);
                andResult = asn;
            }
            else {
                AndHashNode* ahn = new AndHashNode();
                ahn->children.swap(ixscanNodes);
                andResult = ahn;
            }
        }

        // Don't bother doing any kind of fetch analysis lite if we're doing it anyway above us.
        if (inArrayOperator) {
            return andResult;
        }

        // If there are any nodes still attached to the AND, we can't answer them using the
        // index, so we put a fetch with filter.
        if (root->numChildren() > 0) {
            FetchNode* fetch = new FetchNode();
            verify(NULL != autoRoot.get());
            // Takes ownership.
            fetch->filter.reset(autoRoot.release());
            // takes ownership
            fetch->children.push_back(andResult);
            andResult = fetch;
        }
        else {
            // root has no children, let autoRoot get rid of it when it goes out of scope.
        }

        return andResult;
    }

    // static
    QuerySolutionNode* QueryPlannerAccess::buildIndexedOr(const CanonicalQuery& query,
                                                    MatchExpression* root,
                                                    bool inArrayOperator,
                                                    const vector<IndexEntry>& indices) {
        auto_ptr<MatchExpression> autoRoot;
        if (!inArrayOperator) {
            autoRoot.reset(root);
        }

        vector<QuerySolutionNode*> ixscanNodes;
        if (!processIndexScans(query, root, inArrayOperator, indices, &ixscanNodes)) {
            return NULL;
        }

        // Unlike an AND, an OR cannot have filters hanging off of it.  We stop processing
        // when any of our children lack index tags.  If a node lacks an index tag it cannot
        // be answered via an index.
        if (!inArrayOperator && 0 != root->numChildren()) {
            warning() << "planner OR error, non-indexed child of OR.";
            // We won't enumerate an OR without indices for each child, so this isn't an issue, even
            // if we have an AND with an OR child -- we won't get here unless the OR is fully
            // indexed.
            return NULL;
        }

        QuerySolutionNode* orResult = NULL;

        // An OR of one node is just that node.
        if (1 == ixscanNodes.size()) {
            orResult = ixscanNodes[0];
        }
        else {
            bool shouldMergeSort = false;

            if (!query.getParsed().getSort().isEmpty()) {
                const BSONObj& desiredSort = query.getParsed().getSort();

                // If there exists a sort order that is present in each child, we can merge them and
                // maintain that sort order / those sort orders.
                ixscanNodes[0]->computeProperties();
                BSONObjSet sharedSortOrders = ixscanNodes[0]->getSort();

                if (!sharedSortOrders.empty()) {
                    for (size_t i = 1; i < ixscanNodes.size(); ++i) {
                        ixscanNodes[i]->computeProperties();
                        BSONObjSet isect;
                        set_intersection(sharedSortOrders.begin(),
                                sharedSortOrders.end(),
                                ixscanNodes[i]->getSort().begin(),
                                ixscanNodes[i]->getSort().end(),
                                std::inserter(isect, isect.end()),
                                BSONObjCmp());
                        sharedSortOrders = isect;
                        if (sharedSortOrders.empty()) {
                            break;
                        }
                    }
                }

                // XXX: consider reversing?
                shouldMergeSort = (sharedSortOrders.end() != sharedSortOrders.find(desiredSort));
            }

            if (shouldMergeSort) {
                MergeSortNode* msn = new MergeSortNode();
                msn->sort = query.getParsed().getSort();
                msn->children.swap(ixscanNodes);
                orResult = msn;
            }
            else {
                OrNode* orn = new OrNode();
                orn->children.swap(ixscanNodes);
                orResult = orn;
            }
        }

        // OR must have an index for each child, so we should have detached all children from
        // 'root', and there's nothing useful to do with an empty or MatchExpression.  We let it die
        // via autoRoot.

        return orResult;
    }

    // static
    QuerySolutionNode* QueryPlannerAccess::buildIndexedDataAccess(const CanonicalQuery& query,
                                                            MatchExpression* root,
                                                            bool inArrayOperator,
                                                            const vector<IndexEntry>& indices) {
        if (root->isLogical()) {
            if (MatchExpression::AND == root->matchType()) {
                // Takes ownership of root.
                return buildIndexedAnd(query, root, inArrayOperator, indices);
            }
            else if (MatchExpression::OR == root->matchType()) {
                // Takes ownership of root.
                return buildIndexedOr(query, root, inArrayOperator, indices);
            }
            else {
                // Can't do anything with negated logical nodes index-wise.
                return NULL;
            }
        }
        else {
            auto_ptr<MatchExpression> autoRoot;
            if (!inArrayOperator) {
                autoRoot.reset(root);
            }

            // isArray or isLeaf is true.  Either way, it's over one field, and the bounds builder
            // deals with it.
            if (NULL == root->getTag()) {
                // No index to use here, not in the context of logical operator, so we're SOL.
                return NULL;
            }
            else if (Indexability::nodeCanUseIndexOnOwnField(root)) {
                // Make an index scan over the tagged index #.
                IndexTag* tag = static_cast<IndexTag*>(root->getTag());

                IndexBoundsBuilder::BoundsTightness tightness = IndexBoundsBuilder::EXACT;
                QuerySolutionNode* soln = makeLeafNode(indices[tag->index], root,
                                                       &tightness);
                verify(NULL != soln);
                stringstream ss;
                soln->appendToString(&ss, 0);
                // QLOG() << "about to finish leaf node, soln " << ss.str() << endl;
                finishLeafNode(soln, indices[tag->index]);

                if (inArrayOperator) {
                    return soln;
                }

                // If the bounds are exact, the set of documents that satisfy the predicate is
                // exactly equal to the set of documents that the scan provides.
                //
                // If the bounds are not exact, the set of documents returned from the scan is a
                // superset of documents that satisfy the predicate, and we must check the
                // predicate.

                if (tightness == IndexBoundsBuilder::EXACT) {
                    return soln;
                }
                else if (tightness == IndexBoundsBuilder::INEXACT_COVERED) {
                    verify(NULL == soln->filter.get());
                    soln->filter.reset(autoRoot.release());
                    return soln;
                }
                else { // tightness == IndexBoundsBuilder::INEXACT_FETCH
                    FetchNode* fetch = new FetchNode();
                    verify(NULL != autoRoot.get());
                    fetch->filter.reset(autoRoot.release());
                    fetch->children.push_back(soln);
                    return fetch;
                }
            }
            else if (Indexability::arrayUsesIndexOnChildren(root)) {
                QuerySolutionNode* solution = NULL;

                if (MatchExpression::ALL == root->matchType()) {
                    // Here, we formulate an AND of all the sub-clauses.
                    auto_ptr<AndHashNode> ahn(new AndHashNode());

                    for (size_t i = 0; i < root->numChildren(); ++i) {
                        QuerySolutionNode* node = buildIndexedDataAccess(query,
                                                                         root->getChild(i),
                                                                         true,
                                                                         indices);
                        if (NULL != node) {
                            ahn->children.push_back(node);
                        }
                    }

                    // No children, no point in hashing nothing.
                    if (0 == ahn->children.size()) { return NULL; }

                    // AND of one child is just that child.
                    if (1 == ahn->children.size()) {
                        solution = ahn->children[0];
                        ahn->children.clear();
                        ahn.reset();
                    }
                    else {
                        // More than one child.
                        solution = ahn.release();
                    }
                }
                else {
                    verify(MatchExpression::ELEM_MATCH_OBJECT);
                    // The child is an AND.
                    verify(1 == root->numChildren());
                    solution = buildIndexedDataAccess(query, root->getChild(0), true, indices);
                    if (NULL == solution) { return NULL; }
                }

                // There may be an array operator above us.
                if (inArrayOperator) { return solution; }

                FetchNode* fetch = new FetchNode();
                // Takes ownership of 'root'.
                verify(NULL != autoRoot.get());
                fetch->filter.reset(autoRoot.release());
                fetch->children.push_back(solution);
                return fetch;
            }
        }

        return NULL;
    }

    QuerySolutionNode* QueryPlannerAccess::scanWholeIndex(const IndexEntry& index,
                                                          const CanonicalQuery& query,
                                                          const QueryPlannerParams& params,
                                                          int direction) {
        QuerySolutionNode* solnRoot = NULL;

        // Build an ixscan over the id index, use it, and return it.
        IndexScanNode* isn = new IndexScanNode();
        isn->indexKeyPattern = index.keyPattern;
        isn->indexIsMultiKey = index.multikey;
        isn->bounds.fields.resize(index.keyPattern.nFields());

        // TODO: can we use simple bounds with this compound idx?
        BSONObjIterator it(isn->indexKeyPattern);
        int field = 0;
        while (it.more()) {
            IndexBoundsBuilder::allValuesForField(it.next(), &isn->bounds.fields[field]);
            ++field;
        }
        alignBounds(&isn->bounds, isn->indexKeyPattern);

        if (-1 == direction) {
            QueryPlannerCommon::reverseScans(isn);
            isn->direction = -1;
        }

        MatchExpression* filter = query.root()->shallowClone();

        // If it's find({}) remove the no-op root.
        if (MatchExpression::AND == filter->matchType() && (0 == filter->numChildren())) {
            // XXX wasteful fix
            delete filter;
            solnRoot = isn;
        }
        else {
            // TODO: We may not need to do the fetch if the predicates in root are covered.  But
            // for now it's safe (though *maybe* slower).
            FetchNode* fetch = new FetchNode();
            fetch->filter.reset(filter);
            fetch->children.push_back(isn);
            solnRoot = fetch;
        }

        return solnRoot;
    }

    // static
    void QueryPlannerAccess::_addFilterToSolutionNode(QuerySolutionNode* node,
                                                      MatchExpression* match,
                                                      MatchExpression::MatchType type) {
        if (NULL == node->filter) {
            node->filter.reset(match);
        }
        // The 'node' already has either an AND or OR filter that matches
        // 'type'. Add 'match' as another branch of the filter.
        else if (type == node->filter->matchType()) {
            ListOfMatchExpression* listFilter =
                static_cast<ListOfMatchExpression*>(node->filter.get());
            listFilter->add(match);
        }
        // The 'node' already has a filter that does not match
        // 'type'. If 'type' is AND, then combine 'match' with
        // the existing filter by adding an AND. If 'type' is OR,
        // combine by adding an OR node.
        else {
            ListOfMatchExpression* listFilter;
            if (MatchExpression::AND == type) {
                listFilter = new AndMatchExpression();
            }
            else {
                verify(MatchExpression::OR == type);
                listFilter = new OrMatchExpression();
            }
            MatchExpression* oldFilter = node->filter->shallowClone();
            listFilter->add(oldFilter);
            listFilter->add(match);
            node->filter.reset(listFilter);
        }
    }

}  // namespace mongo