1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
|
/**
* Copyright (C) 2013 10gen Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License, version 3,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the GNU Affero General Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kQuery
#include "mongo/platform/basic.h"
#include "mongo/db/query/planner_access.h"
#include <algorithm>
#include <memory>
#include <vector>
#include "mongo/base/owned_pointer_vector.h"
#include "mongo/bson/simple_bsonobj_comparator.h"
#include "mongo/db/bson/dotted_path_support.h"
#include "mongo/db/matcher/expression_array.h"
#include "mongo/db/matcher/expression_geo.h"
#include "mongo/db/matcher/expression_text.h"
#include "mongo/db/query/index_bounds_builder.h"
#include "mongo/db/query/index_tag.h"
#include "mongo/db/query/indexability.h"
#include "mongo/db/query/query_knobs.h"
#include "mongo/db/query/query_planner.h"
#include "mongo/db/query/query_planner_common.h"
#include "mongo/stdx/memory.h"
#include "mongo/util/log.h"
#include "mongo/util/transitional_tools_do_not_use/vector_spooling.h"
namespace {
using namespace mongo;
namespace dps = ::mongo::dotted_path_support;
/**
* Text node functors.
*/
bool isTextNode(const QuerySolutionNode* node) {
return STAGE_TEXT == node->getType();
}
/**
* Casts 'node' to a FetchNode* if it is a FetchNode, otherwise returns null.
*/
FetchNode* getFetchNode(QuerySolutionNode* node) {
if (STAGE_FETCH != node->getType()) {
return nullptr;
}
return static_cast<FetchNode*>(node);
}
/**
* If 'node' is an index scan node, casts it to IndexScanNode*. If 'node' is a FetchNode with an
* IndexScanNode child, then returns a pointer to the child index scan node. Otherwise returns
* null.
*/
const IndexScanNode* getIndexScanNode(const QuerySolutionNode* node) {
if (STAGE_IXSCAN == node->getType()) {
return static_cast<const IndexScanNode*>(node);
} else if (STAGE_FETCH == node->getType()) {
invariant(1U == node->children.size());
const QuerySolutionNode* child = node->children[0];
if (STAGE_IXSCAN == child->getType()) {
return static_cast<const IndexScanNode*>(child);
}
}
return nullptr;
}
/**
* Takes as input two query solution nodes returned by processIndexScans(). If both are
* IndexScanNode or FetchNode with an IndexScanNode child and the index scan nodes are identical
* (same bounds, same filter, same direction, etc.), then returns true. Otherwise returns false.
*/
bool scansAreEquivalent(const QuerySolutionNode* lhs, const QuerySolutionNode* rhs) {
const IndexScanNode* leftIxscan = getIndexScanNode(lhs);
const IndexScanNode* rightIxscan = getIndexScanNode(rhs);
if (!leftIxscan || !rightIxscan) {
return false;
}
return *leftIxscan == *rightIxscan;
}
/**
* If all nodes can provide the requested sort, returns a vector expressing which nodes must have
* their index scans reversed to provide the sort. Otherwise, returns an empty vector.
* 'nodes' must not be empty.
*/
std::vector<bool> canProvideSortWithMergeSort(const std::vector<QuerySolutionNode*>& nodes,
const BSONObj& requestedSort) {
invariant(!nodes.empty());
std::vector<bool> shouldReverseScan;
const auto reverseSort = QueryPlannerCommon::reverseSortObj(requestedSort);
for (auto&& node : nodes) {
node->computeProperties();
auto sorts = node->getSort();
if (sorts.find(requestedSort) != sorts.end()) {
shouldReverseScan.push_back(false);
} else if (sorts.find(reverseSort) != sorts.end()) {
shouldReverseScan.push_back(true);
} else {
return {};
}
}
return shouldReverseScan;
}
} // namespace
namespace mongo {
using std::unique_ptr;
using std::vector;
using stdx::make_unique;
// static
QuerySolutionNode* QueryPlannerAccess::makeCollectionScan(const CanonicalQuery& query,
bool tailable,
const QueryPlannerParams& params) {
// Make the (only) node, a collection scan.
CollectionScanNode* csn = new CollectionScanNode();
csn->name = query.ns();
csn->filter = query.root()->shallowClone();
csn->tailable = tailable;
csn->maxScan = query.getQueryRequest().getMaxScan();
// If the hint is {$natural: +-1} this changes the direction of the collection scan.
if (!query.getQueryRequest().getHint().isEmpty()) {
BSONElement natural =
dps::extractElementAtPath(query.getQueryRequest().getHint(), "$natural");
if (!natural.eoo()) {
csn->direction = natural.numberInt() >= 0 ? 1 : -1;
}
}
// The sort can specify $natural as well. The sort direction should override the hint
// direction if both are specified.
const BSONObj& sortObj = query.getQueryRequest().getSort();
if (!sortObj.isEmpty()) {
BSONElement natural = dps::extractElementAtPath(sortObj, "$natural");
if (!natural.eoo()) {
csn->direction = natural.numberInt() >= 0 ? 1 : -1;
}
}
return csn;
}
// static
QuerySolutionNode* QueryPlannerAccess::makeLeafNode(
const CanonicalQuery& query,
const IndexEntry& index,
size_t pos,
MatchExpression* expr,
IndexBoundsBuilder::BoundsTightness* tightnessOut) {
// We're guaranteed that all GEO_NEARs are first. This slightly violates the "sort index
// predicates by their position in the compound index" rule but GEO_NEAR isn't an ixscan.
// This saves our bacon when we have {foo: 1, bar: "2dsphere"} and the predicate on bar is a
// $near. If we didn't get the GEO_NEAR first we'd create an IndexScanNode and later cast
// it to a GeoNear2DSphereNode
//
// This should gracefully deal with the case where we have a pred over foo but no geo clause
// over bar. In that case there is no GEO_NEAR to appear first and it's treated like a
// straight ixscan.
if (MatchExpression::GEO_NEAR == expr->matchType()) {
// We must not keep the expression node around.
*tightnessOut = IndexBoundsBuilder::EXACT;
GeoNearMatchExpression* nearExpr = static_cast<GeoNearMatchExpression*>(expr);
BSONElement elt = index.keyPattern.firstElement();
bool indexIs2D = (String == elt.type() && "2d" == elt.String());
if (indexIs2D) {
GeoNear2DNode* ret = new GeoNear2DNode(index);
ret->nq = &nearExpr->getData();
ret->baseBounds.fields.resize(index.keyPattern.nFields());
if (NULL != query.getProj()) {
ret->addPointMeta = query.getProj()->wantGeoNearPoint();
ret->addDistMeta = query.getProj()->wantGeoNearDistance();
}
return ret;
} else {
GeoNear2DSphereNode* ret = new GeoNear2DSphereNode(index);
ret->nq = &nearExpr->getData();
ret->baseBounds.fields.resize(index.keyPattern.nFields());
if (NULL != query.getProj()) {
ret->addPointMeta = query.getProj()->wantGeoNearPoint();
ret->addDistMeta = query.getProj()->wantGeoNearDistance();
}
return ret;
}
} else if (MatchExpression::TEXT == expr->matchType()) {
// We must not keep the expression node around.
*tightnessOut = IndexBoundsBuilder::EXACT;
TextMatchExpressionBase* textExpr = static_cast<TextMatchExpressionBase*>(expr);
TextNode* ret = new TextNode(index);
ret->ftsQuery = textExpr->getFTSQuery().clone();
return ret;
} else {
// Note that indexKeyPattern.firstElement().fieldName() may not equal expr->path()
// because expr might be inside an array operator that provides a path prefix.
IndexScanNode* isn = new IndexScanNode(index);
isn->bounds.fields.resize(index.keyPattern.nFields());
isn->maxScan = query.getQueryRequest().getMaxScan();
isn->addKeyMetadata = query.getQueryRequest().returnKey();
isn->queryCollator = query.getCollator();
// Get the ixtag->pos-th element of the index key pattern.
// TODO: cache this instead/with ixtag->pos?
BSONObjIterator it(index.keyPattern);
BSONElement keyElt = it.next();
for (size_t i = 0; i < pos; ++i) {
verify(it.more());
keyElt = it.next();
}
verify(!keyElt.eoo());
IndexBoundsBuilder::translate(expr, keyElt, index, &isn->bounds.fields[pos], tightnessOut);
return isn;
}
}
bool QueryPlannerAccess::shouldMergeWithLeaf(const MatchExpression* expr,
const ScanBuildingState& scanState) {
const QuerySolutionNode* node = scanState.currentScan.get();
if (NULL == node || NULL == expr) {
return false;
}
if (NULL == scanState.ixtag) {
return false;
}
if (scanState.currentIndexNumber != scanState.ixtag->index) {
return false;
}
size_t pos = scanState.ixtag->pos;
const IndexEntry& index = scanState.indices[scanState.currentIndexNumber];
const MatchExpression::MatchType mergeType = scanState.root->matchType();
const StageType type = node->getType();
const MatchExpression::MatchType exprType = expr->matchType();
//
// First handle special solution tree leaf types. In general, normal index bounds
// building is not used for special leaf types, and hence we cannot merge leaves.
//
// This rule is always true for OR, but there are exceptions for AND.
// Specifically, we can often merge a predicate with a special leaf type
// by adding a filter to the special leaf type.
//
if (STAGE_TEXT == type) {
// Currently only one text predicate is allowed, but to be safe, make sure that we
// do not try to merge two text predicates.
return MatchExpression::AND == mergeType && MatchExpression::TEXT != exprType;
}
if (STAGE_GEO_NEAR_2D == type || STAGE_GEO_NEAR_2DSPHERE == type) {
// Currently only one GEO_NEAR is allowed, but to be safe, make sure that we
// do not try to merge two GEO_NEAR predicates.
return MatchExpression::AND == mergeType && MatchExpression::GEO_NEAR != exprType;
}
//
// If we're here, then we're done checking for special leaf nodes, and the leaf
// must be a regular index scan.
//
invariant(type == STAGE_IXSCAN);
const IndexScanNode* scan = static_cast<const IndexScanNode*>(node);
const IndexBounds* boundsToFillOut = &scan->bounds;
if (boundsToFillOut->fields[pos].name.empty()) {
// Bounds have yet to be assigned for the 'pos' position in the index. The plan enumerator
// should have told us that it is safe to compound bounds in this case.
invariant(scanState.ixtag->canCombineBounds);
return true;
} else {
// Bounds have already been assigned for the 'pos' position in the index.
if (MatchExpression::AND == mergeType) {
// The bounds on the 'pos' position in the index would be intersected if we merged these
// two leaf expressions.
if (!scanState.ixtag->canCombineBounds) {
// If the plan enumerator told us that it isn't safe to intersect bounds in this
// case, then it must be because we're using a multikey index.
invariant(index.multikey);
}
return scanState.ixtag->canCombineBounds;
} else {
// The bounds will be unionized.
return true;
}
}
}
void QueryPlannerAccess::mergeWithLeafNode(MatchExpression* expr, ScanBuildingState* scanState) {
QuerySolutionNode* node = scanState->currentScan.get();
invariant(NULL != node);
const MatchExpression::MatchType mergeType = scanState->root->matchType();
size_t pos = scanState->ixtag->pos;
const IndexEntry& index = scanState->indices[scanState->currentIndexNumber];
const StageType type = node->getType();
// Text data is covered, but not exactly. Text covering is unlike any other covering
// so we deal with it in addFilterToSolutionNode.
if (STAGE_TEXT == type) {
scanState->tightness = IndexBoundsBuilder::INEXACT_COVERED;
return;
}
IndexBounds* boundsToFillOut = NULL;
if (STAGE_GEO_NEAR_2D == type) {
invariant(INDEX_2D == index.type);
// 2D indexes are weird - the "2d" field stores a normally-indexed BinData field, but
// additional array fields are *not* exploded into multi-keys - they are stored directly
// as arrays in the index. Also, no matter what the index expression, the "2d" field is
// always first.
// This means that we can only generically accumulate bounds for 2D indexes over the
// first "2d" field (pos == 0) - MatchExpressions over other fields in the 2D index may
// be covered (can be evaluated using only the 2D index key). The additional fields
// must not affect the index scan bounds, since they are not stored in an
// IndexScan-compatible format.
if (pos > 0) {
// Marking this field as covered allows the planner to accumulate a MatchExpression
// over the returned 2D index keys instead of adding to the index bounds.
scanState->tightness = IndexBoundsBuilder::INEXACT_COVERED;
return;
}
// We may have other $geoPredicates on a near index - generate bounds for these
GeoNear2DNode* gn = static_cast<GeoNear2DNode*>(node);
boundsToFillOut = &gn->baseBounds;
} else if (STAGE_GEO_NEAR_2DSPHERE == type) {
GeoNear2DSphereNode* gn = static_cast<GeoNear2DSphereNode*>(node);
boundsToFillOut = &gn->baseBounds;
} else {
verify(type == STAGE_IXSCAN);
IndexScanNode* scan = static_cast<IndexScanNode*>(node);
// See STAGE_GEO_NEAR_2D above - 2D indexes can only accumulate scan bounds over the
// first "2d" field (pos == 0)
if (INDEX_2D == index.type && pos > 0) {
scanState->tightness = IndexBoundsBuilder::INEXACT_COVERED;
return;
}
boundsToFillOut = &scan->bounds;
}
// Get the ixtag->pos-th element of the index key pattern.
// TODO: cache this instead/with ixtag->pos?
BSONObjIterator it(index.keyPattern);
BSONElement keyElt = it.next();
for (size_t i = 0; i < pos; ++i) {
verify(it.more());
keyElt = it.next();
}
verify(!keyElt.eoo());
scanState->tightness = IndexBoundsBuilder::INEXACT_FETCH;
verify(boundsToFillOut->fields.size() > pos);
OrderedIntervalList* oil = &boundsToFillOut->fields[pos];
if (boundsToFillOut->fields[pos].name.empty()) {
IndexBoundsBuilder::translate(expr, keyElt, index, oil, &scanState->tightness);
} else {
if (MatchExpression::AND == mergeType) {
IndexBoundsBuilder::translateAndIntersect(
expr, keyElt, index, oil, &scanState->tightness);
} else {
verify(MatchExpression::OR == mergeType);
IndexBoundsBuilder::translateAndUnion(expr, keyElt, index, oil, &scanState->tightness);
}
}
}
// static
void QueryPlannerAccess::finishTextNode(QuerySolutionNode* node, const IndexEntry& index) {
TextNode* tn = static_cast<TextNode*>(node);
// Figure out what positions are prefix positions. We build an index key prefix from
// the predicates over the text index prefix keys.
// For example, say keyPattern = { a: 1, _fts: "text", _ftsx: 1, b: 1 }
// prefixEnd should be 1.
size_t prefixEnd = 0;
BSONObjIterator it(tn->index.keyPattern);
// Count how many prefix terms we have.
while (it.more()) {
// We know that the only key pattern with a type of String is the _fts field
// which is immediately after all prefix fields.
if (String == it.next().type()) {
break;
}
++prefixEnd;
}
// If there's no prefix, the filter is already on the node and the index prefix is null.
// We can just return.
if (!prefixEnd) {
return;
}
// We can't create a text stage if there aren't EQ predicates on its prefix terms. So
// if we've made it this far, we should have collected the prefix predicates in the
// filter.
invariant(NULL != tn->filter.get());
MatchExpression* textFilterMe = tn->filter.get();
BSONObjBuilder prefixBob;
if (MatchExpression::AND != textFilterMe->matchType()) {
// Only one prefix term.
invariant(1 == prefixEnd);
// Sanity check: must be an EQ.
invariant(MatchExpression::EQ == textFilterMe->matchType());
EqualityMatchExpression* eqExpr = static_cast<EqualityMatchExpression*>(textFilterMe);
prefixBob.append(eqExpr->getData());
tn->filter.reset();
} else {
invariant(MatchExpression::AND == textFilterMe->matchType());
// Indexed by the keyPattern position index assignment. We want to add
// prefixes in order but we must order them first.
vector<MatchExpression*> prefixExprs(prefixEnd, NULL);
AndMatchExpression* amExpr = static_cast<AndMatchExpression*>(textFilterMe);
invariant(amExpr->numChildren() >= prefixEnd);
// Look through the AND children. The prefix children we want to
// stash in prefixExprs.
size_t curChild = 0;
while (curChild < amExpr->numChildren()) {
MatchExpression* child = amExpr->getChild(curChild);
IndexTag* ixtag = static_cast<IndexTag*>(child->getTag());
invariant(NULL != ixtag);
// Skip this child if it's not part of a prefix, or if we've already assigned a
// predicate to this prefix position.
if (ixtag->pos >= prefixEnd || prefixExprs[ixtag->pos] != NULL) {
++curChild;
continue;
}
// prefixExprs takes ownership of 'child'.
prefixExprs[ixtag->pos] = child;
amExpr->getChildVector()->erase(amExpr->getChildVector()->begin() + curChild);
// Don't increment curChild.
}
// Go through the prefix equalities in order and create an index prefix out of them.
for (size_t i = 0; i < prefixExprs.size(); ++i) {
MatchExpression* prefixMe = prefixExprs[i];
invariant(NULL != prefixMe);
invariant(MatchExpression::EQ == prefixMe->matchType());
EqualityMatchExpression* eqExpr = static_cast<EqualityMatchExpression*>(prefixMe);
prefixBob.append(eqExpr->getData());
// We removed this from the AND expression that owned it, so we must clean it
// up ourselves.
delete prefixMe;
}
// Clear out an empty $and.
if (0 == amExpr->numChildren()) {
tn->filter.reset();
} else if (1 == amExpr->numChildren()) {
// Clear out unsightly only child of $and
MatchExpression* child = amExpr->getChild(0);
amExpr->getChildVector()->clear();
// Deletes current filter which is amExpr.
tn->filter.reset(child);
}
}
tn->indexPrefix = prefixBob.obj();
}
// static
bool QueryPlannerAccess::orNeedsFetch(const ScanBuildingState* scanState) {
if (scanState->loosestBounds == IndexBoundsBuilder::EXACT) {
return false;
} else if (scanState->loosestBounds == IndexBoundsBuilder::INEXACT_FETCH) {
return true;
} else {
invariant(scanState->loosestBounds == IndexBoundsBuilder::INEXACT_COVERED);
const IndexEntry& index = scanState->indices[scanState->currentIndexNumber];
return index.multikey;
}
}
// static
void QueryPlannerAccess::finishAndOutputLeaf(ScanBuildingState* scanState,
vector<QuerySolutionNode*>* out) {
finishLeafNode(scanState->currentScan.get(), scanState->indices[scanState->currentIndexNumber]);
if (MatchExpression::OR == scanState->root->matchType()) {
if (orNeedsFetch(scanState)) {
// In order to correctly evaluate the predicates for this index, we have to
// fetch the full documents. Add a fetch node above the index scan whose filter
// includes *all* of the predicates used to generate the ixscan.
FetchNode* fetch = new FetchNode();
// Takes ownership.
fetch->filter.reset(scanState->curOr.release());
// Takes ownership.
fetch->children.push_back(scanState->currentScan.release());
scanState->currentScan.reset(fetch);
} else if (scanState->loosestBounds == IndexBoundsBuilder::INEXACT_COVERED) {
// This an OR, at least one of the predicates used to generate 'currentScan'
// is inexact covered, but none is inexact fetch. This means that we can put
// these predicates, joined by an $or, as filters on the index scan. This avoids
// a fetch and allows the predicates to be covered by the index.
//
// Ex.
// Say we have index {a: 1} and query {$or: [{a: /foo/}, {a: /bar/}]}.
// The entire query, {$or: [{a: /foo/}, {a: /bar/}]}, should be a filter
// in the index scan stage itself.
scanState->currentScan->filter.reset(scanState->curOr.release());
}
}
out->push_back(scanState->currentScan.release());
}
// static
void QueryPlannerAccess::finishLeafNode(QuerySolutionNode* node, const IndexEntry& index) {
const StageType type = node->getType();
if (STAGE_TEXT == type) {
finishTextNode(node, index);
return;
}
IndexBounds* bounds = NULL;
if (STAGE_GEO_NEAR_2D == type) {
GeoNear2DNode* gnode = static_cast<GeoNear2DNode*>(node);
bounds = &gnode->baseBounds;
} else if (STAGE_GEO_NEAR_2DSPHERE == type) {
GeoNear2DSphereNode* gnode = static_cast<GeoNear2DSphereNode*>(node);
bounds = &gnode->baseBounds;
} else {
verify(type == STAGE_IXSCAN);
IndexScanNode* scan = static_cast<IndexScanNode*>(node);
bounds = &scan->bounds;
}
// Find the first field in the scan's bounds that was not filled out.
// TODO: could cache this.
size_t firstEmptyField = 0;
for (firstEmptyField = 0; firstEmptyField < bounds->fields.size(); ++firstEmptyField) {
if ("" == bounds->fields[firstEmptyField].name) {
verify(bounds->fields[firstEmptyField].intervals.empty());
break;
}
}
// All fields are filled out with bounds, nothing to do.
if (firstEmptyField == bounds->fields.size()) {
IndexBoundsBuilder::alignBounds(bounds, index.keyPattern);
return;
}
// Skip ahead to the firstEmptyField-th element, where we begin filling in bounds.
BSONObjIterator it(index.keyPattern);
for (size_t i = 0; i < firstEmptyField; ++i) {
verify(it.more());
it.next();
}
// For each field in the key...
while (it.more()) {
BSONElement kpElt = it.next();
// There may be filled-in fields to the right of the firstEmptyField.
// Example:
// The index {loc:"2dsphere", x:1}
// With a predicate over x and a near search over loc.
if ("" == bounds->fields[firstEmptyField].name) {
verify(bounds->fields[firstEmptyField].intervals.empty());
// ...build the "all values" interval.
IndexBoundsBuilder::allValuesForField(kpElt, &bounds->fields[firstEmptyField]);
}
++firstEmptyField;
}
// Make sure that the length of the key is the length of the bounds we started.
verify(firstEmptyField == bounds->fields.size());
// We create bounds assuming a forward direction but can easily reverse bounds to align
// according to our desired direction.
IndexBoundsBuilder::alignBounds(bounds, index.keyPattern);
}
// static
void QueryPlannerAccess::findElemMatchChildren(const MatchExpression* node,
vector<MatchExpression*>* out,
vector<MatchExpression*>* subnodesOut) {
for (size_t i = 0; i < node->numChildren(); ++i) {
MatchExpression* child = node->getChild(i);
if (Indexability::isBoundsGenerating(child) && NULL != child->getTag()) {
out->push_back(child);
} else if (MatchExpression::AND == child->matchType() ||
Indexability::arrayUsesIndexOnChildren(child)) {
findElemMatchChildren(child, out, subnodesOut);
} else if (NULL != child->getTag()) {
subnodesOut->push_back(child);
}
}
}
// static
std::vector<QuerySolutionNode*> QueryPlannerAccess::collapseEquivalentScans(
const std::vector<QuerySolutionNode*> scans) {
std::vector<std::unique_ptr<QuerySolutionNode>> ownedScans =
transitional_tools_do_not_use::spool_vector(scans);
invariant(ownedScans.size() > 0);
// Scans that need to be collapsed will be adjacent to each other in the list due to how we
// sort the query predicate. We step through the list, either merging the current scan into
// the last scan in 'collapsedScans', or adding a new entry to 'collapsedScans' if it can't
// be merged.
std::vector<std::unique_ptr<QuerySolutionNode>> collapsedScans;
collapsedScans.push_back(std::move(ownedScans[0]));
for (size_t i = 1; i < ownedScans.size(); ++i) {
if (scansAreEquivalent(collapsedScans.back().get(), ownedScans[i].get())) {
// We collapse the entry from 'ownedScans' into the back of 'collapsedScans'.
std::unique_ptr<QuerySolutionNode> collapseFrom(std::move(ownedScans[i]));
FetchNode* collapseFromFetch = getFetchNode(collapseFrom.get());
FetchNode* collapseIntoFetch = getFetchNode(collapsedScans.back().get());
// If there's no filter associated with a fetch node on 'collapseFrom', all we have to
// do is clear the filter on the node that we are collapsing into.
if (!collapseFromFetch || !collapseFromFetch->filter.get()) {
if (collapseIntoFetch) {
collapseIntoFetch->filter.reset();
}
continue;
}
// If there's no filter associated with a fetch node on the back of the 'collapsedScans'
// list, then there's nothing more to do.
if (!collapseIntoFetch || !collapseIntoFetch->filter.get()) {
continue;
}
// Both the 'from' and 'into' nodes have filters. We join them with an
// OrMatchExpression.
std::unique_ptr<OrMatchExpression> collapsedFilter =
stdx::make_unique<OrMatchExpression>();
collapsedFilter->add(collapseFromFetch->filter.release());
collapsedFilter->add(collapseIntoFetch->filter.release());
// Normalize the filter and add it to 'into'.
collapseIntoFetch->filter.reset(
CanonicalQuery::normalizeTree(collapsedFilter.release()));
} else {
// Scans are not equivalent and can't be collapsed.
collapsedScans.push_back(std::move(ownedScans[i]));
}
}
invariant(collapsedScans.size() > 0);
return transitional_tools_do_not_use::leak_vector(collapsedScans);
}
// static
bool QueryPlannerAccess::processIndexScans(const CanonicalQuery& query,
MatchExpression* root,
bool inArrayOperator,
const std::vector<IndexEntry>& indices,
const QueryPlannerParams& params,
std::vector<QuerySolutionNode*>* out) {
// Initialize the ScanBuildingState.
ScanBuildingState scanState(root, inArrayOperator, indices);
while (scanState.curChild < root->numChildren()) {
MatchExpression* child = root->getChild(scanState.curChild);
// If there is no tag, it's not using an index. We've sorted our children such that the
// children with tags are first, so we stop now.
if (NULL == child->getTag()) {
break;
}
scanState.ixtag = static_cast<IndexTag*>(child->getTag());
// If there's a tag it must be valid.
verify(IndexTag::kNoIndex != scanState.ixtag->index);
// If the child can't use an index on its own field (and the child is not a negation
// of a bounds-generating expression), then it's indexed by virtue of one of
// its children having an index.
//
// NOTE: If the child is logical, it could possibly collapse into a single ixscan. we
// ignore this for now.
if (!Indexability::isBoundsGenerating(child)) {
// If we're here, then the child is indexed by virtue of its children.
// In most cases this means that we recursively build indexed data
// access on 'child'.
if (!processIndexScansSubnode(query, &scanState, params, out)) {
return false;
}
continue;
}
// If we're here, we now know that 'child' can use an index directly and the index is
// over the child's field.
// If 'child' is a NOT, then the tag we're interested in is on the NOT's
// child node.
if (MatchExpression::NOT == child->matchType()) {
scanState.ixtag = static_cast<IndexTag*>(child->getChild(0)->getTag());
invariant(IndexTag::kNoIndex != scanState.ixtag->index);
}
// If the child we're looking at uses a different index than the current index scan, add
// the current index scan to the output as we're done with it. The index scan created
// by the child then becomes our new current index scan. Note that the current scan
// could be NULL, in which case we don't output it. The rest of the logic is identical.
//
// If the child uses the same index as the current index scan, we may be able to merge
// the bounds for the two scans.
//
// Guiding principle: must the values we're testing come from the same array in the
// document? If so, we can combine bounds (via intersection or compounding). If not,
// we can't.
//
// If the index is NOT multikey, it's always semantically correct to combine bounds,
// as there are no arrays to worry about.
//
// If the index is multikey, there are arrays of values. There are several
// complications in the multikey case that have to be obeyed both by the enumerator
// and here as we try to merge predicates into query solution leaves. The hairy
// details of these rules are documented near the top of planner_access.h.
if (shouldMergeWithLeaf(child, scanState)) {
// The child uses the same index we're currently building a scan for. Merge
// the bounds and filters.
verify(scanState.currentIndexNumber == scanState.ixtag->index);
scanState.tightness = IndexBoundsBuilder::INEXACT_FETCH;
mergeWithLeafNode(child, &scanState);
handleFilter(&scanState);
} else {
if (NULL != scanState.currentScan.get()) {
// Output the current scan before starting to construct a new out.
finishAndOutputLeaf(&scanState, out);
} else {
verify(IndexTag::kNoIndex == scanState.currentIndexNumber);
}
// Reset state before producing a new leaf.
scanState.resetForNextScan(scanState.ixtag);
scanState.currentScan.reset(makeLeafNode(query,
indices[scanState.currentIndexNumber],
scanState.ixtag->pos,
child,
&scanState.tightness));
handleFilter(&scanState);
}
}
// Output the scan we're done with, if it exists.
if (NULL != scanState.currentScan.get()) {
finishAndOutputLeaf(&scanState, out);
}
return true;
}
// static
bool QueryPlannerAccess::processIndexScansElemMatch(const CanonicalQuery& query,
ScanBuildingState* scanState,
const QueryPlannerParams& params,
std::vector<QuerySolutionNode*>* out) {
MatchExpression* root = scanState->root;
MatchExpression* child = root->getChild(scanState->curChild);
const vector<IndexEntry>& indices = scanState->indices;
// We have an AND with an ELEM_MATCH_OBJECT child. The plan enumerator produces
// index taggings which indicate that we should try to compound with
// predicates retrieved from inside the subtree rooted at the ELEM_MATCH.
// In order to obey the enumerator's tagging, we need to retrieve these
// predicates from inside the $elemMatch, and try to merge them with
// the current index scan.
// Contains tagged predicates from inside the tree rooted at 'child'
// which are logically part of the AND.
vector<MatchExpression*> emChildren;
// Contains tagged nodes that are not logically part of the AND and
// cannot use the index directly (e.g. OR nodes which are tagged to
// be indexed).
vector<MatchExpression*> emSubnodes;
// Populate 'emChildren' and 'emSubnodes'.
findElemMatchChildren(child, &emChildren, &emSubnodes);
// Recursively build data access for the nodes inside 'emSubnodes'.
for (size_t i = 0; i < emSubnodes.size(); ++i) {
MatchExpression* subnode = emSubnodes[i];
if (!Indexability::isBoundsGenerating(subnode)) {
// Must pass true for 'inArrayOperator' because the subnode is
// beneath an ELEM_MATCH_OBJECT.
QuerySolutionNode* childSolution =
buildIndexedDataAccess(query, subnode, true, indices, params);
// buildIndexedDataAccess(...) returns NULL in error conditions, when
// it is unable to construct a query solution from a tagged match
// expression tree. If we are unable to construct a solution according
// to the instructions from the enumerator, then we bail out early
// (by returning false) rather than continuing on and potentially
// constructing an invalid solution tree.
if (NULL == childSolution) {
return false;
}
// Output the resulting solution tree.
out->push_back(childSolution);
}
}
// For each predicate in 'emChildren', try to merge it with the current index scan.
//
// This loop is similar to that in processIndexScans(...), except it does not call into
// handleFilters(...). Instead, we leave the entire $elemMatch filter intact. This way,
// the complete $elemMatch expression will be affixed as a filter later on.
for (size_t i = 0; i < emChildren.size(); ++i) {
MatchExpression* emChild = emChildren[i];
invariant(NULL != emChild->getTag());
scanState->ixtag = static_cast<IndexTag*>(emChild->getTag());
// If 'emChild' is a NOT, then the tag we're interested in is on the NOT's
// child node.
if (MatchExpression::NOT == emChild->matchType()) {
invariant(NULL != emChild->getChild(0)->getTag());
scanState->ixtag = static_cast<IndexTag*>(emChild->getChild(0)->getTag());
invariant(IndexTag::kNoIndex != scanState->ixtag->index);
}
if (shouldMergeWithLeaf(emChild, *scanState)) {
// The child uses the same index we're currently building a scan for. Merge
// the bounds and filters.
verify(scanState->currentIndexNumber == scanState->ixtag->index);
scanState->tightness = IndexBoundsBuilder::INEXACT_FETCH;
mergeWithLeafNode(emChild, scanState);
} else {
if (NULL != scanState->currentScan.get()) {
finishAndOutputLeaf(scanState, out);
} else {
verify(IndexTag::kNoIndex == scanState->currentIndexNumber);
}
scanState->currentIndexNumber = scanState->ixtag->index;
scanState->tightness = IndexBoundsBuilder::INEXACT_FETCH;
scanState->currentScan.reset(makeLeafNode(query,
indices[scanState->currentIndexNumber],
scanState->ixtag->pos,
emChild,
&scanState->tightness));
}
}
// We're done processing the $elemMatch child. We leave it hanging off
// it's AND parent so that it will be affixed as a filter later on,
// and move on to the next child of the AND.
++scanState->curChild;
return true;
}
// static
bool QueryPlannerAccess::processIndexScansSubnode(const CanonicalQuery& query,
ScanBuildingState* scanState,
const QueryPlannerParams& params,
std::vector<QuerySolutionNode*>* out) {
MatchExpression* root = scanState->root;
MatchExpression* child = root->getChild(scanState->curChild);
const vector<IndexEntry>& indices = scanState->indices;
bool inArrayOperator = scanState->inArrayOperator;
if (MatchExpression::AND == root->matchType() &&
MatchExpression::ELEM_MATCH_OBJECT == child->matchType()) {
return processIndexScansElemMatch(query, scanState, params, out);
} else if (!inArrayOperator) {
// The logical sub-tree is responsible for fully evaluating itself. Any
// required filters or fetches are already hung on it. As such, we remove the
// filter branch from our tree. buildIndexedDataAccess takes ownership of the
// child.
root->getChildVector()->erase(root->getChildVector()->begin() + scanState->curChild);
// The curChild of today is the curChild+1 of yesterday.
} else {
++scanState->curChild;
}
// If inArrayOperator: takes ownership of child, which is OK, since we detached
// child from root.
QuerySolutionNode* childSolution =
buildIndexedDataAccess(query, child, inArrayOperator, indices, params);
if (NULL == childSolution) {
return false;
}
out->push_back(childSolution);
return true;
}
// static
QuerySolutionNode* QueryPlannerAccess::buildIndexedAnd(const CanonicalQuery& query,
MatchExpression* root,
bool inArrayOperator,
const vector<IndexEntry>& indices,
const QueryPlannerParams& params) {
unique_ptr<MatchExpression> autoRoot;
if (!inArrayOperator) {
autoRoot.reset(root);
}
// If we are not allowed to trim for ixisect, then clone the match expression before
// passing it to processIndexScans(), which may do the trimming. If we end up with
// an index intersection solution, then we use our copy of the match expression to be
// sure that the FETCH stage will recheck the entire predicate.
//
// XXX: This block is a hack to accommodate the storage layer concurrency model.
std::unique_ptr<MatchExpression> clonedRoot;
if (params.options & QueryPlannerParams::CANNOT_TRIM_IXISECT) {
clonedRoot = root->shallowClone();
}
vector<QuerySolutionNode*> ixscanNodes;
if (!processIndexScans(query, root, inArrayOperator, indices, params, &ixscanNodes)) {
return NULL;
}
//
// Process all non-indexed predicates. We hang these above the AND with a fetch and
// filter.
//
// This is the node we're about to return.
QuerySolutionNode* andResult;
// We must use an index for at least one child of the AND. We shouldn't be here if this
// isn't the case.
verify(ixscanNodes.size() >= 1);
// Short-circuit: an AND of one child is just the child.
if (ixscanNodes.size() == 1) {
andResult = ixscanNodes[0];
} else {
// Figure out if we want AndHashNode or AndSortedNode.
bool allSortedByDiskLoc = true;
for (size_t i = 0; i < ixscanNodes.size(); ++i) {
if (!ixscanNodes[i]->sortedByDiskLoc()) {
allSortedByDiskLoc = false;
break;
}
}
if (allSortedByDiskLoc) {
AndSortedNode* asn = new AndSortedNode();
asn->children.swap(ixscanNodes);
andResult = asn;
} else if (internalQueryPlannerEnableHashIntersection.load()) {
AndHashNode* ahn = new AndHashNode();
ahn->children.swap(ixscanNodes);
andResult = ahn;
// The AndHashNode provides the sort order of its last child. If any of the
// possible subnodes of AndHashNode provides the sort order we care about, we put
// that one last.
for (size_t i = 0; i < ahn->children.size(); ++i) {
ahn->children[i]->computeProperties();
const BSONObjSet& sorts = ahn->children[i]->getSort();
if (sorts.end() != sorts.find(query.getQueryRequest().getSort())) {
std::swap(ahn->children[i], ahn->children.back());
break;
}
}
} else {
// We can't use sort-based intersection, and hash-based intersection is disabled.
// Clean up the index scans and bail out by returning NULL.
LOG(5) << "Can't build index intersection solution: "
<< "AND_SORTED is not possible and AND_HASH is disabled.";
for (size_t i = 0; i < ixscanNodes.size(); i++) {
delete ixscanNodes[i];
}
return NULL;
}
}
// Don't bother doing any kind of fetch analysis lite if we're doing it anyway above us.
if (inArrayOperator) {
return andResult;
}
// XXX: This block is a hack to accommodate the storage layer concurrency model.
if ((params.options & QueryPlannerParams::CANNOT_TRIM_IXISECT) &&
(andResult->getType() == STAGE_AND_HASH || andResult->getType() == STAGE_AND_SORTED)) {
// We got an index intersection solution, and we aren't allowed to answer predicates
// using the index. We add a fetch with the entire filter.
invariant(clonedRoot.get());
FetchNode* fetch = new FetchNode();
fetch->filter.reset(clonedRoot.release());
// Takes ownership of 'andResult'.
fetch->children.push_back(andResult);
return fetch;
}
// If there are any nodes still attached to the AND, we can't answer them using the
// index, so we put a fetch with filter.
if (root->numChildren() > 0) {
FetchNode* fetch = new FetchNode();
verify(NULL != autoRoot.get());
if (autoRoot->numChildren() == 1) {
// An $and of one thing is that thing.
MatchExpression* child = autoRoot->getChild(0);
autoRoot->getChildVector()->clear();
// Takes ownership.
fetch->filter.reset(child);
// 'autoRoot' will delete the empty $and.
} else { // root->numChildren() > 1
// Takes ownership.
fetch->filter.reset(autoRoot.release());
}
// takes ownership
fetch->children.push_back(andResult);
andResult = fetch;
} else {
// root has no children, let autoRoot get rid of it when it goes out of scope.
}
return andResult;
}
// static
QuerySolutionNode* QueryPlannerAccess::buildIndexedOr(const CanonicalQuery& query,
MatchExpression* root,
bool inArrayOperator,
const vector<IndexEntry>& indices,
const QueryPlannerParams& params) {
unique_ptr<MatchExpression> autoRoot;
if (!inArrayOperator) {
autoRoot.reset(root);
}
vector<QuerySolutionNode*> ixscanNodes;
if (!processIndexScans(query, root, inArrayOperator, indices, params, &ixscanNodes)) {
return NULL;
}
// Unlike an AND, an OR cannot have filters hanging off of it. We stop processing
// when any of our children lack index tags. If a node lacks an index tag it cannot
// be answered via an index.
if (!inArrayOperator && 0 != root->numChildren()) {
warning() << "planner OR error, non-indexed child of OR.";
// We won't enumerate an OR without indices for each child, so this isn't an issue, even
// if we have an AND with an OR child -- we won't get here unless the OR is fully
// indexed.
return NULL;
}
// If all index scans are identical, then we collapse them into a single scan. This prevents
// us from creating OR plans where the branches of the OR perform duplicate work.
ixscanNodes = collapseEquivalentScans(ixscanNodes);
QuerySolutionNode* orResult = NULL;
// An OR of one node is just that node.
if (1 == ixscanNodes.size()) {
orResult = ixscanNodes[0];
} else {
std::vector<bool> shouldReverseScan;
if (!query.getQueryRequest().getSort().isEmpty()) {
// If all ixscanNodes can provide the sort, shouldReverseScan is populated with which
// scans to reverse.
shouldReverseScan =
canProvideSortWithMergeSort(ixscanNodes, query.getQueryRequest().getSort());
}
if (!shouldReverseScan.empty()) {
// Each node can provide either the requested sort, or the reverse of the requested
// sort.
invariant(ixscanNodes.size() == shouldReverseScan.size());
for (size_t i = 0; i < ixscanNodes.size(); ++i) {
if (shouldReverseScan[i]) {
QueryPlannerCommon::reverseScans(ixscanNodes[i]);
}
}
MergeSortNode* msn = new MergeSortNode();
msn->sort = query.getQueryRequest().getSort();
msn->children.swap(ixscanNodes);
orResult = msn;
} else {
OrNode* orn = new OrNode();
orn->children.swap(ixscanNodes);
orResult = orn;
}
}
// Evaluate text nodes first to ensure that text scores are available.
// Move text nodes to front of vector.
std::stable_partition(orResult->children.begin(), orResult->children.end(), isTextNode);
// OR must have an index for each child, so we should have detached all children from
// 'root', and there's nothing useful to do with an empty or MatchExpression. We let it die
// via autoRoot.
return orResult;
}
// static
QuerySolutionNode* QueryPlannerAccess::buildIndexedDataAccess(const CanonicalQuery& query,
MatchExpression* root,
bool inArrayOperator,
const vector<IndexEntry>& indices,
const QueryPlannerParams& params) {
if (root->isLogical() && !Indexability::isBoundsGeneratingNot(root)) {
if (MatchExpression::AND == root->matchType()) {
// Takes ownership of root.
return buildIndexedAnd(query, root, inArrayOperator, indices, params);
} else if (MatchExpression::OR == root->matchType()) {
// Takes ownership of root.
return buildIndexedOr(query, root, inArrayOperator, indices, params);
} else {
// Can't do anything with negated logical nodes index-wise.
if (!inArrayOperator) {
delete root;
}
return NULL;
}
} else {
unique_ptr<MatchExpression> autoRoot;
if (!inArrayOperator) {
autoRoot.reset(root);
}
// isArray or isLeaf is true. Either way, it's over one field, and the bounds builder
// deals with it.
if (NULL == root->getTag()) {
// No index to use here, not in the context of logical operator, so we're SOL.
return NULL;
} else if (Indexability::isBoundsGenerating(root)) {
// Make an index scan over the tagged index #.
IndexTag* tag = static_cast<IndexTag*>(root->getTag());
IndexBoundsBuilder::BoundsTightness tightness = IndexBoundsBuilder::EXACT;
QuerySolutionNode* soln =
makeLeafNode(query, indices[tag->index], tag->pos, root, &tightness);
verify(NULL != soln);
finishLeafNode(soln, indices[tag->index]);
if (inArrayOperator) {
return soln;
}
// If the bounds are exact, the set of documents that satisfy the predicate is
// exactly equal to the set of documents that the scan provides.
//
// If the bounds are not exact, the set of documents returned from the scan is a
// superset of documents that satisfy the predicate, and we must check the
// predicate.
if (tightness == IndexBoundsBuilder::EXACT) {
return soln;
} else if (tightness == IndexBoundsBuilder::INEXACT_COVERED &&
!indices[tag->index].multikey) {
verify(NULL == soln->filter.get());
soln->filter.reset(autoRoot.release());
return soln;
} else {
FetchNode* fetch = new FetchNode();
verify(NULL != autoRoot.get());
fetch->filter.reset(autoRoot.release());
fetch->children.push_back(soln);
return fetch;
}
} else if (Indexability::arrayUsesIndexOnChildren(root)) {
QuerySolutionNode* solution = NULL;
invariant(MatchExpression::ELEM_MATCH_OBJECT);
// The child is an AND.
invariant(1 == root->numChildren());
solution = buildIndexedDataAccess(query, root->getChild(0), true, indices, params);
if (NULL == solution) {
return NULL;
}
// There may be an array operator above us.
if (inArrayOperator) {
return solution;
}
FetchNode* fetch = new FetchNode();
// Takes ownership of 'root'.
verify(NULL != autoRoot.get());
fetch->filter.reset(autoRoot.release());
fetch->children.push_back(solution);
return fetch;
}
}
if (!inArrayOperator) {
delete root;
}
return NULL;
}
QuerySolutionNode* QueryPlannerAccess::scanWholeIndex(const IndexEntry& index,
const CanonicalQuery& query,
const QueryPlannerParams& params,
int direction) {
QuerySolutionNode* solnRoot = NULL;
// Build an ixscan over the id index, use it, and return it.
unique_ptr<IndexScanNode> isn = make_unique<IndexScanNode>(index);
isn->maxScan = query.getQueryRequest().getMaxScan();
isn->addKeyMetadata = query.getQueryRequest().returnKey();
isn->queryCollator = query.getCollator();
IndexBoundsBuilder::allValuesBounds(index.keyPattern, &isn->bounds);
if (-1 == direction) {
QueryPlannerCommon::reverseScans(isn.get());
isn->direction = -1;
}
unique_ptr<MatchExpression> filter = query.root()->shallowClone();
// If it's find({}) remove the no-op root.
if (MatchExpression::AND == filter->matchType() && (0 == filter->numChildren())) {
solnRoot = isn.release();
} else {
// TODO: We may not need to do the fetch if the predicates in root are covered. But
// for now it's safe (though *maybe* slower).
unique_ptr<FetchNode> fetch = make_unique<FetchNode>();
fetch->filter = std::move(filter);
fetch->children.push_back(isn.release());
solnRoot = fetch.release();
}
return solnRoot;
}
// static
void QueryPlannerAccess::addFilterToSolutionNode(QuerySolutionNode* node,
MatchExpression* match,
MatchExpression::MatchType type) {
if (NULL == node->filter) {
node->filter.reset(match);
} else if (type == node->filter->matchType()) {
// The 'node' already has either an AND or OR filter that matches 'type'. Add 'match' as
// another branch of the filter.
ListOfMatchExpression* listFilter = static_cast<ListOfMatchExpression*>(node->filter.get());
listFilter->add(match);
} else {
// The 'node' already has a filter that does not match 'type'. If 'type' is AND, then
// combine 'match' with the existing filter by adding an AND. If 'type' is OR, combine
// by adding an OR node.
unique_ptr<ListOfMatchExpression> listFilter;
if (MatchExpression::AND == type) {
listFilter = make_unique<AndMatchExpression>();
} else {
verify(MatchExpression::OR == type);
listFilter = make_unique<OrMatchExpression>();
}
unique_ptr<MatchExpression> oldFilter = node->filter->shallowClone();
listFilter->add(oldFilter.release());
listFilter->add(match);
node->filter = std::move(listFilter);
}
}
// static
void QueryPlannerAccess::handleFilter(ScanBuildingState* scanState) {
if (MatchExpression::OR == scanState->root->matchType()) {
handleFilterOr(scanState);
} else if (MatchExpression::AND == scanState->root->matchType()) {
handleFilterAnd(scanState);
} else {
// We must be building leaves for either and AND or an OR.
invariant(0);
}
}
// static
void QueryPlannerAccess::handleFilterOr(ScanBuildingState* scanState) {
MatchExpression* root = scanState->root;
MatchExpression* child = root->getChild(scanState->curChild);
if (scanState->inArrayOperator) {
// We're inside an array operator. The entire array operator expression
// should always be affixed as a filter. We keep 'curChild' in the $and
// for affixing later.
++scanState->curChild;
} else {
if (scanState->tightness < scanState->loosestBounds) {
scanState->loosestBounds = scanState->tightness;
}
// Detach 'child' and add it to 'curOr'.
root->getChildVector()->erase(root->getChildVector()->begin() + scanState->curChild);
scanState->curOr->getChildVector()->push_back(child);
}
}
// static
void QueryPlannerAccess::handleFilterAnd(ScanBuildingState* scanState) {
MatchExpression* root = scanState->root;
MatchExpression* child = root->getChild(scanState->curChild);
const IndexEntry& index = scanState->indices[scanState->currentIndexNumber];
if (scanState->inArrayOperator) {
// We're inside an array operator. The entire array operator expression
// should always be affixed as a filter. We keep 'curChild' in the $and
// for affixing later.
++scanState->curChild;
} else if (scanState->tightness == IndexBoundsBuilder::EXACT) {
root->getChildVector()->erase(root->getChildVector()->begin() + scanState->curChild);
delete child;
} else if (scanState->tightness == IndexBoundsBuilder::INEXACT_COVERED &&
(INDEX_TEXT == index.type || !index.multikey)) {
// The bounds are not exact, but the information needed to
// evaluate the predicate is in the index key. Remove the
// MatchExpression from its parent and attach it to the filter
// of the index scan we're building.
//
// We can only use this optimization if the index is NOT multikey.
// Suppose that we had the multikey index {x: 1} and a document
// {x: ["a", "b"]}. Now if we query for {x: /b/} the filter might
// ever only be applied to the index key "a". We'd incorrectly
// conclude that the document does not match the query :( so we
// gotta stick to non-multikey indices.
root->getChildVector()->erase(root->getChildVector()->begin() + scanState->curChild);
addFilterToSolutionNode(scanState->currentScan.get(), child, root->matchType());
} else {
// We keep curChild in the AND for affixing later.
++scanState->curChild;
}
}
QuerySolutionNode* QueryPlannerAccess::makeIndexScan(const IndexEntry& index,
const CanonicalQuery& query,
const QueryPlannerParams& params,
const BSONObj& startKey,
const BSONObj& endKey) {
QuerySolutionNode* solnRoot = NULL;
// Build an ixscan over the id index, use it, and return it.
IndexScanNode* isn = new IndexScanNode(index);
isn->direction = 1;
isn->maxScan = query.getQueryRequest().getMaxScan();
isn->addKeyMetadata = query.getQueryRequest().returnKey();
isn->bounds.isSimpleRange = true;
isn->bounds.startKey = startKey;
isn->bounds.endKey = endKey;
isn->bounds.boundInclusion = BoundInclusion::kIncludeStartKeyOnly;
isn->queryCollator = query.getCollator();
unique_ptr<MatchExpression> filter = query.root()->shallowClone();
// If it's find({}) remove the no-op root.
if (MatchExpression::AND == filter->matchType() && (0 == filter->numChildren())) {
solnRoot = isn;
} else {
// TODO: We may not need to do the fetch if the predicates in root are covered. But
// for now it's safe (though *maybe* slower).
unique_ptr<FetchNode> fetch = make_unique<FetchNode>();
fetch->filter = std::move(filter);
fetch->children.push_back(isn);
solnRoot = fetch.release();
}
return solnRoot;
}
} // namespace mongo
|