1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
|
/**
* Copyright (C) 2013 10gen Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License, version 3,
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the GNU Affero General Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#include "mongo/db/query/query_planner.h"
#include <map>
#include <set>
#include <stack>
#include <vector>
// For QueryOption_foobar
#include "mongo/client/dbclientinterface.h"
#include "mongo/db/matcher/expression_array.h"
#include "mongo/db/matcher/expression_geo.h"
#include "mongo/db/matcher/expression_parser.h"
#include "mongo/db/query/canonical_query.h"
#include "mongo/db/query/index_bounds_builder.h"
#include "mongo/db/query/index_tag.h"
#include "mongo/db/query/indexability.h"
#include "mongo/db/query/plan_enumerator.h"
#include "mongo/db/query/query_solution.h"
namespace mongo {
// static
void QueryPlanner::getFields(MatchExpression* node, string prefix, unordered_set<string>* out) {
// Leaf nodes with a path and some array operators.
if (Indexability::nodeCanUseIndexOnOwnField(node)) {
out->insert(prefix + node->path().toString());
}
else if (Indexability::arrayUsesIndexOnChildren(node)) {
// If the array uses an index on its children, it's something like
// {foo : {$elemMatch: { bar: 1}}}, in which case the predicate is really over
// foo.bar.
//
// When we have {foo: {$all: [{$elemMatch: {a:1}}], the path of the embedded elemMatch
// is empty. We don't want to append a dot in that case as the field would be foo..a.
if (!node->path().empty()) {
prefix += node->path().toString() + ".";
}
for (size_t i = 0; i < node->numChildren(); ++i) {
getFields(node->getChild(i), prefix, out);
}
}
else if (node->isLogical()) {
for (size_t i = 0; i < node->numChildren(); ++i) {
getFields(node->getChild(i), prefix, out);
}
}
}
// static
void QueryPlanner::findRelevantIndices(const unordered_set<string>& fields,
const vector<IndexEntry>& allIndices,
vector<IndexEntry>* out) {
for (size_t i = 0; i < allIndices.size(); ++i) {
BSONObjIterator it(allIndices[i].keyPattern);
verify(it.more());
BSONElement elt = it.next();
if (fields.end() != fields.find(elt.fieldName())) {
out->push_back(allIndices[i]);
}
}
}
// static
bool QueryPlanner::compatible(const BSONElement& elt, const IndexEntry& index,
MatchExpression* node) {
// XXX: CatalogHack::getAccessMethodName: do we have to worry about this? when?
string ixtype;
if (String != elt.type()) {
ixtype = "";
}
else {
ixtype = elt.String();
}
// we know elt.fieldname() == node->path()
// XXX: Our predicate may be normal and it may be over a geo index (compounding). Detect
// this at some point.
MatchExpression::MatchType exprtype = node->matchType();
// TODO: use indexnames
if ("" == ixtype) {
return exprtype != MatchExpression::GEO && exprtype != MatchExpression::GEO_NEAR;
}
else if ("hashed" == ixtype) {
return exprtype == MatchExpression::MATCH_IN || exprtype == MatchExpression::EQ;
}
else if ("2dsphere" == ixtype) {
if (exprtype == MatchExpression::GEO) {
// within or intersect.
GeoMatchExpression* gme = static_cast<GeoMatchExpression*>(node);
const GeoQuery& gq = gme->getGeoQuery();
const GeometryContainer& gc = gq.getGeometry();
return gc.hasS2Region();
}
else if (exprtype == MatchExpression::GEO_NEAR) {
GeoNearMatchExpression* gnme = static_cast<GeoNearMatchExpression*>(node);
// Make sure the near query is compatible with 2dsphere.
if (gnme->getData().centroid.crs == SPHERE || gnme->getData().isNearSphere) {
return true;
}
}
return false;
}
else if ("2d" == ixtype) {
if (exprtype == MatchExpression::GEO) {
// 2d only supports within.
GeoMatchExpression* gme = static_cast<GeoMatchExpression*>(node);
const GeoQuery& gq = gme->getGeoQuery();
if (GeoQuery::WITHIN != gq.getPred()) {
return false;
}
const GeometryContainer& gc = gq.getGeometry();
return gc.hasFlatRegion();
}
else if (exprtype == MatchExpression::GEO_NEAR) {
GeoNearMatchExpression* gnme = static_cast<GeoNearMatchExpression*>(node);
if (gnme->getData().centroid.crs == FLAT) {
return true;
}
}
return false;
}
else if ("text" == ixtype || "_fts" == ixtype || "geoHaystack" == ixtype) {
return false;
}
else {
warning() << "Unknown indexing for for node " << node->toString()
<< " and field " << elt.toString() << endl;
verify(0);
}
}
// static
void QueryPlanner::rateIndices(MatchExpression* node, string prefix,
const vector<IndexEntry>& indices) {
if (Indexability::nodeCanUseIndexOnOwnField(node)) {
string fullPath = prefix + node->path().toString();
verify(NULL == node->getTag());
RelevantTag* rt = new RelevantTag();
node->setTag(rt);
rt->path = fullPath;
// TODO: This is slow, with all the string compares.
for (size_t i = 0; i < indices.size(); ++i) {
BSONObjIterator it(indices[i].keyPattern);
BSONElement elt = it.next();
if (elt.fieldName() == fullPath && compatible(elt, indices[i], node)) {
rt->first.push_back(i);
}
while (it.more()) {
elt = it.next();
if (elt.fieldName() == fullPath && compatible(elt, indices[i], node)) {
rt->notFirst.push_back(i);
}
}
}
}
else if (Indexability::arrayUsesIndexOnChildren(node)) {
// See comment in getFields about all/elemMatch and paths.
if (!node->path().empty()) {
prefix += node->path().toString() + ".";
}
for (size_t i = 0; i < node->numChildren(); ++i) {
rateIndices(node->getChild(i), prefix, indices);
}
}
else if (node->isLogical()) {
for (size_t i = 0; i < node->numChildren(); ++i) {
rateIndices(node->getChild(i), prefix, indices);
}
}
}
// static
QuerySolution* QueryPlanner::makeCollectionScan(const CanonicalQuery& query, bool tailable) {
// Make the (only) node, a collection scan.
CollectionScanNode* csn = new CollectionScanNode();
csn->name = query.ns();
csn->filter.reset(query.root()->shallowClone());
csn->tailable = tailable;
// If the sort is {$natural: +-1} this changes the direction of the collection scan.
const BSONObj& sortObj = query.getParsed().getSort();
if (!sortObj.isEmpty()) {
BSONElement natural = sortObj.getFieldDotted("$natural");
if (!natural.eoo()) {
csn->direction = natural.numberInt() >= 0 ? 1 : -1;
}
}
// The hint can specify $natural as well.
if (!query.getParsed().getHint().isEmpty()) {
BSONElement natural = query.getParsed().getHint().getFieldDotted("$natural");
if (!natural.eoo()) {
csn->direction = natural.numberInt() >= 0 ? 1 : -1;
}
}
// cout << "Outputting collscan " << soln->toString() << endl;
return analyzeDataAccess(query, csn);
}
// static
QuerySolutionNode* QueryPlanner::makeLeafNode(const IndexEntry& index,
MatchExpression* expr,
bool* exact) {
// cout << "making leaf node for " << expr->toString() << endl;
// We're guaranteed that all GEO_NEARs are first. This slightly violates the "sort index
// predicates by their position in the compound index" rule but GEO_NEAR isn't an ixscan.
// This saves our bacon when we have {foo: 1, bar: "2dsphere"} and the predicate on bar is a
// $near. If we didn't get the GEO_NEAR first we'd create an IndexScanNode and later cast
// it to a GeoNear2DSphereNode
//
// This should gracefully deal with the case where we have a pred over foo but no geo clause
// over bar. In that case there is no GEO_NEAR to appear first and it's treated like a
// straight ixscan.
BSONElement elt = index.keyPattern.firstElement();
bool indexIs2D = (String == elt.type() && "2d" == elt.String());
if (MatchExpression::GEO_NEAR == expr->matchType()) {
// We must not keep the expression node around.
*exact = true;
GeoNearMatchExpression* nearme = static_cast<GeoNearMatchExpression*>(expr);
if (indexIs2D) {
GeoNear2DNode* ret = new GeoNear2DNode();
ret->indexKeyPattern = index.keyPattern;
ret->seek = nearme->getRawObj();
return ret;
}
else {
// Note that even if we're starting a GeoNear node, we may never get a
// predicate for $near. So, in that case, the builder "collapses" it into
// an ixscan.
// cout << "Making geonear 2dblahblah kp " << index.toString() << endl;
GeoNear2DSphereNode* ret = new GeoNear2DSphereNode();
ret->indexKeyPattern = index.keyPattern;
ret->nq = nearme->getData();
ret->baseBounds.fields.resize(index.keyPattern.nFields());
stringstream ss;
ret->appendToString(&ss, 0);
// cout << "geonear 2dsphere out " << ss.str() << endl;
return ret;
}
}
else if (indexIs2D) {
// We must not keep the expression node around.
*exact = true;
verify(MatchExpression::GEO == expr->matchType());
GeoMatchExpression* nearme = static_cast<GeoMatchExpression*>(expr);
verify(indexIs2D);
Geo2DNode* ret = new Geo2DNode();
ret->indexKeyPattern = index.keyPattern;
ret->seek = nearme->getRawObj();
return ret;
}
else {
// cout << "making ixscan for " << expr->toString() << endl;
// Note that indexKeyPattern.firstElement().fieldName() may not equal expr->path()
// because expr might be inside an array operator that provides a path prefix.
IndexScanNode* isn = new IndexScanNode();
isn->indexKeyPattern = index.keyPattern;
isn->indexIsMultiKey = index.multikey;
isn->bounds.fields.resize(index.keyPattern.nFields());
// XXX XXX: move this if inside of the bounds builder.
if (MatchExpression::ELEM_MATCH_VALUE == expr->matchType()) {
// Root is tagged with an index. We have predicates over root's path. Pick one
// to define the bounds.
// TODO: We could/should merge the bounds (possibly subject to various multikey
// etc. restrictions). For now we don't bother.
IndexBoundsBuilder::translate(expr->getChild(0), index.keyPattern.firstElement(),
&isn->bounds.fields[0], exact);
// TODO: I think this is valid but double check.
*exact = false;
}
else {
IndexBoundsBuilder::translate(expr, index.keyPattern.firstElement(),
&isn->bounds.fields[0], exact);
}
// cout << "bounds are " << isn->bounds.toString() << " exact " << *exact << endl;
return isn;
}
}
void QueryPlanner::mergeWithLeafNode(MatchExpression* expr, const IndexEntry& index,
size_t pos, bool* exactOut, QuerySolutionNode* node,
MatchExpression::MatchType mergeType) {
const StageType type = node->getType();
if (STAGE_GEO_2D == type || STAGE_GEO_NEAR_2D == type) {
warning() << "About to screw up 2d geo compound";
// This keeps the pred as a matcher but the limit argument to 2d indices applies
// post-match so this is wrong.
*exactOut = false;
}
else {
IndexBounds* boundsToFillOut = NULL;
if (STAGE_GEO_NEAR_2DSPHERE == type) {
GeoNear2DSphereNode* gn = static_cast<GeoNear2DSphereNode*>(node);
boundsToFillOut = &gn->baseBounds;
cout << "YO it's a geo near node\n";
}
else {
verify(type == STAGE_IXSCAN);
IndexScanNode* scan = static_cast<IndexScanNode*>(node);
boundsToFillOut = &scan->bounds;
cout << "YO it's an ixscan node\n";
}
cout << "pos is " << pos << endl;
// Get the ixtag->pos-th element of the index key pattern.
// TODO: cache this instead/with ixtag->pos?
BSONObjIterator it(index.keyPattern);
BSONElement keyElt = it.next();
for (size_t i = 0; i < pos; ++i) {
verify(it.more());
keyElt = it.next();
}
verify(!keyElt.eoo());
*exactOut = false;
//cout << "current bounds are " << currentScan->bounds.toString() << endl;
//cout << "node merging in " << child->toString() << endl;
//cout << "merging with field " << keyElt.toString(true, true) << endl;
//cout << "taking advantage of compound index "
//<< indices[currentIndexNumber].keyPattern.toString() << endl;
verify(boundsToFillOut->fields.size() > pos);
OrderedIntervalList* oil = &boundsToFillOut->fields[pos];
if (boundsToFillOut->fields[pos].name.empty()) {
IndexBoundsBuilder::translate(expr, keyElt, oil, exactOut);
}
else {
if (MatchExpression::AND == mergeType) {
IndexBoundsBuilder::translateAndIntersect(expr, keyElt, oil, exactOut);
}
else {
verify(MatchExpression::OR == mergeType);
IndexBoundsBuilder::translateAndUnion(expr, keyElt, oil, exactOut);
}
}
}
}
/**
* Assumes each OIL in bounds is increasing.
* Reverses any OILs that are indexed according to '-1'.
*/
void alignBounds(IndexBounds* bounds, const BSONObj& kp) {
BSONObjIterator it(kp);
size_t oilIdx = 0;
while (it.more()) {
BSONElement elt = it.next();
int direction = (elt.numberInt() >= 0) ? 1 : -1;
if (-1 == direction) {
vector<Interval>& iv = bounds->fields[oilIdx].intervals;
// Step 1: reverse the list.
std::reverse(iv.begin(), iv.end());
// Step 2: reverse each interval.
for (size_t i = 0; i < iv.size(); ++i) {
// cout << "reversing " << iv[i].toString() << endl;
iv[i].reverse();
}
}
++oilIdx;
}
// XXX: some day we'll maybe go backward to pull a sort out
if (!bounds->isValidFor(kp, 1)) {
cout << "INVALID BOUNDS: " << bounds->toString() << endl;
verify(0);
}
}
// static
void QueryPlanner::finishLeafNode(QuerySolutionNode* node, const IndexEntry& index) {
const StageType type = node->getType();
if (STAGE_GEO_2D == type || STAGE_GEO_NEAR_2D == type) {
// XXX: do we do anything here?
return;
}
else {
IndexBounds* bounds = NULL;
if (STAGE_GEO_NEAR_2DSPHERE == type) {
GeoNear2DSphereNode* gnode = static_cast<GeoNear2DSphereNode*>(node);
bounds = &gnode->baseBounds;
}
else {
verify(type == STAGE_IXSCAN);
IndexScanNode* scan = static_cast<IndexScanNode*>(node);
bounds = &scan->bounds;
}
// XXX: this currently fills out minkey/maxkey bounds for near queries, fix that. just
// set the field name of the near query field when starting a near scan.
// Find the first field in the scan's bounds that was not filled out.
// TODO: could cache this.
size_t firstEmptyField = 0;
for (firstEmptyField = 0; firstEmptyField < bounds->fields.size(); ++firstEmptyField) {
if ("" == bounds->fields[firstEmptyField].name) {
verify(bounds->fields[firstEmptyField].intervals.empty());
break;
}
}
// All fields are filled out with bounds, nothing to do.
if (firstEmptyField == bounds->fields.size()) {
alignBounds(bounds, index.keyPattern);
return;
}
// Skip ahead to the firstEmptyField-th element, where we begin filling in bounds.
BSONObjIterator it(index.keyPattern);
for (size_t i = 0; i < firstEmptyField; ++i) {
verify(it.more());
it.next();
}
// For each field in the key...
while (it.more()) {
// Be extra sure there's no data there.
verify("" == bounds->fields[firstEmptyField].name);
verify(bounds->fields[firstEmptyField].intervals.empty());
// ...build the "all values" interval.
IndexBoundsBuilder::allValuesForField(it.next(),
&bounds->fields[firstEmptyField]);
++firstEmptyField;
}
// Make sure that the length of the key is the length of the bounds we started.
verify(firstEmptyField == bounds->fields.size());
// We create bounds assuming a forward direction but can easily reverse bounds to align
// according to our desired direction.
alignBounds(bounds, index.keyPattern);
}
}
// static
bool QueryPlanner::processIndexScans(MatchExpression* root,
bool inArrayOperator,
const vector<IndexEntry>& indices,
vector<QuerySolutionNode*>* out) {
auto_ptr<QuerySolutionNode> currentScan;
size_t currentIndexNumber = IndexTag::kNoIndex;
size_t curChild = 0;
// This 'while' processes all IXSCANs, possibly merging scans by combining the bounds. We
// can merge scans in two cases:
// 1. Filling out subsequent fields in a compound index.
// 2. Intersecting bounds. Currently unimplemented.
while (curChild < root->numChildren()) {
MatchExpression* child = root->getChild(curChild);
// If there is no tag, it's not using an index. We've sorted our children such that the
// children with tags are first, so we stop now.
if (NULL == child->getTag()) { break; }
IndexTag* ixtag = static_cast<IndexTag*>(child->getTag());
// If there's a tag it must be valid.
verify(IndexTag::kNoIndex != ixtag->index);
// If the child can't use an index on its own field, it's indexed by virtue of one of
// its children having an index. We don't do anything special here, just add it to
// the output as-is.
//
// NOTE: If the child is logical, it could possibly collapse into a single ixscan. we
// ignore this for now.
if (!Indexability::nodeCanUseIndexOnOwnField(child)) {
if (!inArrayOperator) {
// The logical sub-tree is responsible for fully evaluating itself. Any
// required filters or fetches are already hung on it. As such, we remove the
// filter branch from our tree. buildIndexedDataAccess takes ownership of the
// child.
root->getChildVector()->erase(root->getChildVector()->begin() + curChild);
// The curChild of today is the curChild+1 of yesterday.
}
else {
++curChild;
}
// If inArrayOperator: takes ownership of child, which is OK, since we detached
// child from root.
QuerySolutionNode* childSolution = buildIndexedDataAccess(child,
inArrayOperator,
indices);
if (NULL == childSolution) { return false; }
out->push_back(childSolution);
continue;
}
// If we're here, we now know that 'child' can use an index directly and the index is
// over the child's field.
// If the child we're looking at uses a different index than the current index scan, add
// the current index scan to the output as we're done with it. The index scan created
// by the child then becomes our new current index scan. Note that the current scan
// could be NULL, in which case we don't output it. The rest of the logic is identical.
//
// If the child uses the same index as the current index scan, we may be able to merge
// the bounds for the two scans.
//
// Guiding principle: must the values we're testing come from the same array in the
// document? If so, we can combine bounds (via intersection or compounding). If not,
// we can't.
//
// If the index is NOT multikey, it's always semantically correct to combine bounds,
// as there are no arrays to worry about.
//
// If the index is multikey, there are arrays of values. There are three issues:
//
// 1. We can't intersect bounds even if the bounds are not on a compound index.
// Example:
// Let's say we have the document {a: [5, 7]}.
// This document satisfies the query {$and: [ {a: 5}, {a: 7} ] }
// For the index {a:1} we have the keys {"": 5} and {"": 7}.
// Each child of the AND is tagged with the index {a: 1}
// The interval for the {a: 5} branch is [5, 5]. It is exact.
// The interval for the {a: 7} branch is [7, 7]. It is exact.
// The intersection of the intervals is {}.
// If we scan over {}, the intersection of the intervals, we will retrieve nothing.
//
// 2. If we're using a compound index, we can only specify bounds for the first field.
// Example:
// Let's say we have the document {a: [ {b: 3}, {c: 4} ] }
// This document satisfies the query {'a.b': 3, 'a.c': 4}.
// For the index {'a.b': 1, 'a.c': 1} we have the keys {"": 3, "": null} and
// {"": null, "": 4}.
// Let's use the aforementioned index to answer the query.
// The bounds for 'a.b' are [3,3], and the bounds for 'a.c' are [4,4].
// If we combine the bounds, we would only look at keys {"": 3, "":4 }.
// Therefore we wouldn't look at the document's keys in the index.
// Therefore we don't combine bounds.
//
// 3. There is an exception to (2), and that is when we're evaluating an $elemMatch.
// Example:
// Our query is a: {$elemMatch: {b:3, c:4}}.
// Let's say that we have the index {'a.b': 1, 'a.c': 1} as in (2).
// $elemMatch requires if a.b==3 and a.c==4, the predicates must be satisfied from
// the same array entry.
// If those values are both present in the same array, the index key for the
// aforementioned index will be {"":3, "":4}
// Therefore we can intersect bounds.
// TODO: we should also merge if we're in an array operator, but only when we figure out index13.js.
if (NULL != currentScan.get() && (currentIndexNumber == ixtag->index) && !indices[currentIndexNumber].multikey) {
// The child uses the same index we're currently building a scan for. Merge
// the bounds and filters.
verify(currentIndexNumber == ixtag->index);
bool exact = false;
mergeWithLeafNode(child, indices[currentIndexNumber], ixtag->pos, &exact,
currentScan.get(), root->matchType());
if (exact) {
root->getChildVector()->erase(root->getChildVector()->begin()
+ curChild);
delete child;
}
else {
// We keep curChild in the AND for affixing later.
++curChild;
}
}
else {
if (NULL != currentScan.get()) {
finishLeafNode(currentScan.get(), indices[currentIndexNumber]);
out->push_back(currentScan.release());
}
else {
verify(IndexTag::kNoIndex == currentIndexNumber);
}
currentIndexNumber = ixtag->index;
bool exact = false;
currentScan.reset(makeLeafNode(indices[currentIndexNumber],
child, &exact));
if (exact && !inArrayOperator) {
// The bounds answer the predicate, and we can remove the expression from the
// root. NOTE(opt): Erasing entry 0, 1, 2, ... could be kind of n^2, maybe
// optimize later.
root->getChildVector()->erase(root->getChildVector()->begin()
+ curChild);
delete child;
// Don't increment curChild.
}
else {
// We keep curChild in the node for affixing later as a filter.
++curChild;
}
}
}
// Output the scan we're done with, if it exists.
if (NULL != currentScan.get()) {
finishLeafNode(currentScan.get(), indices[currentIndexNumber]);
out->push_back(currentScan.release());
}
return true;
}
// static
QuerySolutionNode* QueryPlanner::buildIndexedAnd(MatchExpression* root,
bool inArrayOperator,
const vector<IndexEntry>& indices) {
auto_ptr<MatchExpression> autoRoot;
if (!inArrayOperator) {
autoRoot.reset(root);
}
vector<QuerySolutionNode*> ixscanNodes;
if (!processIndexScans(root, inArrayOperator, indices, &ixscanNodes)) {
return NULL;
}
//
// Process all non-indexed predicates. We hang these above the AND with a fetch and
// filter.
//
// This is the node we're about to return.
QuerySolutionNode* andResult;
// We must use an index for at least one child of the AND. We shouldn't be here if this
// isn't the case.
verify(ixscanNodes.size() >= 1);
// Short-circuit: an AND of one child is just the child.
if (ixscanNodes.size() == 1) {
andResult = ixscanNodes[0];
}
else {
// Figure out if we want AndHashNode or AndSortedNode.
bool allSortedByDiskLoc = true;
for (size_t i = 0; i < ixscanNodes.size(); ++i) {
if (!ixscanNodes[i]->sortedByDiskLoc()) {
allSortedByDiskLoc = false;
break;
}
}
if (allSortedByDiskLoc) {
AndSortedNode* asn = new AndSortedNode();
asn->children.swap(ixscanNodes);
andResult = asn;
}
else {
AndHashNode* ahn = new AndHashNode();
ahn->children.swap(ixscanNodes);
andResult = ahn;
}
}
// Don't bother doing any kind of fetch analysis lite if we're doing it anyway above us.
if (inArrayOperator) {
return andResult;
}
// If there are any nodes still attached to the AND, we can't answer them using the
// index, so we put a fetch with filter.
if (root->numChildren() > 0) {
FetchNode* fetch = new FetchNode();
verify(NULL != autoRoot.get());
// Takes ownership.
fetch->filter.reset(autoRoot.release());
// takes ownership
fetch->child.reset(andResult);
andResult = fetch;
}
else {
// root has no children, let autoRoot get rid of it when it goes out of scope.
}
return andResult;
}
// static
QuerySolutionNode* QueryPlanner::buildIndexedOr(MatchExpression* root,
bool inArrayOperator,
const vector<IndexEntry>& indices) {
auto_ptr<MatchExpression> autoRoot;
if (!inArrayOperator) {
autoRoot.reset(root);
}
vector<QuerySolutionNode*> ixscanNodes;
if (!processIndexScans(root, inArrayOperator, indices, &ixscanNodes)) {
return NULL;
}
// Unlike an AND, an OR cannot have filters hanging off of it. We stop processing
// when any of our children lack index tags. If a node lacks an index tag it cannot
// be answered via an index.
if (!inArrayOperator && 0 != root->numChildren()) {
warning() << "planner OR error, non-indexed child of OR.";
// We won't enumerate an OR without indices for each child, so this isn't an issue, even
// if we have an AND with an OR child -- we won't get here unless the OR is fully
// indexed.
return NULL;
}
QuerySolutionNode* orResult = NULL;
// An OR of one node is just that node.
if (1 == ixscanNodes.size()) {
orResult = ixscanNodes[0];
}
else {
// If each child is sorted by the same predicate, we can merge them and maintain
// sorted order.
bool haveSameSort;
if (ixscanNodes[0]->getSort().isEmpty()) {
haveSameSort = false;
}
else {
haveSameSort = true;
for (size_t i = 1; i < ixscanNodes.size(); ++i) {
if (0 != ixscanNodes[0]->getSort().woCompare(ixscanNodes[i]->getSort())) {
haveSameSort = false;
break;
}
}
}
if (haveSameSort) {
MergeSortNode* msn = new MergeSortNode();
msn->sort = ixscanNodes[0]->getSort();
msn->children.swap(ixscanNodes);
orResult = msn;
}
else {
OrNode* orn = new OrNode();
orn->children.swap(ixscanNodes);
orResult = orn;
}
}
// OR must have an index for each child, so we should have detached all children from
// 'root', and there's nothing useful to do with an empty or MatchExpression. We let it die
// via autoRoot.
return orResult;
}
// static
QuerySolutionNode* QueryPlanner::buildIndexedDataAccess(MatchExpression* root,
bool inArrayOperator,
const vector<IndexEntry>& indices) {
if (root->isLogical()) {
if (MatchExpression::AND == root->matchType()) {
// Takes ownership of root.
return buildIndexedAnd(root, inArrayOperator, indices);
}
else if (MatchExpression::OR == root->matchType()) {
// Takes ownership of root.
return buildIndexedOr(root, inArrayOperator, indices);
}
else {
// Can't do anything with negated logical nodes index-wise.
return NULL;
}
}
else {
auto_ptr<MatchExpression> autoRoot;
if (!inArrayOperator) {
autoRoot.reset(root);
}
// isArray or isLeaf is true. Either way, it's over one field, and the bounds builder
// deals with it.
if (NULL == root->getTag()) {
// No index to use here, not in the context of logical operator, so we're SOL.
return NULL;
}
else if (Indexability::nodeCanUseIndexOnOwnField(root)) {
// Make an index scan over the tagged index #.
IndexTag* tag = static_cast<IndexTag*>(root->getTag());
bool exact = false;
QuerySolutionNode* soln = makeLeafNode(indices[tag->index], root,
&exact);
verify(NULL != soln);
stringstream ss;
soln->appendToString(&ss, 0);
// cout << "about to finish leaf node, soln " << ss.str() << endl;
finishLeafNode(soln, indices[tag->index]);
if (inArrayOperator) {
return soln;
}
// If the bounds are exact, the set of documents that satisfy the predicate is
// exactly equal to the set of documents that the scan provides.
//
// If the bounds are not exact, the set of documents returned from the scan is a
// superset of documents that satisfy the predicate, and we must check the
// predicate.
if (exact) {
return soln;
}
FetchNode* fetch = new FetchNode();
verify(NULL != autoRoot.get());
fetch->filter.reset(autoRoot.release());
fetch->child.reset(soln);
return fetch;
}
else if (Indexability::arrayUsesIndexOnChildren(root)) {
QuerySolutionNode* solution = NULL;
if (MatchExpression::ALL == root->matchType()) {
// Here, we formulate an AND of all the sub-clauses.
auto_ptr<AndHashNode> ahn(new AndHashNode());
for (size_t i = 0; i < root->numChildren(); ++i) {
QuerySolutionNode* node = buildIndexedDataAccess(root->getChild(i), true,
indices);
if (NULL != node) {
ahn->children.push_back(node);
}
}
// No children, no point in hashing nothing.
if (0 == ahn->children.size()) { return NULL; }
// AND of one child is just that child.
if (1 == ahn->children.size()) {
solution = ahn->children[0];
ahn->children.clear();
ahn.reset();
}
else {
// More than one child.
solution = ahn.release();
}
}
else {
verify(MatchExpression::ELEM_MATCH_OBJECT);
// The child is an AND.
verify(1 == root->numChildren());
solution = buildIndexedDataAccess(root->getChild(0), true, indices);
if (NULL == solution) { return NULL; }
}
// There may be an array operator above us.
if (inArrayOperator) { return solution; }
FetchNode* fetch = new FetchNode();
// Takes ownership of 'root'.
verify(NULL != autoRoot.get());
fetch->filter.reset(autoRoot.release());
fetch->child.reset(solution);
return fetch;
}
}
return NULL;
}
// static
QuerySolution* QueryPlanner::analyzeDataAccess(const CanonicalQuery& query,
QuerySolutionNode* solnRoot) {
auto_ptr<QuerySolution> soln(new QuerySolution());
soln->filterData = query.getQueryObj();
verify(soln->filterData.isOwned());
soln->ns = query.ns();
// solnRoot finds all our results. Let's see what transformations we must perform to the
// data.
// Sort the results, if there is a sort specified.
if (!query.getParsed().getSort().isEmpty()) {
const BSONObj& sortObj = query.getParsed().getSort();
// If the sort is $natural, we ignore it, assuming that the caller has detected that and
// outputted a collscan to satisfy the desired order.
BSONElement natural = sortObj.getFieldDotted("$natural");
if (natural.eoo()) {
// See if solnRoot gives us the sort. If so, we're done.
if (0 == sortObj.woCompare(solnRoot->getSort())) {
// Sort is already provided!
}
else {
// If solnRoot isn't already sorted, let's see if it has the fields we're
// sorting on. If it's fetched, it has all the fields by definition. If it's
// not, we check sort field by sort field.
if (!solnRoot->fetched()) {
bool sortCovered = true;
BSONObjIterator it(sortObj);
while (it.more()) {
if (!solnRoot->hasField(it.next().fieldName())) {
sortCovered = false;
break;
}
}
if (!sortCovered) {
FetchNode* fetch = new FetchNode();
fetch->child.reset(solnRoot);
solnRoot = fetch;
}
}
soln->hasSortStage = true;
SortNode* sort = new SortNode();
sort->pattern = sortObj;
sort->child.reset(solnRoot);
solnRoot = sort;
}
}
}
// Project the results.
if (NULL != query.getProj()) {
cout << "PROJECTION: fetched status: " << solnRoot->fetched() << endl;
cout << "PROJECTION: Current plan is " << solnRoot->toString() << endl;
if (query.getProj()->requiresDocument()) {
cout << "PROJECTION: claims to require doc adding fetch.\n";
// If the projection requires the entire document, somebody must fetch.
if (!solnRoot->fetched()) {
FetchNode* fetch = new FetchNode();
fetch->child.reset(solnRoot);
solnRoot = fetch;
}
}
else {
cout << "PROJECTION: requires fields\n";
const vector<string>& fields = query.getProj()->requiredFields();
bool covered = true;
for (size_t i = 0; i < fields.size(); ++i) {
if (!solnRoot->hasField(fields[i])) {
cout << "PROJECTION: not covered cuz doesn't have field "
<< fields[i] << endl;
covered = false;
break;
}
}
// If any field is missing from the list of fields the projection wants,
// a fetch is required.
if (!covered) {
FetchNode* fetch = new FetchNode();
fetch->child.reset(solnRoot);
solnRoot = fetch;
}
}
// We now know we have whatever data is required for the projection.
ProjectionNode* projNode = new ProjectionNode();
projNode->projection = query.getProj();
projNode->child.reset(solnRoot);
solnRoot = projNode;
}
else {
// If there's no projection, we must fetch, as the user wants the entire doc.
if (!solnRoot->fetched()) {
FetchNode* fetch = new FetchNode();
fetch->child.reset(solnRoot);
solnRoot = fetch;
}
}
if (0 != query.getParsed().getSkip()) {
SkipNode* skip = new SkipNode();
skip->skip = query.getParsed().getSkip();
skip->child.reset(solnRoot);
solnRoot = skip;
}
soln->root.reset(solnRoot);
return soln.release();
}
/**
* Does the tree rooted at 'root' have a node with matchType 'type'?
*/
bool hasNode(MatchExpression* root, MatchExpression::MatchType type,
MatchExpression** out = NULL) {
if (type == root->matchType()) {
if (NULL != out) {
*out = root;
}
return true;
}
for (size_t i = 0; i < root->numChildren(); ++i) {
if (hasNode(root->getChild(i), type)) {
if (NULL != out) {
*out = root->getChild(i);
}
return true;
}
}
return false;
}
// Copied verbatim from db/index.h
static bool isIdIndex( const BSONObj &pattern ) {
BSONObjIterator i(pattern);
BSONElement e = i.next();
//_id index must have form exactly {_id : 1} or {_id : -1}.
//Allows an index of form {_id : "hashed"} to exist but
//do not consider it to be the primary _id index
if(! ( strcmp(e.fieldName(), "_id") == 0
&& (e.numberInt() == 1 || e.numberInt() == -1)))
return false;
return i.next().eoo();
}
// static
void QueryPlanner::plan(const CanonicalQuery& query, const vector<IndexEntry>& indices,
size_t options, vector<QuerySolution*>* out) {
cout << "Begin planning.\nquery = " << query.toString() << endl;
bool canTableScan = !(options & QueryPlanner::NO_TABLE_SCAN);
// XXX: If pq.hasOption(QueryOption_OplogReplay) use FindingStartCursor equivalent which
// must be translated into stages.
// If the query requests a tailable cursor, the only solution is a collscan + filter with
// tailable set on the collscan. TODO: This is a policy departure. Previously I think you
// could ask for a tailable cursor and it just tried to give you one. Now, we fail if we
// can't provide one. Is this what we want?
if (query.getParsed().hasOption(QueryOption_CursorTailable)) {
if (!hasNode(query.root(), MatchExpression::GEO_NEAR) && canTableScan) {
out->push_back(makeCollectionScan(query, true));
}
return;
}
// The hint can be $natural: 1. If this happens, output a collscan. It's a weird way of
// saying "table scan for two, please."
if (!query.getParsed().getHint().isEmpty()) {
BSONElement natural = query.getParsed().getHint().getFieldDotted("$natural");
if (!natural.eoo()) {
cout << "forcing a table scan due to hinted $natural\n";
if (canTableScan) {
out->push_back(makeCollectionScan(query, false));
}
return;
}
}
// NOR and NOT we can't handle well with indices. If we see them here, they weren't
// rewritten to remove the negation. Just output a collscan for those.
if (hasNode(query.root(), MatchExpression::NOT)
|| hasNode(query.root(), MatchExpression::NOR)) {
// If there's a near predicate, we can't handle this.
// TODO: Should canonicalized query detect this?
if (hasNode(query.root(), MatchExpression::GEO_NEAR)) {
warning() << "Can't handle NOT/NOR with GEO_NEAR";
return;
}
cout << "NOT/NOR in plan, just outtping a collscan\n";
if (canTableScan) {
out->push_back(makeCollectionScan(query, false));
}
return;
}
// Figure out what fields we care about.
unordered_set<string> fields;
getFields(query.root(), "", &fields);
/*
for (unordered_set<string>::const_iterator it = fields.begin(); it != fields.end(); ++it) {
cout << "field " << *it << endl;
}
*/
// Filter our indices so we only look at indices that are over our predicates.
vector<IndexEntry> relevantIndices;
// Hints require us to only consider the hinted index.
BSONObj hintIndex = query.getParsed().getHint();
// Snapshot is a form of a hint. If snapshot is set, try to use _id index to make a real
// plan. If that fails, just scan the _id index.
if (query.getParsed().isSnapshot()) {
// Find the ID index in indexKeyPatterns. It's our hint.
for (size_t i = 0; i < indices.size(); ++i) {
if (isIdIndex(indices[i].keyPattern)) {
hintIndex = indices[i].keyPattern;
break;
}
}
}
size_t hintIndexNumber = numeric_limits<size_t>::max();
if (!hintIndex.isEmpty()) {
for (size_t i = 0; i < indices.size(); ++i) {
if (0 == indices[i].keyPattern.woCompare(hintIndex)) {
relevantIndices.clear();
relevantIndices.push_back(indices[i]);
cout << "hint specified, restricting indices to " << hintIndex.toString()
<< endl;
hintIndexNumber = i;
break;
}
}
if (hintIndexNumber == numeric_limits<size_t>::max()) {
warning() << "Hinted index " << hintIndex.toString()
<< " does not exist, ignoring.";
}
}
else {
findRelevantIndices(fields, indices, &relevantIndices);
}
// Figure out how useful each index is to each predicate.
// query.root() is now annotated with RelevantTag(s).
rateIndices(query.root(), "", relevantIndices);
// If there is a GEO_NEAR it must have an index it can use directly.
MatchExpression* gnNode;
if (hasNode(query.root(), MatchExpression::GEO_NEAR, &gnNode)) {
RelevantTag* tag = static_cast<RelevantTag*>(gnNode->getTag());
if (0 == tag->first.size() && 0 == tag->notFirst.size()) {
return;
}
}
// If we have any relevant indices, we try to create indexed plans.
if (0 < relevantIndices.size()) {
for (size_t i = 0; i < relevantIndices.size(); ++i) {
cout << "relevant idx " << i << " is " << relevantIndices[i].toString() << endl;
}
// The enumerator spits out trees tagged with IndexTag(s).
PlanEnumerator isp(query.root(), &relevantIndices);
isp.init();
MatchExpression* rawTree;
while (isp.getNext(&rawTree)) {
cout << "about to build solntree from tagged tree:\n" << rawTree->toString()
<< endl;
// This can fail if enumeration makes a mistake.
QuerySolutionNode* solnRoot = buildIndexedDataAccess(rawTree, false,
relevantIndices);
if (NULL == solnRoot) { continue; }
// This shouldn't ever fail.
QuerySolution* soln = analyzeDataAccess(query, solnRoot);
verify(NULL != soln);
cout << "Adding solution:\n" << soln->toString() << endl;
out->push_back(soln);
}
}
// An index was hinted. If there are any solutions, they use the hinted index. If not, we
// scan the entire index to provide results and output that as our plan. This is the
// desired behavior when an index is hinted that is not relevant to the query.
if (!hintIndex.isEmpty() && (0 == out->size())) {
QuerySolutionNode* solnRoot = NULL;
// Build an ixscan over the id index, use it, and return it.
IndexScanNode* isn = new IndexScanNode();
isn->indexKeyPattern = hintIndex;
isn->indexIsMultiKey = indices[hintIndexNumber].multikey;
isn->bounds.fields.resize(hintIndex.nFields());
// TODO: can we use simple bounds with this compound idx?
BSONObjIterator it(isn->indexKeyPattern);
int field = 0;
while (it.more()) {
IndexBoundsBuilder::allValuesForField(it.next(), &isn->bounds.fields[field]);
++field;
}
MatchExpression* filter = query.root()->shallowClone();
// If it's find({}) remove the no-op root.
if (MatchExpression::AND == filter->matchType() && (0 == filter->numChildren())) {
delete filter;
solnRoot = isn;
}
else {
// TODO: We may not need to do the fetch if the predicates in root are covered. But
// for now it's safe (though *maybe* slower).
FetchNode* fetch = new FetchNode();
fetch->filter.reset(filter);
fetch->child.reset(isn);
solnRoot = fetch;
}
QuerySolution* soln = analyzeDataAccess(query, solnRoot);
verify(NULL != soln);
out->push_back(soln);
cout << "using hinted index as scan, soln = " << soln->toString() << endl;
return;
}
// If a sort order is requested, there may be an index that provides it, even if that
// index is not over any predicates in the query.
//
// XXX XXX: Can we do this even if the index is sparse? Might we miss things?
if (!query.getParsed().getSort().isEmpty()
&& !hasNode(query.root(), MatchExpression::GEO_NEAR)) {
// See if we have a sort provided from an index already.
bool usingIndexToSort = false;
for (size_t i = 0; i < out->size(); ++i) {
QuerySolution* soln = (*out)[i];
if (!soln->hasSortStage) {
usingIndexToSort = true;
break;
}
}
if (!usingIndexToSort) {
for (size_t i = 0; i < indices.size(); ++i) {
const BSONObj& kp = indices[i].keyPattern;
if (0 == kp.woCompare(query.getParsed().getSort())) {
IndexScanNode* isn = new IndexScanNode();
isn->indexKeyPattern = kp;
isn->indexIsMultiKey = indices[i].multikey;
isn->bounds.fields.resize(kp.nFields());
// TODO: can we use simple bounds if compound?
BSONObjIterator it(isn->indexKeyPattern);
size_t field = 0;
while (it.more()) {
IndexBoundsBuilder::allValuesForField(it.next(),
&isn->bounds.fields[field]);
}
// TODO: We may not need to do the fetch if the predicates in root are
// covered. But for now it's safe (though *maybe* slower).
FetchNode* fetch = new FetchNode();
fetch->filter.reset(query.root()->shallowClone());
fetch->child.reset(isn);
QuerySolution* soln = analyzeDataAccess(query, fetch);
verify(NULL != soln);
out->push_back(soln);
cout << "using index to provide sort, soln = " << soln->toString() << endl;
break;
}
}
}
}
// TODO: Do we always want to offer a collscan solution?
// XXX: currently disabling the always-use-a-collscan in order to find more planner bugs.
if (!hasNode(query.root(), MatchExpression::GEO_NEAR)
&& ((options & QueryPlanner::INCLUDE_COLLSCAN) || (0 == out->size() && canTableScan))) {
QuerySolution* collscan = makeCollectionScan(query, false);
out->push_back(collscan);
cout << "Outputting a collscan\n";
}
}
} // namespace mongo
|