summaryrefslogtreecommitdiff
path: root/src/mongo/db/query/query_planner.cpp
blob: 3e40c5a40240b46ef5a991f0df6f4e4749215d38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
/**
 *    Copyright (C) 2018-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kQuery

#include "mongo/platform/basic.h"

#include "mongo/db/query/query_planner.h"

#include <boost/optional.hpp>
#include <vector>

#include "mongo/base/string_data.h"
#include "mongo/bson/simple_bsonelement_comparator.h"
#include "mongo/db/bson/dotted_path_support.h"
#include "mongo/db/index/wildcard_key_generator.h"
#include "mongo/db/index_names.h"
#include "mongo/db/matcher/expression_algo.h"
#include "mongo/db/matcher/expression_geo.h"
#include "mongo/db/matcher/expression_text.h"
#include "mongo/db/query/canonical_query.h"
#include "mongo/db/query/collation/collation_index_key.h"
#include "mongo/db/query/collation/collator_interface.h"
#include "mongo/db/query/plan_cache.h"
#include "mongo/db/query/plan_enumerator.h"
#include "mongo/db/query/planner_access.h"
#include "mongo/db/query/planner_analysis.h"
#include "mongo/db/query/planner_ixselect.h"
#include "mongo/db/query/query_planner_common.h"
#include "mongo/db/query/query_solution.h"
#include "mongo/util/log.h"

namespace mongo {

using std::numeric_limits;
using std::unique_ptr;

namespace dps = ::mongo::dotted_path_support;

// Copied verbatim from db/index.h
static bool isIdIndex(const BSONObj& pattern) {
    BSONObjIterator i(pattern);
    BSONElement e = i.next();
    //_id index must have form exactly {_id : 1} or {_id : -1}.
    // Allows an index of form {_id : "hashed"} to exist but
    // do not consider it to be the primary _id index
    if (!(strcmp(e.fieldName(), "_id") == 0 && (e.numberInt() == 1 || e.numberInt() == -1)))
        return false;
    return i.next().eoo();
}

static bool is2DIndex(const BSONObj& pattern) {
    BSONObjIterator it(pattern);
    while (it.more()) {
        BSONElement e = it.next();
        if (String == e.type() && (e.valueStringData() == "2d")) {
            return true;
        }
    }
    return false;
}

string optionString(size_t options) {
    str::stream ss;

    if (QueryPlannerParams::DEFAULT == options) {
        ss << "DEFAULT ";
    }
    while (options) {
        // The expression (x & (x - 1)) yields x with the lowest bit cleared.  Then the exclusive-or
        // of the result with the original yields the lowest bit by itself.
        size_t new_options = options & (options - 1);
        QueryPlannerParams::Options opt = QueryPlannerParams::Options(new_options ^ options);
        options = new_options;
        switch (opt) {
            case QueryPlannerParams::NO_TABLE_SCAN:
                ss << "NO_TABLE_SCAN ";
                break;
            case QueryPlannerParams::INCLUDE_COLLSCAN:
                ss << "INCLUDE_COLLSCAN ";
                break;
            case QueryPlannerParams::INCLUDE_SHARD_FILTER:
                ss << "INCLUDE_SHARD_FILTER ";
                break;
            case QueryPlannerParams::NO_BLOCKING_SORT:
                ss << "NO_BLOCKING_SORT ";
                break;
            case QueryPlannerParams::INDEX_INTERSECTION:
                ss << "INDEX_INTERSECTION ";
                break;
            case QueryPlannerParams::IS_COUNT:
                ss << "IS_COUNT ";
                break;
            case QueryPlannerParams::SPLIT_LIMITED_SORT:
                ss << "SPLIT_LIMITED_SORT ";
                break;
            case QueryPlannerParams::NO_UNCOVERED_PROJECTIONS:
                ss << "NO_UNCOVERED_PROJECTIONS ";
                break;
            case QueryPlannerParams::GENERATE_COVERED_IXSCANS:
                ss << "GENERATE_COVERED_IXSCANS ";
                break;
            case QueryPlannerParams::TRACK_LATEST_OPLOG_TS:
                ss << "TRACK_LATEST_OPLOG_TS ";
                break;
            case QueryPlannerParams::OPLOG_SCAN_WAIT_FOR_VISIBLE:
                ss << "OPLOG_SCAN_WAIT_FOR_VISIBLE ";
                break;
            case QueryPlannerParams::STRICT_DISTINCT_ONLY:
                ss << "STRICT_DISTINCT_ONLY ";
                break;
            case QueryPlannerParams::DEFAULT:
                MONGO_UNREACHABLE;
                break;
        }
    }

    return ss;
}

static BSONObj getKeyFromQuery(const BSONObj& keyPattern, const BSONObj& query) {
    return query.extractFieldsUnDotted(keyPattern);
}

static bool indexCompatibleMaxMin(const BSONObj& obj,
                                  const CollatorInterface* queryCollator,
                                  const IndexEntry& indexEntry) {
    // Wildcard indexes should have been filtered out by the time this is called.
    if (indexEntry.type == IndexType::INDEX_WILDCARD) {
        return false;
    }

    BSONObjIterator kpIt(indexEntry.keyPattern);
    BSONObjIterator objIt(obj);

    const bool collatorsMatch =
        CollatorInterface::collatorsMatch(queryCollator, indexEntry.collator);

    for (;;) {
        // Every element up to this point has matched so the KP matches
        if (!kpIt.more() && !objIt.more()) {
            return true;
        }

        // If only one iterator is done, it's not a match.
        if (!kpIt.more() || !objIt.more()) {
            return false;
        }

        // Field names must match and be in the same order.
        BSONElement kpElt = kpIt.next();
        BSONElement objElt = objIt.next();
        if (kpElt.fieldNameStringData() != objElt.fieldNameStringData()) {
            return false;
        }

        // If the index collation doesn't match the query collation, and the min/max obj has a
        // boundary value that needs to respect the collation, then the index is not compatible.
        if (!collatorsMatch && CollationIndexKey::isCollatableType(objElt.type())) {
            return false;
        }
    }
}

static BSONObj stripFieldNamesAndApplyCollation(const BSONObj& obj,
                                                const CollatorInterface* collator) {
    BSONObjBuilder bob;
    for (BSONElement elt : obj) {
        CollationIndexKey::collationAwareIndexKeyAppend(elt, collator, &bob);
    }
    return bob.obj();
}

/**
 * "Finishes" the min object for the $min query option by filling in an empty object with
 * MinKey/MaxKey and stripping field names. Also translates keys according to the collation, if
 * necessary.
 *
 * In the case that 'minObj' is empty, we "finish" it by filling in either MinKey or MaxKey
 * instead. Choosing whether to use MinKey or MaxKey is done by comparing against 'maxObj'.
 * For instance, suppose 'minObj' is empty, 'maxObj' is { a: 3 }, and the key pattern is
 * { a: -1 }. According to the key pattern ordering, { a: 3 } < MinKey. This means that the
 * proper resulting bounds are
 *
 *   start: { '': MaxKey }, end: { '': 3 }
 *
 * as opposed to
 *
 *   start: { '': MinKey }, end: { '': 3 }
 *
 * Suppose instead that the key pattern is { a: 1 }, with the same 'minObj' and 'maxObj'
 * (that is, an empty object and { a: 3 } respectively). In this case, { a: 3 } > MinKey,
 * which means that we use range [{'': MinKey}, {'': 3}]. The proper 'minObj' in this case is
 * MinKey, whereas in the previous example it was MaxKey.
 *
 * If 'minObj' is non-empty, then all we do is strip its field names (because index keys always
 * have empty field names).
 */
static BSONObj finishMinObj(const IndexEntry& indexEntry,
                            const BSONObj& minObj,
                            const BSONObj& maxObj) {
    BSONObjBuilder bob;
    bob.appendMinKey("");
    BSONObj minKey = bob.obj();

    if (minObj.isEmpty()) {
        if (0 > minKey.woCompare(maxObj, indexEntry.keyPattern, false)) {
            BSONObjBuilder minKeyBuilder;
            minKeyBuilder.appendMinKey("");
            return minKeyBuilder.obj();
        } else {
            BSONObjBuilder maxKeyBuilder;
            maxKeyBuilder.appendMaxKey("");
            return maxKeyBuilder.obj();
        }
    } else {
        return stripFieldNamesAndApplyCollation(minObj, indexEntry.collator);
    }
}

/**
 * "Finishes" the max object for the $max query option by filling in an empty object with
 * MinKey/MaxKey and stripping field names. Also translates keys according to the collation, if
 * necessary.
 *
 * See comment for finishMinObj() for why we need both 'minObj' and 'maxObj'.
 */
static BSONObj finishMaxObj(const IndexEntry& indexEntry,
                            const BSONObj& minObj,
                            const BSONObj& maxObj) {
    BSONObjBuilder bob;
    bob.appendMaxKey("");
    BSONObj maxKey = bob.obj();

    if (maxObj.isEmpty()) {
        if (0 < maxKey.woCompare(minObj, indexEntry.keyPattern, false)) {
            BSONObjBuilder maxKeyBuilder;
            maxKeyBuilder.appendMaxKey("");
            return maxKeyBuilder.obj();
        } else {
            BSONObjBuilder minKeyBuilder;
            minKeyBuilder.appendMinKey("");
            return minKeyBuilder.obj();
        }
    } else {
        return stripFieldNamesAndApplyCollation(maxObj, indexEntry.collator);
    }
}

std::unique_ptr<QuerySolution> buildCollscanSoln(const CanonicalQuery& query,
                                                 bool tailable,
                                                 const QueryPlannerParams& params) {
    std::unique_ptr<QuerySolutionNode> solnRoot(
        QueryPlannerAccess::makeCollectionScan(query, tailable, params));
    return QueryPlannerAnalysis::analyzeDataAccess(query, params, std::move(solnRoot));
}

std::unique_ptr<QuerySolution> buildWholeIXSoln(const IndexEntry& index,
                                                const CanonicalQuery& query,
                                                const QueryPlannerParams& params,
                                                int direction = 1) {
    std::unique_ptr<QuerySolutionNode> solnRoot(
        QueryPlannerAccess::scanWholeIndex(index, query, params, direction));
    return QueryPlannerAnalysis::analyzeDataAccess(query, params, std::move(solnRoot));
}

bool providesSort(const CanonicalQuery& query, const BSONObj& kp) {
    return query.getQueryRequest().getSort().isPrefixOf(kp, SimpleBSONElementComparator::kInstance);
}

// static
const int QueryPlanner::kPlannerVersion = 1;

StatusWith<std::unique_ptr<PlanCacheIndexTree>> QueryPlanner::cacheDataFromTaggedTree(
    const MatchExpression* const taggedTree, const vector<IndexEntry>& relevantIndices) {
    if (!taggedTree) {
        return Status(ErrorCodes::BadValue, "Cannot produce cache data: tree is NULL.");
    }

    auto indexTree = stdx::make_unique<PlanCacheIndexTree>();

    if (taggedTree->getTag() &&
        taggedTree->getTag()->getType() == MatchExpression::TagData::Type::IndexTag) {
        IndexTag* itag = static_cast<IndexTag*>(taggedTree->getTag());
        if (itag->index >= relevantIndices.size()) {
            str::stream ss;
            ss << "Index number is " << itag->index << " but there are only "
               << relevantIndices.size() << " relevant indices.";
            return Status(ErrorCodes::BadValue, ss);
        }

        // Make sure not to cache solutions which use '2d' indices.
        // A 2d index that doesn't wrap on one query may wrap on another, so we have to
        // check that the index is OK with the predicate. The only thing we have to do
        // this for is 2d.  For now it's easier to move ahead if we don't cache 2d.
        //
        // TODO: revisit with a post-cached-index-assignment compatibility check
        if (is2DIndex(relevantIndices[itag->index].keyPattern)) {
            return Status(ErrorCodes::BadValue, "can't cache '2d' index");
        }

        IndexEntry* ientry = new IndexEntry(relevantIndices[itag->index]);
        indexTree->entry.reset(ientry);
        indexTree->index_pos = itag->pos;
        indexTree->canCombineBounds = itag->canCombineBounds;
    } else if (taggedTree->getTag() &&
               taggedTree->getTag()->getType() == MatchExpression::TagData::Type::OrPushdownTag) {
        OrPushdownTag* orPushdownTag = static_cast<OrPushdownTag*>(taggedTree->getTag());

        if (orPushdownTag->getIndexTag()) {
            const IndexTag* itag = static_cast<const IndexTag*>(orPushdownTag->getIndexTag());

            if (is2DIndex(relevantIndices[itag->index].keyPattern)) {
                return Status(ErrorCodes::BadValue, "can't cache '2d' index");
            }

            std::unique_ptr<IndexEntry> indexEntry =
                stdx::make_unique<IndexEntry>(relevantIndices[itag->index]);
            indexTree->entry.reset(indexEntry.release());
            indexTree->index_pos = itag->pos;
            indexTree->canCombineBounds = itag->canCombineBounds;
        }

        for (const auto& dest : orPushdownTag->getDestinations()) {
            IndexTag* indexTag = static_cast<IndexTag*>(dest.tagData.get());
            PlanCacheIndexTree::OrPushdown orPushdown{relevantIndices[indexTag->index].identifier,
                                                      indexTag->pos,
                                                      indexTag->canCombineBounds,
                                                      dest.route};
            indexTree->orPushdowns.push_back(std::move(orPushdown));
        }
    }

    for (size_t i = 0; i < taggedTree->numChildren(); ++i) {
        MatchExpression* taggedChild = taggedTree->getChild(i);
        auto statusWithTree = cacheDataFromTaggedTree(taggedChild, relevantIndices);
        if (!statusWithTree.isOK()) {
            return statusWithTree.getStatus();
        }
        indexTree->children.push_back(statusWithTree.getValue().release());
    }

    return {std::move(indexTree)};
}

// static
Status QueryPlanner::tagAccordingToCache(MatchExpression* filter,
                                         const PlanCacheIndexTree* const indexTree,
                                         const map<IndexEntry::Identifier, size_t>& indexMap) {
    if (nullptr == filter) {
        return Status(ErrorCodes::NoQueryExecutionPlans, "Cannot tag tree: filter is NULL.");
    }
    if (nullptr == indexTree) {
        return Status(ErrorCodes::NoQueryExecutionPlans, "Cannot tag tree: indexTree is NULL.");
    }

    // We're tagging the tree here, so it shouldn't have
    // any tags hanging off yet.
    verify(NULL == filter->getTag());

    if (filter->numChildren() != indexTree->children.size()) {
        str::stream ss;
        ss << "Cache topology and query did not match: "
           << "query has " << filter->numChildren() << " children "
           << "and cache has " << indexTree->children.size() << " children.";
        return Status(ErrorCodes::NoQueryExecutionPlans, ss);
    }

    // Continue the depth-first tree traversal.
    for (size_t i = 0; i < filter->numChildren(); ++i) {
        Status s = tagAccordingToCache(filter->getChild(i), indexTree->children[i], indexMap);
        if (!s.isOK()) {
            return s;
        }
    }

    if (!indexTree->orPushdowns.empty()) {
        filter->setTag(new OrPushdownTag());
        OrPushdownTag* orPushdownTag = static_cast<OrPushdownTag*>(filter->getTag());
        for (const auto& orPushdown : indexTree->orPushdowns) {
            auto index = indexMap.find(orPushdown.indexEntryId);
            if (index == indexMap.end()) {
                return Status(ErrorCodes::NoQueryExecutionPlans,
                              str::stream() << "Did not find index: " << orPushdown.indexEntryId);
            }
            OrPushdownTag::Destination dest;
            dest.route = orPushdown.route;
            dest.tagData = stdx::make_unique<IndexTag>(
                index->second, orPushdown.position, orPushdown.canCombineBounds);
            orPushdownTag->addDestination(std::move(dest));
        }
    }

    if (indexTree->entry.get()) {
        const auto got = indexMap.find(indexTree->entry->identifier);
        if (got == indexMap.end()) {
            str::stream ss;
            ss << "Did not find index with name: " << indexTree->entry->identifier.catalogName;
            return Status(ErrorCodes::NoQueryExecutionPlans, ss);
        }
        if (filter->getTag()) {
            OrPushdownTag* orPushdownTag = static_cast<OrPushdownTag*>(filter->getTag());
            orPushdownTag->setIndexTag(
                new IndexTag(got->second, indexTree->index_pos, indexTree->canCombineBounds));
        } else {
            filter->setTag(
                new IndexTag(got->second, indexTree->index_pos, indexTree->canCombineBounds));
        }
    }

    return Status::OK();
}

StatusWith<std::unique_ptr<QuerySolution>> QueryPlanner::planFromCache(
    const CanonicalQuery& query,
    const QueryPlannerParams& params,
    const CachedSolution& cachedSoln) {
    invariant(!cachedSoln.plannerData.empty());

    // A query not suitable for caching should not have made its way into the cache.
    invariant(PlanCache::shouldCacheQuery(query));

    // Look up winning solution in cached solution's array.
    const SolutionCacheData& winnerCacheData = *cachedSoln.plannerData[0];

    if (SolutionCacheData::WHOLE_IXSCAN_SOLN == winnerCacheData.solnType) {
        // The solution can be constructed by a scan over the entire index.
        auto soln = buildWholeIXSoln(
            *winnerCacheData.tree->entry, query, params, winnerCacheData.wholeIXSolnDir);
        if (!soln) {
            return Status(ErrorCodes::NoQueryExecutionPlans,
                          "plan cache error: soln that uses index to provide sort");
        } else {
            return {std::move(soln)};
        }
    } else if (SolutionCacheData::COLLSCAN_SOLN == winnerCacheData.solnType) {
        // The cached solution is a collection scan. We don't cache collscans
        // with tailable==true, hence the false below.
        auto soln = buildCollscanSoln(query, false, params);
        if (!soln) {
            return Status(ErrorCodes::NoQueryExecutionPlans,
                          "plan cache error: collection scan soln");
        } else {
            return {std::move(soln)};
        }
    }

    // SolutionCacheData::USE_TAGS_SOLN == cacheData->solnType
    // If we're here then this is neither the whole index scan or collection scan
    // cases, and we proceed by using the PlanCacheIndexTree to tag the query tree.

    // Create a copy of the expression tree.  We use cachedSoln to annotate this with indices.
    unique_ptr<MatchExpression> clone = query.root()->shallowClone();

    LOG(5) << "Tagging the match expression according to cache data: " << endl
           << "Filter:" << endl
           << redact(clone->debugString()) << "Cache data:" << endl
           << redact(winnerCacheData.toString());

    stdx::unordered_set<string> fields;
    QueryPlannerIXSelect::getFields(query.root(), &fields);
    std::vector<IndexEntry> expandedIndexes =
        QueryPlannerIXSelect::expandIndexes(fields, params.indices);

    // Map from index name to index number.
    map<IndexEntry::Identifier, size_t> indexMap;
    for (size_t i = 0; i < expandedIndexes.size(); ++i) {
        const IndexEntry& ie = expandedIndexes[i];
        const auto insertionRes = indexMap.insert(std::make_pair(ie.identifier, i));
        // Be sure the key was not already in the map.
        invariant(insertionRes.second);
        LOG(5) << "Index " << i << ": " << ie.identifier;
    }

    Status s = tagAccordingToCache(clone.get(), winnerCacheData.tree.get(), indexMap);
    if (!s.isOK()) {
        return s;
    }

    // The MatchExpression tree is in canonical order. We must order the nodes for access planning.
    prepareForAccessPlanning(clone.get());

    LOG(5) << "Tagged tree:" << endl << redact(clone->debugString());

    // Use the cached index assignments to build solnRoot.
    std::unique_ptr<QuerySolutionNode> solnRoot(QueryPlannerAccess::buildIndexedDataAccess(
        query, std::move(clone), expandedIndexes, params));

    if (!solnRoot) {
        return Status(ErrorCodes::NoQueryExecutionPlans,
                      str::stream() << "Failed to create data access plan from cache. Query: "
                                    << query.toStringShort());
    }

    auto soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, std::move(solnRoot));
    if (!soln) {
        return Status(ErrorCodes::NoQueryExecutionPlans,
                      str::stream()
                          << "Failed to analyze plan from cache. Query: " << query.toStringShort());
    }

    LOG(5) << "Planner: solution constructed from the cache:\n" << redact(soln->toString());
    return {std::move(soln)};
}

// static
StatusWith<std::vector<std::unique_ptr<QuerySolution>>> QueryPlanner::plan(
    const CanonicalQuery& query, const QueryPlannerParams& params) {
    LOG(5) << "Beginning planning..." << endl
           << "=============================" << endl
           << "Options = " << optionString(params.options) << endl
           << "Canonical query:" << endl
           << redact(query.toString()) << "=============================";

    std::vector<std::unique_ptr<QuerySolution>> out;

    for (size_t i = 0; i < params.indices.size(); ++i) {
        LOG(5) << "Index " << i << " is " << params.indices[i].toString();
    }

    const bool canTableScan = !(params.options & QueryPlannerParams::NO_TABLE_SCAN);
    const bool isTailable = query.getQueryRequest().isTailable();

    // If the query requests a tailable cursor, the only solution is a collscan + filter with
    // tailable set on the collscan.
    if (isTailable) {
        if (!QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) && canTableScan) {
            auto soln = buildCollscanSoln(query, isTailable, params);
            if (soln) {
                out.push_back(std::move(soln));
            }
        }
        return {std::move(out)};
    }

    // The hint or sort can be $natural: 1.  If this happens, output a collscan. If both
    // a $natural hint and a $natural sort are specified, then the direction of the collscan
    // is determined by the sign of the sort (not the sign of the hint).
    if (!query.getQueryRequest().getHint().isEmpty() ||
        !query.getQueryRequest().getSort().isEmpty()) {
        BSONObj hintObj = query.getQueryRequest().getHint();
        BSONObj sortObj = query.getQueryRequest().getSort();
        BSONElement naturalHint = dps::extractElementAtPath(hintObj, "$natural");
        BSONElement naturalSort = dps::extractElementAtPath(sortObj, "$natural");

        // A hint overrides a $natural sort. This means that we don't force a table
        // scan if there is a $natural sort with a non-$natural hint.
        if (!naturalHint.eoo() || (!naturalSort.eoo() && hintObj.isEmpty())) {
            LOG(5) << "Forcing a table scan due to hinted $natural";
            // min/max are incompatible with $natural.
            if (canTableScan && query.getQueryRequest().getMin().isEmpty() &&
                query.getQueryRequest().getMax().isEmpty()) {
                auto soln = buildCollscanSoln(query, isTailable, params);
                if (soln) {
                    out.push_back(std::move(soln));
                }
            }
            return {std::move(out)};
        }
    }

    // Hints require us to only consider the hinted index. If index filters in the query settings
    // were used to override the allowed indices for planning, we should not use the hinted index
    // requested in the query.
    BSONObj hintedIndex;
    if (!params.indexFiltersApplied) {
        hintedIndex = query.getQueryRequest().getHint();
    }

    // Either the list of indices passed in by the caller, or the list of indices filtered according
    // to the hint. This list is later expanded in order to allow the planner to handle wildcard
    // indexes.
    std::vector<IndexEntry> fullIndexList;

    // Will hold a copy of the index entry chosen by the hint.
    boost::optional<IndexEntry> hintedIndexEntry;
    if (hintedIndex.isEmpty()) {
        fullIndexList = params.indices;
    } else {
        fullIndexList = QueryPlannerIXSelect::findIndexesByHint(hintedIndex, params.indices);

        if (fullIndexList.empty()) {
            return Status(ErrorCodes::BadValue,
                          "hint provided does not correspond to an existing index");
        }
        if (fullIndexList.size() > 1) {
            return Status(ErrorCodes::IndexNotFound,
                          str::stream()
                              << "Hint matched multiple indexes, "
                              << "must hint by index name. Matched: " << fullIndexList[0].toString()
                              << " and " << fullIndexList[1].toString());
        }

        hintedIndexEntry.emplace(fullIndexList.front());
    }

    // Figure out what fields we care about.
    stdx::unordered_set<string> fields;
    QueryPlannerIXSelect::getFields(query.root(), &fields);
    for (auto&& field : fields) {
        LOG(5) << "Predicate over field '" << field << "'";
    }

    fullIndexList = QueryPlannerIXSelect::expandIndexes(fields, std::move(fullIndexList));
    std::vector<IndexEntry> relevantIndices;

    if (!hintedIndexEntry) {
        relevantIndices = QueryPlannerIXSelect::findRelevantIndices(fields, fullIndexList);
    } else {
        relevantIndices = fullIndexList;

        // Relevant indices should only ever exceed a size of 1 when there is a hint in the case of
        // $** index.
        if (relevantIndices.size() > 1) {
            for (auto&& entry : relevantIndices) {
                invariant(entry.type == IndexType::INDEX_WILDCARD);
            }
        }
    }

    // Deal with the .min() and .max() query options.  If either exist we can only use an index
    // that matches the object inside.
    if (!query.getQueryRequest().getMin().isEmpty() ||
        !query.getQueryRequest().getMax().isEmpty()) {

        if (!hintedIndexEntry) {
            return Status(ErrorCodes::Error(51173),
                          "When using min()/max() a hint of which index to use must be provided");
        }

        BSONObj minObj = query.getQueryRequest().getMin();
        BSONObj maxObj = query.getQueryRequest().getMax();

        if (!indexCompatibleMaxMin(
                minObj.isEmpty() ? maxObj : minObj, query.getCollator(), *hintedIndexEntry)) {
            return Status(ErrorCodes::Error(51174),
                          "The index chosen is not compatible with min/max");
        }
        // Be sure that index expansion didn't do anything. As wildcard indexes are banned for
        // min/max, we expect to find a single hinted index entry.
        invariant(fullIndexList.size() == 1);
        invariant(*hintedIndexEntry == fullIndexList.front());

        // In order to be fully compatible, the min has to be less than the max according to the
        // index key pattern ordering. The first step in verifying this is "finish" the min and max
        // by replacing empty objects and stripping field names.
        BSONObj finishedMinObj = finishMinObj(*hintedIndexEntry, minObj, maxObj);
        BSONObj finishedMaxObj = finishMaxObj(*hintedIndexEntry, minObj, maxObj);

        // Now we have the final min and max. This index is only relevant for the min/max query if
        // min < max.
        if (finishedMinObj.woCompare(finishedMaxObj, hintedIndexEntry->keyPattern, false) >= 0) {
            return Status(ErrorCodes::Error(51175),
                          "The value provided for min() does not come before the value provided "
                          "for max() in the hinted index");
        }

        std::unique_ptr<QuerySolutionNode> solnRoot(QueryPlannerAccess::makeIndexScan(
            *hintedIndexEntry, query, params, finishedMinObj, finishedMaxObj));
        invariant(solnRoot);

        auto soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, std::move(solnRoot));
        if (soln) {
            out.push_back(std::move(soln));
        }

        return {std::move(out)};
    }

    for (size_t i = 0; i < relevantIndices.size(); ++i) {
        LOG(2) << "Relevant index " << i << " is " << relevantIndices[i].toString();
    }

    // Figure out how useful each index is to each predicate.
    QueryPlannerIXSelect::rateIndices(query.root(), "", relevantIndices, query.getCollator());
    QueryPlannerIXSelect::stripInvalidAssignments(query.root(), relevantIndices);

    // Unless we have GEO_NEAR, TEXT, or a projection, we may be able to apply an optimization
    // in which we strip unnecessary index assignments.
    //
    // Disallowed with projection because assignment to a non-unique index can allow the plan
    // to be covered.
    //
    // TEXT and GEO_NEAR are special because they require the use of a text/geo index in order
    // to be evaluated correctly. Stripping these "mandatory assignments" is therefore invalid.
    if (query.getQueryRequest().getProj().isEmpty() &&
        !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) &&
        !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT)) {
        QueryPlannerIXSelect::stripUnneededAssignments(query.root(), relevantIndices);
    }

    // query.root() is now annotated with RelevantTag(s).
    LOG(5) << "Rated tree:" << endl << redact(query.root()->debugString());

    // If there is a GEO_NEAR it must have an index it can use directly.
    const MatchExpression* gnNode = NULL;
    if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR, &gnNode)) {
        // No index for GEO_NEAR?  No query.
        RelevantTag* tag = static_cast<RelevantTag*>(gnNode->getTag());
        if (!tag || (0 == tag->first.size() && 0 == tag->notFirst.size())) {
            LOG(5) << "Unable to find index for $geoNear query.";
            // Don't leave tags on query tree.
            query.root()->resetTag();
            return Status(ErrorCodes::NoQueryExecutionPlans,
                          "unable to find index for $geoNear query");
        }

        LOG(5) << "Rated tree after geonear processing:" << redact(query.root()->debugString());
    }

    // Likewise, if there is a TEXT it must have an index it can use directly.
    const MatchExpression* textNode = NULL;
    if (QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT, &textNode)) {
        RelevantTag* tag = static_cast<RelevantTag*>(textNode->getTag());

        // Exactly one text index required for TEXT.  We need to check this explicitly because
        // the text stage can't be built if no text index exists or there is an ambiguity as to
        // which one to use.
        size_t textIndexCount = 0;
        for (size_t i = 0; i < fullIndexList.size(); i++) {
            if (INDEX_TEXT == fullIndexList[i].type) {
                textIndexCount++;
            }
        }
        if (textIndexCount != 1) {
            // Don't leave tags on query tree.
            query.root()->resetTag();
            return Status(ErrorCodes::NoQueryExecutionPlans,
                          "need exactly one text index for $text query");
        }

        // Error if the text node is tagged with zero indices.
        if (0 == tag->first.size() && 0 == tag->notFirst.size()) {
            // Don't leave tags on query tree.
            query.root()->resetTag();
            return Status(ErrorCodes::NoQueryExecutionPlans,
                          "failed to use text index to satisfy $text query (if text index is "
                          "compound, are equality predicates given for all prefix fields?)");
        }

        // At this point, we know that there is only one text index and that the TEXT node is
        // assigned to it.
        invariant(1 == tag->first.size() + tag->notFirst.size());

        LOG(5) << "Rated tree after text processing:" << redact(query.root()->debugString());
    }

    // If we have any relevant indices, we try to create indexed plans.
    if (0 < relevantIndices.size()) {
        // The enumerator spits out trees tagged with IndexTag(s).
        PlanEnumeratorParams enumParams;
        enumParams.intersect = params.options & QueryPlannerParams::INDEX_INTERSECTION;
        enumParams.root = query.root();
        enumParams.indices = &relevantIndices;

        PlanEnumerator isp(enumParams);
        isp.init().transitional_ignore();

        unique_ptr<MatchExpression> nextTaggedTree;
        while ((nextTaggedTree = isp.getNext()) && (out.size() < params.maxIndexedSolutions)) {
            LOG(5) << "About to build solntree from tagged tree:" << endl
                   << redact(nextTaggedTree->debugString());

            // Store the plan cache index tree before calling prepareForAccessingPlanning(), so that
            // the PlanCacheIndexTree has the same sort as the MatchExpression used to generate the
            // plan cache key.
            std::unique_ptr<MatchExpression> clone(nextTaggedTree->shallowClone());
            std::unique_ptr<PlanCacheIndexTree> cacheData;
            auto statusWithCacheData = cacheDataFromTaggedTree(clone.get(), relevantIndices);
            if (!statusWithCacheData.isOK()) {
                LOG(5) << "Query is not cachable: "
                       << redact(statusWithCacheData.getStatus().reason());
            } else {
                cacheData = std::move(statusWithCacheData.getValue());
            }

            // We have already cached the tree in canonical order, so now we can order the nodes for
            // access planning.
            prepareForAccessPlanning(nextTaggedTree.get());

            // This can fail if enumeration makes a mistake.
            std::unique_ptr<QuerySolutionNode> solnRoot(QueryPlannerAccess::buildIndexedDataAccess(
                query, std::move(nextTaggedTree), relevantIndices, params));

            if (!solnRoot) {
                continue;
            }

            auto soln = QueryPlannerAnalysis::analyzeDataAccess(query, params, std::move(solnRoot));
            if (soln) {
                LOG(5) << "Planner: adding solution:" << endl << redact(soln->toString());
                if (statusWithCacheData.isOK()) {
                    SolutionCacheData* scd = new SolutionCacheData();
                    scd->tree = std::move(cacheData);
                    soln->cacheData.reset(scd);
                }
                out.push_back(std::move(soln));
            }
        }
    }

    // Don't leave tags on query tree.
    query.root()->resetTag();

    LOG(5) << "Planner: outputted " << out.size() << " indexed solutions.";

    // Produce legible error message for failed OR planning with a TEXT child.
    // TODO: support collection scan for non-TEXT children of OR.
    if (out.size() == 0 && textNode != NULL && MatchExpression::OR == query.root()->matchType()) {
        MatchExpression* root = query.root();
        for (size_t i = 0; i < root->numChildren(); ++i) {
            if (textNode == root->getChild(i)) {
                return Status(ErrorCodes::NoQueryExecutionPlans,
                              "Failed to produce a solution for TEXT under OR - "
                              "other non-TEXT clauses under OR have to be indexed as well.");
            }
        }
    }

    // An index was hinted. If there are any solutions, they use the hinted index.  If not, we
    // scan the entire index to provide results and output that as our plan.  This is the
    // desired behavior when an index is hinted that is not relevant to the query. In the case that
    // $** index is hinted, we do not want this behavior.
    if (!hintedIndex.isEmpty() && relevantIndices.size() == 1) {
        if (0 == out.size() && relevantIndices.front().type != IndexType::INDEX_WILDCARD) {
            // Push hinted index solution to output list if found. It is possible to end up without
            // a solution in the case where a filtering QueryPlannerParams argument, such as
            // NO_BLOCKING_SORT, leads to its exclusion.
            auto soln = buildWholeIXSoln(relevantIndices.front(), query, params);
            if (soln) {
                LOG(5) << "Planner: outputting soln that uses hinted index as scan.";
                out.push_back(std::move(soln));
            }
        }
        return {std::move(out)};
    }

    // If a sort order is requested, there may be an index that provides it, even if that
    // index is not over any predicates in the query.
    //
    if (!query.getQueryRequest().getSort().isEmpty() &&
        !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) &&
        !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT)) {
        // See if we have a sort provided from an index already.
        // This is implied by the presence of a non-blocking solution.
        bool usingIndexToSort = false;
        for (size_t i = 0; i < out.size(); ++i) {
            auto soln = out[i].get();
            if (!soln->hasBlockingStage) {
                usingIndexToSort = true;
                break;
            }
        }

        if (!usingIndexToSort) {
            for (size_t i = 0; i < fullIndexList.size(); ++i) {
                const IndexEntry& index = fullIndexList[i];
                // Only regular (non-plugin) indexes can be used to provide a sort, and only
                // non-sparse indexes can be used to provide a sort.
                //
                // TODO: Sparse indexes can't normally provide a sort, because non-indexed
                // documents could potentially be missing from the result set.  However, if the
                // query predicate can be used to guarantee that all documents to be returned
                // are indexed, then the index should be able to provide the sort.
                //
                // For example:
                // - Sparse index {a: 1, b: 1} should be able to provide a sort for
                //   find({b: 1}).sort({a: 1}).  SERVER-13908.
                // - Index {a: 1, b: "2dsphere"} (which is "geo-sparse", if
                //   2dsphereIndexVersion=2) should be able to provide a sort for
                //   find({b: GEO}).sort({a:1}).  SERVER-10801.
                if (index.type != INDEX_BTREE) {
                    continue;
                }
                if (index.sparse) {
                    continue;
                }

                // If the index collation differs from the query collation, the index should not be
                // used to provide a sort, because strings will be ordered incorrectly.
                if (!CollatorInterface::collatorsMatch(index.collator, query.getCollator())) {
                    continue;
                }

                // Partial indexes can only be used to provide a sort only if the query predicate is
                // compatible.
                if (index.filterExpr && !expression::isSubsetOf(query.root(), index.filterExpr)) {
                    continue;
                }

                const BSONObj kp = QueryPlannerAnalysis::getSortPattern(index.keyPattern);
                if (providesSort(query, kp)) {
                    LOG(5) << "Planner: outputting soln that uses index to provide sort.";
                    auto soln = buildWholeIXSoln(fullIndexList[i], query, params);
                    if (soln) {
                        PlanCacheIndexTree* indexTree = new PlanCacheIndexTree();
                        indexTree->setIndexEntry(fullIndexList[i]);
                        SolutionCacheData* scd = new SolutionCacheData();
                        scd->tree.reset(indexTree);
                        scd->solnType = SolutionCacheData::WHOLE_IXSCAN_SOLN;
                        scd->wholeIXSolnDir = 1;

                        soln->cacheData.reset(scd);
                        out.push_back(std::move(soln));
                        break;
                    }
                }
                if (providesSort(query, QueryPlannerCommon::reverseSortObj(kp))) {
                    LOG(5) << "Planner: outputting soln that uses (reverse) index "
                           << "to provide sort.";
                    auto soln = buildWholeIXSoln(fullIndexList[i], query, params, -1);
                    if (soln) {
                        PlanCacheIndexTree* indexTree = new PlanCacheIndexTree();
                        indexTree->setIndexEntry(fullIndexList[i]);
                        SolutionCacheData* scd = new SolutionCacheData();
                        scd->tree.reset(indexTree);
                        scd->solnType = SolutionCacheData::WHOLE_IXSCAN_SOLN;
                        scd->wholeIXSolnDir = -1;

                        soln->cacheData.reset(scd);
                        out.push_back(std::move(soln));
                        break;
                    }
                }
            }
        }
    }

    // If a projection exists, there may be an index that allows for a covered plan, even if none
    // were considered earlier.
    const auto projection = query.getProj();
    if (params.options & QueryPlannerParams::GENERATE_COVERED_IXSCANS && out.size() == 0 &&
        query.getQueryObj().isEmpty() && projection && !projection->requiresDocument()) {

        const auto* indicesToConsider = hintedIndex.isEmpty() ? &fullIndexList : &relevantIndices;
        for (auto&& index : *indicesToConsider) {
            if (index.type != INDEX_BTREE || index.multikey || index.sparse || index.filterExpr ||
                !CollatorInterface::collatorsMatch(index.collator, query.getCollator())) {
                continue;
            }

            QueryPlannerParams paramsForCoveredIxScan;
            paramsForCoveredIxScan.options =
                params.options | QueryPlannerParams::NO_UNCOVERED_PROJECTIONS;
            auto soln = buildWholeIXSoln(index, query, paramsForCoveredIxScan);
            if (soln) {
                LOG(5) << "Planner: outputting soln that uses index to provide projection.";
                PlanCacheIndexTree* indexTree = new PlanCacheIndexTree();
                indexTree->setIndexEntry(index);

                SolutionCacheData* scd = new SolutionCacheData();
                scd->tree.reset(indexTree);
                scd->solnType = SolutionCacheData::WHOLE_IXSCAN_SOLN;
                scd->wholeIXSolnDir = 1;
                soln->cacheData.reset(scd);

                out.push_back(std::move(soln));
                break;
            }
        }
    }

    // geoNear and text queries *require* an index.
    // Also, if a hint is specified it indicates that we MUST use it.
    bool possibleToCollscan =
        !QueryPlannerCommon::hasNode(query.root(), MatchExpression::GEO_NEAR) &&
        !QueryPlannerCommon::hasNode(query.root(), MatchExpression::TEXT) && hintedIndex.isEmpty();

    // The caller can explicitly ask for a collscan.
    bool collscanRequested = (params.options & QueryPlannerParams::INCLUDE_COLLSCAN);

    // No indexed plans?  We must provide a collscan if possible or else we can't run the query.
    bool collscanNeeded = (0 == out.size() && canTableScan);

    if (possibleToCollscan && (collscanRequested || collscanNeeded)) {
        auto collscan = buildCollscanSoln(query, isTailable, params);
        if (collscan) {
            LOG(5) << "Planner: outputting a collscan:" << endl << redact(collscan->toString());
            SolutionCacheData* scd = new SolutionCacheData();
            scd->solnType = SolutionCacheData::COLLSCAN_SOLN;
            collscan->cacheData.reset(scd);
            out.push_back(std::move(collscan));
        }
    }

    return {std::move(out)};
}

}  // namespace mongo