summaryrefslogtreecommitdiff
path: root/src/mongo/db/query/sbe_stage_builder_filter.cpp
blob: 76efab7a7c002035b877980790b7dca7dbacbca4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
/**
 *    Copyright (C) 2020-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#include "mongo/platform/basic.h"

#include "mongo/db/query/sbe_stage_builder_filter.h"

#include <functional>

#include "mongo/db/exec/sbe/stages/co_scan.h"
#include "mongo/db/exec/sbe/stages/filter.h"
#include "mongo/db/exec/sbe/stages/limit_skip.h"
#include "mongo/db/exec/sbe/stages/loop_join.h"
#include "mongo/db/exec/sbe/stages/project.h"
#include "mongo/db/exec/sbe/stages/traverse.h"
#include "mongo/db/exec/sbe/stages/union.h"
#include "mongo/db/exec/sbe/values/bson.h"
#include "mongo/db/matcher/expression_always_boolean.h"
#include "mongo/db/matcher/expression_array.h"
#include "mongo/db/matcher/expression_expr.h"
#include "mongo/db/matcher/expression_geo.h"
#include "mongo/db/matcher/expression_internal_expr_comparison.h"
#include "mongo/db/matcher/expression_text.h"
#include "mongo/db/matcher/expression_text_noop.h"
#include "mongo/db/matcher/expression_tree.h"
#include "mongo/db/matcher/expression_type.h"
#include "mongo/db/matcher/expression_visitor.h"
#include "mongo/db/matcher/expression_where.h"
#include "mongo/db/matcher/expression_where_noop.h"
#include "mongo/db/matcher/match_expression_walker.h"
#include "mongo/db/matcher/schema/expression_internal_schema_all_elem_match_from_index.h"
#include "mongo/db/matcher/schema/expression_internal_schema_allowed_properties.h"
#include "mongo/db/matcher/schema/expression_internal_schema_cond.h"
#include "mongo/db/matcher/schema/expression_internal_schema_eq.h"
#include "mongo/db/matcher/schema/expression_internal_schema_fmod.h"
#include "mongo/db/matcher/schema/expression_internal_schema_match_array_index.h"
#include "mongo/db/matcher/schema/expression_internal_schema_max_items.h"
#include "mongo/db/matcher/schema/expression_internal_schema_max_length.h"
#include "mongo/db/matcher/schema/expression_internal_schema_max_properties.h"
#include "mongo/db/matcher/schema/expression_internal_schema_min_items.h"
#include "mongo/db/matcher/schema/expression_internal_schema_min_length.h"
#include "mongo/db/matcher/schema/expression_internal_schema_min_properties.h"
#include "mongo/db/matcher/schema/expression_internal_schema_object_match.h"
#include "mongo/db/matcher/schema/expression_internal_schema_root_doc_eq.h"
#include "mongo/db/matcher/schema/expression_internal_schema_unique_items.h"
#include "mongo/db/matcher/schema/expression_internal_schema_xor.h"
#include "mongo/db/query/sbe_stage_builder_eval_frame.h"
#include "mongo/db/query/sbe_stage_builder_expression.h"
#include "mongo/db/query/util/make_data_structure.h"
#include "mongo/util/str.h"

namespace mongo::stage_builder {
namespace {

struct MatchExpressionVisitorContext;
const size_t kMaxChildrenForTopLevelAndOptimization = 25;

/**
 * Output of the tree can come from two places:
 *  - If there is an expression on the evaluation stack in the end of tree construction, then this
 *    is the output for the whole tree. This is checked in the 'MatchExpressionVisitorContext::done'
 *    method.
 *  - If we apply top-level AND optimization, then in the end of tree construction the evaluation
 *    stack will be empty. This happens because expressions which normally would reside on the stack
 *    are popped and inserted directly into the filter stage for each branch.
 *
 * So, we need to record output in both the 'MatchExpressionVisitorContext::done' method and builder
 * for top-level AND.
 *
 * This function takes the current expression, projects it into a separate slot and stores this slot
 * as an output for the current frame.
 */
void projectCurrentExprToOutputSlot(MatchExpressionVisitorContext* context);

/**
 * The various flavors of PathMatchExpressions require the same skeleton of traverse operators in
 * order to perform implicit path traversal, but may translate differently to an SBE expression that
 * actually applies the predicate against an individual array element.
 *
 * A function of this type can be called to generate an EExpression which applies a predicate to the
 * value found in 'inputSlot'.
 */
using MakePredicateFn =
    std::function<EvalExprStagePair(sbe::value::SlotId inputSlot, EvalStage inputStage)>;

/**
 * A struct for storing context across calls to visit() methods in MatchExpressionVisitor's.
 */
struct MatchExpressionVisitorContext {
    // Construct a visitor context to generate a filter expression from a single input slot
    // holding a document against which to perform the match.
    MatchExpressionVisitorContext(StageBuilderState& state,
                                  EvalStage inputStage,
                                  sbe::value::SlotId inputSlot,
                                  const MatchExpression* root,
                                  PlanNodeId planNodeId,
                                  const FilterStateHelper& stateHelper)
        : state{state},
          inputSlot{inputSlot},
          topLevelAnd{nullptr},
          planNodeId{planNodeId},
          stateHelper{stateHelper} {
        // Set up the top-level EvalFrame.
        evalStack.emplaceFrame(std::move(inputStage), inputSlot);

        // If the root node is an $and, store it in 'topLevelAnd'.
        // TODO: SERVER-50673: Revisit how we implement the top-level $and optimization.
        if (root->matchType() == MatchExpression::AND &&
            root->numChildren() <= kMaxChildrenForTopLevelAndOptimization) {
            topLevelAnd = root;
        }
    }

    // Construct a visitor context to generate a filter expression that is attached to an index
    // scan and can evaluate an expression from the index keys without fetching an entire document.
    // Instead of a single input slot holding the root document, it takes a vector of 'keySlots' and
    // 'keyFields' which represent a subset of the fields of the index key pattern that are depended
    // on to evaluate the predicate, and corresponding slots for each of the key fields.
    MatchExpressionVisitorContext(StageBuilderState& state,
                                  EvalStage inputStage,
                                  sbe::value::SlotVector keySlots,
                                  std::vector<std::string> keyFields,
                                  const MatchExpression* root,
                                  PlanNodeId planNodeId,
                                  const FilterStateHelper& stateHelper)
        : state{state}, topLevelAnd{nullptr}, planNodeId{planNodeId}, stateHelper{stateHelper} {
        // Set up the top-level EvalFrame.
        evalStack.emplaceFrame(std::move(inputStage), boost::none);

        tassert(5273400, "Index key slots vector is empty", keySlots.size() > 0);
        tassert(5273401,
                "Mismatch between index key slots and fields",
                keySlots.size() == keyFields.size());

        for (size_t idx = 0; idx < keySlots.size(); ++idx) {
            auto&& field = keyFields[idx];
            tassert(5273410, "Index key field is empty", !field.empty());
            indexKeySlots[field] = keySlots[idx];
        }

        // If the root node is an $and, store it in 'topLevelAnd'.
        // TODO: SERVER-50673: Revisit how we implement the top-level $and optimization.
        if (root->matchType() == MatchExpression::AND &&
            root->numChildren() <= kMaxChildrenForTopLevelAndOptimization) {
            topLevelAnd = root;
        }
    }

    std::pair<boost::optional<sbe::value::SlotId>, EvalStage> done() {
        invariant(evalStack.framesCount() == 1);
        auto& frame = evalStack.topFrame();

        if (frame.exprsCount() > 0) {
            if (stateHelper.stateContainsValue()) {
                projectCurrentExprToOutputSlot(this);
            }
            invariant(frame.exprsCount() == 1);
            frame.setStage(makeFilter<false>(frame.extractStage(),
                                             stateHelper.getBool(frame.popExpr().extractExpr()),
                                             planNodeId));
        }

        if (outputSlot && stateHelper.stateContainsValue()) {
            // In case 'outputSlot' is defined and state contains a value, we need to extract this
            // value into a separate slot and return it. The resulting value depends on the state
            // type, see the implementation of specific state helper for details.
            return stateHelper.projectValueCombinator(*outputSlot,
                                                      frame.extractStage(),
                                                      planNodeId,
                                                      state.slotIdGenerator,
                                                      state.frameIdGenerator);
        }

        return {boost::none, frame.extractStage()};
    }

    struct FrameData {
        // For an index filter we don't build a traversal sub-tree, and do not use complex
        // expressions, such as $elemMatch or nested logical $and/$or/$nor. As such, we don't need
        // to create nested EvalFrames, and we don't need an 'inputSlot' for the frame, because
        // values are read from the 'indexKeySlots' map  stored in the context. Yet, we still need a
        // top-level EvalFrame, as the the entire filter generator logic is based on the assumption
        // that we've got at least one EvalFrame. Hence, the 'inputSlot' is declared optional.
        boost::optional<sbe::value::SlotId> inputSlot;

        FrameData(boost::optional<sbe::value::SlotId> inputSlot) : inputSlot{inputSlot} {}
    };

    StageBuilderState& state;

    EvalStack<FrameData> evalStack;
    // The current context must be initialized either with an 'inputSlot' over which an entire match
    // expression needs to be evaluated, or a pair of 'keySlots' and 'keyFields' vectors
    // representing a subset of the fields of the index key pattern that are depended on to evaluate
    // the predicate, and corresponding slots for each of the fields, which are stored in
    // 'indexKeySlots' map.
    boost::optional<sbe::value::SlotId> inputSlot;
    StringMap<sbe::value::SlotId> indexKeySlots;
    const MatchExpression* topLevelAnd;

    // The id of the 'QuerySolutionNode' which houses the match expression that we are converting to
    // SBE.
    const PlanNodeId planNodeId;

    // Helper for managing the internal state of the filter tree. See 'FilterStateHelper' definition
    // for details.
    const FilterStateHelper& stateHelper;

    // Trees for some queries can have something to output. For instance, if we use
    // 'IndexStateHelper' for managing internal state, this output is the index of the array element
    // that matched our query predicate. This field stores the slot id containing the output of the
    // tree.
    boost::optional<sbe::value::SlotId> outputSlot;
};

void projectCurrentExprToOutputSlot(MatchExpressionVisitorContext* context) {
    tassert(5291405, "Output slot is not empty", !context->outputSlot);
    auto& frame = context->evalStack.topFrame();
    auto [projectedExprSlot, stage] = projectEvalExpr(
        frame.popExpr(), frame.extractStage(), context->planNodeId, context->state.slotIdGenerator);
    context->outputSlot = projectedExprSlot;
    frame.pushExpr(projectedExprSlot);
    frame.setStage(std::move(stage));
}

enum class LeafTraversalMode {
    // Don't generate a TraverseStage for the leaf.
    kDoNotTraverseLeaf = 0,

    // Traverse the leaf, ard for arrays visit both the array's elements _and_ the array itself.
    kArrayAndItsElements = 1,

    // Traverse the leaf, and for arrays visit the array's elements but not the array itself.
    kArrayElementsOnly = 2,
};

/**
 * This function generates a path traversal plan stage at the given nested 'level' of the traversal
 * path. For example, for a dotted path expression {'a.b': 2}, the traversal sub-tree built with
 * 'BooleanStateHelper' will look like this:
 *
 *     traverse
 *         outputSlot1 // the traversal result
 *         innerSlot1  // the result coming from the 'in' branch
 *         fieldSlot1  // field 'a' projected in the 'from' branch, this is the field we will be
 *                     // traversing
 *         {outputSlot1 || innerSlot1} // the folding expression - combining results for each
 *                                     // element
 *         {outputSlot1} // final (early out) expression - when we hit the 'true' value, we don't
 *                       // have to traverse the whole array
 *     from
 *         project [fieldSlot1 = getField(inputSlot, "a")] // project field 'a' from the document
 *                                                         // bound to 'inputSlot'
 *         <inputStage> // e.g. collection scan
 *     in
 *         project [innerSlot1 =                                   // if getField(fieldSlot1,'b')
 *                      fillEmpty(outputSlot2, false) ||           // returns an array, compare the
 *                      (fillEmpty(isArray(fieldSlot2), false) &&  // array itself to 2 as well
 *                       fillEmpty(fieldSlot2 == 2, false))]
 *         traverse // nested traversal
 *             outputSlot2 // the traversal result
 *             innerSlot2  // the result coming from the 'in' branch
 *             fieldSlot2  // field 'b' projected in the 'from' branch, this is the field we will be
 *                         // traversing
 *             {outputSlot2 || innerSlot2} // the folding expression
 *             {outputSlot2} // final (early out) expression
 *         from
 *             project [fieldSlot2 = getField(fieldSlot1, "b")] // project field 'b' from the
 *                                                               // document  bound to 'fieldSlot1',
 *                                                               // which is field 'a'
 *             limit 1
 *             coscan
 *         in
 *             project [innerSlot2 =                            // compare the field 'b' to 2 and
 *                          fillEmpty(fieldSlot2 == 2, false)] // store the result in innerSlot2
 *             limit 1
 *             coscan
 */
EvalExprStagePair generatePathTraversal(EvalStage inputStage,
                                        sbe::value::SlotId inputDocumentSlot,
                                        const FieldRef& fp,
                                        FieldIndex level,
                                        PlanNodeId planNodeId,
                                        sbe::value::SlotIdGenerator* slotIdGenerator,
                                        sbe::value::FrameIdGenerator* frameIdGenerator,
                                        const MakePredicateFn& makePredicate,
                                        LeafTraversalMode mode,
                                        const FilterStateHelper& stateHelper) {
    using namespace std::literals;

    invariant(level < fp.numParts());

    const bool isLeafField = (level == fp.numParts() - 1u);
    const bool needsArrayCheck = isLeafField && mode == LeafTraversalMode::kArrayAndItsElements;

    // Generate the projection stage to read a sub-field at the current nested level and bind it
    // to 'inputSlot'.
    auto fieldName = fp.getPart(level);
    auto inputSlot = slotIdGenerator->generate();
    auto fromBranch = makeProject(
        std::move(inputStage),
        planNodeId,
        inputSlot,
        makeFunction("getField", makeVariable(inputDocumentSlot), makeConstant(fieldName)));

    if (isLeafField && mode == LeafTraversalMode::kDoNotTraverseLeaf) {
        // 'makePredicate' in this mode must return valid state, not just plain boolean value. So
        // there is no need to wrap it in '_context->stateHelper.makePredicateCombinator'.
        return makePredicate(inputSlot, std::move(fromBranch));
    }

    // Input slot for the inner branch of traverse stage is the same as the input slot holding the
    // array.
    auto innerInputSlot = inputSlot;
    auto traverseInputSlot = inputSlot;

    // Some of MQL expressions need to check predicate not only for each of the array elements, but
    // also for the whole array. Predicate tree is located in the inner branch of the traverse stage
    // created below. To avoid generating predicate tree two times, we force traverse to be executed
    // two times: first to iterate array elements and second to run the predicate tree against whole
    // array.
    // To achive this, we create union stage in the 'from' branch of traverse. This union stage
    // sets the input slot of the traverse stage - 'traverseInputSlot'. Union returns ADVANCED
    // two times, forcing traverse to be executed two times with different inputs:
    //  - First time union returns ADVANCED, 'traverseInputSlot' is set to the input array, stored
    //    in 'inputSlot'. Traverse stage iterates over array elements (if any) and checks the
    //    predicate for each of them.
    //  - Second time union returns ADVANCED, 'traverseInputSlot' is set to Nothing. In this case,
    //    traverse stage executes predicate only once.
    // Since 'from' branch of traverse has union stage, we save current 'fromBranch' to use for
    // loop join stage later.
    EvalStage innerBranch;
    EvalStage loopJoinFromBranch;
    if (needsArrayCheck) {
        loopJoinFromBranch = std::move(fromBranch);

        auto buildUnionBranch = [&](std::unique_ptr<sbe::EExpression> arrayExpr) {
            auto currentArraySlot = slotIdGenerator->generate();
            auto branch = makeProject(makeLimitCoScanStage(planNodeId),
                                      planNodeId,
                                      currentArraySlot,
                                      std::move(arrayExpr));
            return std::make_pair(sbe::makeSV(currentArraySlot), std::move(branch));
        };

        auto [checkArrayElementsSlots, checkArrayElementsStage] =
            buildUnionBranch(makeVariable(inputSlot));

        auto [checkWholeArraySlots, checkWholeArrayStage] =
            buildUnionBranch(makeConstant(sbe::value::TypeTags::Nothing, 0));

        traverseInputSlot = slotIdGenerator->generate();
        fromBranch = makeUnion(
            makeVector(std::move(checkArrayElementsStage), std::move(checkWholeArrayStage)),
            makeVector(std::move(checkArrayElementsSlots), std::move(checkWholeArraySlots)),
            sbe::makeSV(traverseInputSlot),
            planNodeId);
    }

    boost::optional<sbe::value::SlotId> isTraverseInputArraySlot;
    if (needsArrayCheck || !isLeafField || stateHelper.stateContainsValue()) {
        isTraverseInputArraySlot = slotIdGenerator->generate();
        fromBranch = makeProject(
            std::move(fromBranch),
            planNodeId,
            *isTraverseInputArraySlot,
            makeFillEmptyFalse(makeFunction("isArray", makeVariable(traverseInputSlot))));
    }

    // If current input to the traverse stage is an array, this means that we are currently
    // checking the predicate against each of the array elements. 'traverseInputSlot', holding
    // current array element, should be passed to the predicate.
    // If current input to the traverse stage is not an array, this could mean two things:
    //  - Value in the 'inputSlot' is not the array
    //  - We are checking the predicate against the whole array
    // In both cases, 'inputSlot' should be passed to the predicate.
    if (needsArrayCheck) {
        innerInputSlot = slotIdGenerator->generate();
        innerBranch = makeProject(std::move(innerBranch),
                                  planNodeId,
                                  innerInputSlot,
                                  sbe::makeE<sbe::EIf>(makeVariable(*isTraverseInputArraySlot),
                                                       makeVariable(traverseInputSlot),
                                                       makeVariable(inputSlot)));
    }

    // For the non leaf nodes we insert a filter that allows the nested getField only for objects.
    // But only if the outer value is an array. This is relevant in this example: given 2 documents
    // {a:10} and {a:[10]} the filer {'a.b':null} returns the first document but not the second.
    // Without the filter we'd try to traverse 'a', and in both cases the inner side of the
    // 'traverse' would get the value '10'. However, in the first case we'd try to apply getField()
    // to a standalone scalar, which would return a missing field, which is equal to null, whilst in
    // a second case to a scalar which is an array element. According to the legacy implementation,
    // this is not allowed and we shouldn't try to do a nesting path traversal of the array
    // elements, unless an element is an object.
    if (!isLeafField) {
        innerBranch =
            makeFilter<false>(std::move(innerBranch),
                              makeBinaryOp(sbe::EPrimBinary::logicOr,
                                           makeNot(makeVariable(*isTraverseInputArraySlot)),
                                           makeFunction("isObject", makeVariable(innerInputSlot))),
                              planNodeId);
    }

    // Generate the 'in' branch for the TraverseStage that we're about to construct.
    EvalExpr innerExpr;
    std::tie(innerExpr, innerBranch) = isLeafField
        // Base case: Evaluate the predicate. Predicate returns boolean value, we need to convert it
        // to state using 'stateHelper.makePredicateCombinator'.
        ? stateHelper.makePredicateCombinator(makePredicate(innerInputSlot, std::move(innerBranch)))
        // Recursive case.
        : generatePathTraversal(std::move(innerBranch),
                                innerInputSlot,
                                fp,
                                level + 1,
                                planNodeId,
                                slotIdGenerator,
                                frameIdGenerator,
                                makePredicate,
                                mode,
                                stateHelper);

    if (stateHelper.stateContainsValue()) {
        // The expression below checks if input is an array. In this case it returns initial state.
        // This value will be the first one to be stored in 'traverseOutputSlot'. On the subsequent
        // iterations 'traverseOutputSlot' is updated according to fold expression.
        // If input is not array, expression below simply assigns state from the predicate to the
        // 'innerResultSlot'.
        // If state does not containy any value apart from boolean, we do not need to perform this
        // check.
        innerExpr =
            makeLocalBind(frameIdGenerator,
                          [&](sbe::EVariable state) {
                              return sbe::makeE<sbe::EIf>(
                                  makeVariable(*isTraverseInputArraySlot),
                                  stateHelper.makeInitialState(stateHelper.getBool(state.clone())),
                                  state.clone());
                          },
                          innerExpr.extractExpr());
    }

    sbe::value::SlotId innerResultSlot;
    std::tie(innerResultSlot, innerBranch) =
        projectEvalExpr(std::move(innerExpr),
                        std::move(innerBranch),  // NOLINT(bugprone-use-after-move)
                        planNodeId,
                        slotIdGenerator);

    // Generate the traverse stage for the current nested level. There are several cases covered
    // during this phase:
    //  1. If input is not an array, value from 'in' branch is returned (see comment for the 'in'
    //     branch construction).
    //  2. If input is an array of size 1, fold expression is never executed. 'in' branch returns
    //     initial state, paired with false value if predicate evaluates to false and true value
    //     otherwise.
    //  3. If input is an array of size larger than 1 and predicate does not evaluate to true on the
    //     first array element, fold expression is executed at least once. See comments for
    //     respective implementation of 'FilterStateHelper::makeTraverseCombinator' for details.
    auto traverseOutputSlot = slotIdGenerator->generate();
    auto outputStage = stateHelper.makeTraverseCombinator(
        std::move(fromBranch),
        std::move(innerBranch),  // NOLINT(bugprone-use-after-move)
        traverseInputSlot,
        traverseOutputSlot,
        innerResultSlot,
        planNodeId,
        frameIdGenerator);

    // If traverse stage was not executed at all (empty input array), 'traverseOutputSlot' contains
    // Nothing. In this case we have not found matching element, so we simply return false value.
    auto resultExpr =
        makeFunction("fillEmpty", makeVariable(traverseOutputSlot), stateHelper.makeState(false));

    if (!needsArrayCheck) {
        return {std::move(resultExpr), std::move(outputStage)};
    }

    auto outputSlot = slotIdGenerator->generate();
    outputStage =
        makeProject(std::move(outputStage), planNodeId, outputSlot, std::move(resultExpr));

    // In case predicate needs to be checked both for each of the array elements and for whole
    // array, traverse stage created above will return ADVANCED two times. To handle that, we
    // construct the following tree:
    //
    //   nlj
    //   left
    //       <'inputStage' and extracting current field value into 'inputSlot'>
    //   right
    //       limit 1
    //       filter {!isTraverseInputArraySlot || outputSlot}
    //       <traverse stage created above>
    //
    // Let iterate over each part of the tree:
    //  - Loop join stage is created to hold all stages which usually go into the 'from' branch of
    //    traverse stage. This includes 'inputStage' and project stage to extract current field
    //    value.
    //  - Filter stage ensures that tree below it returns ADVANCED only if the predicate matched
    //    one of the array elements or the whole array.
    //  - Limit-1 stage ensures short-circuiting. If one of the array elements matched the
    //    predicate, filter stage below it returns ADVANCED and we do not execute the predicate
    //    for the whole array.
    //
    // To better understand the predicate of the filter stage, let us take a look how the resulting
    // tree behaves for various 'inputSlot' values. 'inputSlot' can be:
    //  - Array. In this case traverse stage will be executed twice:
    //   1. 'isTraverseInputArraySlot = true', filter will pass only if 'outputSlot = true', which
    //      means predicate returned true for one of the array elements.
    //   2. 'isTraverseInputArray = false' (since second time traverse input is Nothing), filter
    //      will always pass. Even though predicate may not match the whole array, we need to return
    //      something to the stage above us.
    // - Not array. In this case traverse stage will be executed once:
    //   1. 'isTraverseInputArray = false', filter will always pass.
    //   2. Will never happen because of limit-1 stage on top.
    outputStage = makeFilter<false>(std::move(outputStage),
                                    makeBinaryOp(sbe::EPrimBinary::logicOr,
                                                 makeNot(makeVariable(*isTraverseInputArraySlot)),
                                                 stateHelper.getBool(outputSlot)),
                                    planNodeId);

    outputStage = makeLimitSkip(std::move(outputStage), planNodeId, 1);

    outputStage = makeLoopJoin(std::move(loopJoinFromBranch), std::move(outputStage), planNodeId);

    return {outputSlot, std::move(outputStage)};
}

/**
 * Given a field path 'path' and a predicate 'makePredicate', this function generates an SBE tree
 * that will evaluate the predicate on the field path. When 'path' is not empty string (""), this
 * function generates a sequence of nested traverse operators to traverse the field path and it uses
 * 'makePredicate' to generate an SBE expression for evaluating the predicate on individual value.
 * When 'path' is empty, this function simply uses 'makePredicate' to generate an SBE expression for
 * evaluating the predicate on a single value.
 */
void generatePredicate(MatchExpressionVisitorContext* context,
                       const FieldRef* path,
                       MakePredicateFn makePredicate,
                       LeafTraversalMode mode,
                       bool useCombinator = true) {
    auto& frame = context->evalStack.topFrame();

    auto&& [expr, stage] = [&]() {
        if (frame.data().inputSlot) {
            if (path && !path->empty()) {
                return generatePathTraversal(frame.extractStage(),
                                             *frame.data().inputSlot,
                                             *path,
                                             0,
                                             context->planNodeId,
                                             context->state.slotIdGenerator,
                                             context->state.frameIdGenerator,
                                             makePredicate,
                                             mode,
                                             context->stateHelper);
            } else {
                // If matchExpr's parent is a ElemMatchValueMatchExpression, then
                // matchExpr()->fieldRef() will be nullptr. In this case, 'inputSlot' will be a
                // "correlated slot" that holds the value of the ElemMatchValueMatchExpression's
                // field path, and we should apply the predicate directly on 'inputSlot' without
                // array traversal.
                auto result = makePredicate(*frame.data().inputSlot, frame.extractStage());
                if (useCombinator) {
                    return context->stateHelper.makePredicateCombinator(std::move(result));
                }
                return result;
            }
        } else {
            // If an input slot for the current frame is not defined, then we must generating a
            // filter predicate for an index scan. In this case we don't need to perform any complex
            // path traversal but rather evaluate the predicate directly on the input slot for the
            // current field path - the index scan will extract the value for this field path and
            // will store it in a corresponding slot in the 'indexKeySlots' map.

            tassert(5273402, "Field path cannot be empty for an index filter", path);

            auto it = context->indexKeySlots.find(path->dottedField());
            tassert(5273403,
                    str::stream() << "Unknown field path in index filter: " << path->dottedField(),
                    it != context->indexKeySlots.end());

            auto result = makePredicate(it->second, frame.extractStage());
            if (useCombinator) {
                return context->stateHelper.makePredicateCombinator(std::move(result));
            }
            return result;
        }
    }();

    frame.setStage(std::move(stage));
    frame.pushExpr(std::move(expr));
}

/**
 * Generates a path traversal SBE plan stage sub-tree for matching arrays with '$size'. Applies
 * an extra project on top of the sub-tree to filter based on user provided value.
 */
void generateArraySize(MatchExpressionVisitorContext* context,
                       const SizeMatchExpression* matchExpr) {
    int size = matchExpr->getData();

    auto makePredicate = [&](sbe::value::SlotId inputSlot,
                             EvalStage inputStage) -> EvalExprStagePair {
        // Generate a traverse that projects the integer value 1 for each element in the array and
        // then sums up the 1's, resulting in the count of elements in the array.
        auto innerSlot = context->state.slotId();
        auto innerBranch =
            makeProject(EvalStage{},
                        context->planNodeId,
                        innerSlot,
                        sbe::makeE<sbe::EConstant>(sbe::value::TypeTags::NumberInt64,
                                                   sbe::value::bitcastFrom<int64_t>(1)));

        auto traverseSlot = context->state.slotId();
        auto traverseStage = makeTraverse(EvalStage{},
                                          std::move(innerBranch),
                                          inputSlot,
                                          traverseSlot,
                                          innerSlot,
                                          makeBinaryOp(sbe::EPrimBinary::add,
                                                       sbe::makeE<sbe::EVariable>(traverseSlot),
                                                       sbe::makeE<sbe::EVariable>(innerSlot)),
                                          nullptr,
                                          context->planNodeId,
                                          1);

        // If the traversal result was not Nothing, compare it to the user provided value. If the
        // traversal result was Nothing, that means the array was empty, so replace Nothing with 0
        // and compare it to the user provided value.
        auto sizeOutput = makeBinaryOp(
            sbe::EPrimBinary::eq,
            sbe::makeE<sbe::EConstant>(sbe::value::TypeTags::NumberInt64,
                                       sbe::value::bitcastFrom<int64_t>(size)),
            sbe::makeE<sbe::EIf>(makeFunction("exists", sbe::makeE<sbe::EVariable>(traverseSlot)),
                                 sbe::makeE<sbe::EVariable>(traverseSlot),
                                 sbe::makeE<sbe::EConstant>(sbe::value::TypeTags::NumberInt64,
                                                            sbe::value::bitcastFrom<int64_t>(0))));

        std::vector<EvalExprStagePair> branches;

        // Check that the thing we are about traverse is indeed an array.
        branches.emplace_back(
            makeFillEmptyFalse(makeFunction("isArray", sbe::makeE<sbe::EVariable>(inputSlot))),
            EvalStage{});

        branches.emplace_back(std::move(sizeOutput), std::move(traverseStage));

        auto [opOutput, opStage] = generateShortCircuitingLogicalOp(sbe::EPrimBinary::logicAnd,
                                                                    std::move(branches),
                                                                    context->planNodeId,
                                                                    context->state.slotIdGenerator,
                                                                    BooleanStateHelper{});

        inputStage = makeLoopJoin(std::move(inputStage), std::move(opStage), context->planNodeId);

        return {context->stateHelper.makeState(opOutput.extractExpr()), std::move(inputStage)};
    };

    generatePredicate(context,
                      matchExpr->fieldRef(),
                      std::move(makePredicate),
                      LeafTraversalMode::kDoNotTraverseLeaf);
}

/**
 * Generates a path traversal SBE plan stage sub-tree which implements the comparison match
 * expression 'expr'. The comparison itself executes using the given 'binaryOp'.
 */
void generateComparison(MatchExpressionVisitorContext* context,
                        const ComparisonMatchExpression* expr,
                        sbe::EPrimBinary::Op binaryOp) {
    auto makePredicate = [context, expr, binaryOp](sbe::value::SlotId inputSlot,
                                                   EvalStage inputStage) -> EvalExprStagePair {
        const auto& rhs = expr->getData();
        auto [tagView, valView] = sbe::bson::convertFrom<true>(
            rhs.rawdata(), rhs.rawdata() + rhs.size(), rhs.fieldNameSize() - 1);

        // Most commonly the comparison does not do any kind of type conversions (i.e. 12 > "10"
        // does not evaluate to true as we do not try to convert a string to a number). Internally,
        // SBE returns Nothing for mismatched types.
        // However, there is a wrinkle with MQL (and there always is one). We can compare any type
        // to MinKey or MaxKey type and expect a true/false answer.
        if (tagView == sbe::value::TypeTags::MinKey) {
            switch (binaryOp) {
                case sbe::EPrimBinary::eq:
                case sbe::EPrimBinary::neq:
                    break;
                case sbe::EPrimBinary::greater: {
                    return {makeFillEmptyFalse(
                                makeNot(makeFunction("isMinKey", makeVariable(inputSlot)))),
                            std::move(inputStage)};
                }
                case sbe::EPrimBinary::greaterEq: {
                    return {makeFunction("exists", makeVariable(inputSlot)), std::move(inputStage)};
                }
                case sbe::EPrimBinary::less: {
                    return {makeConstant(sbe::value::TypeTags::Boolean, false),
                            std::move(inputStage)};
                }
                case sbe::EPrimBinary::lessEq: {
                    return {makeFillEmptyFalse(makeFunction("isMinKey", makeVariable(inputSlot))),
                            std::move(inputStage)};
                }
                default:
                    break;
            }
        } else if (tagView == sbe::value::TypeTags::MaxKey) {
            switch (binaryOp) {
                case sbe::EPrimBinary::eq:
                case sbe::EPrimBinary::neq:
                    break;
                case sbe::EPrimBinary::greater: {
                    return {makeConstant(sbe::value::TypeTags::Boolean, false),
                            std::move(inputStage)};
                }
                case sbe::EPrimBinary::greaterEq: {
                    return {makeFillEmptyFalse(makeFunction("isMaxKey", makeVariable(inputSlot))),
                            std::move(inputStage)};
                }
                case sbe::EPrimBinary::less: {
                    return {makeFillEmptyFalse(
                                makeNot(makeFunction("isMaxKey", makeVariable(inputSlot)))),
                            std::move(inputStage)};
                }
                case sbe::EPrimBinary::lessEq: {
                    return {makeFunction("exists", makeVariable(inputSlot)), std::move(inputStage)};
                }
                default:
                    break;
            }
        } else if (tagView == sbe::value::TypeTags::Null) {
            // When comparing to null we have to consider missing and undefined.
            auto inputExpr = buildMultiBranchConditional(
                CaseValuePair{generateNullOrMissing(sbe::EVariable(inputSlot)),
                              makeConstant(sbe::value::TypeTags::Null, 0)},
                makeVariable(inputSlot));

            return {makeFillEmptyFalse(makeBinaryOp(binaryOp,
                                                    std::move(inputExpr),
                                                    makeConstant(sbe::value::TypeTags::Null, 0),
                                                    context->state.env)),
                    std::move(inputStage)};
        } else if (sbe::value::isNaN(tagView, valView)) {
            // Construct an expression to perform a NaN check.
            switch (binaryOp) {
                case sbe::EPrimBinary::eq:
                case sbe::EPrimBinary::greaterEq:
                case sbe::EPrimBinary::lessEq:
                    // If 'rhs' is NaN, then return whether the lhs is NaN.
                    return {makeFillEmptyFalse(makeFunction("isNaN", makeVariable(inputSlot))),
                            std::move(inputStage)};
                case sbe::EPrimBinary::less:
                case sbe::EPrimBinary::greater:
                    // Always return false for non-equality operators.
                    return {makeConstant(sbe::value::TypeTags::Boolean,
                                         sbe::value::bitcastFrom<bool>(false)),
                            std::move(inputStage)};
                default:
                    tasserted(5449400,
                              str::stream() << "Could not construct expression for comparison op "
                                            << expr->toString());
            }
        }

        // SBE EConstant assumes ownership of the value so we have to make a copy here.
        auto [tag, val] = sbe::value::copyValue(tagView, valView);

        return {makeFillEmptyFalse(makeBinaryOp(
                    binaryOp, makeVariable(inputSlot), makeConstant(tag, val), context->state.env)),
                std::move(inputStage)};
    };

    // A 'kArrayAndItsElements' traversal mode matches the following semantics: when the path we are
    // comparing is a path to an array, the comparison is considered true if it evaluates to true
    // for the array itself or for any of the array's elements.
    // However, we use 'kArrayElementsOnly' for the general case, because the comparison with the
    // array will almost always be false. There are two exceptions:
    // 1) when the 'rhs' operand is an array and
    // 2) when the 'rhs' operand is MinKey or MaxKey.
    // In the former case, the comparison we would skip by using 'kArrayElementsOnly' mode is an
    // array-to-array comparison that can return true. In the latter case, we are avoiding a
    // potential bug where traversing the path to the empty array ([]) would prevent _any_
    // comparison, meaning a comparison like {$gt: MinKey} would return false.
    const auto& rhs = expr->getData();
    const auto checkWholeArray = rhs.type() == BSONType::Array || rhs.type() == BSONType::MinKey ||
        rhs.type() == BSONType::MaxKey;
    const auto traversalMode = checkWholeArray ? LeafTraversalMode::kArrayAndItsElements
                                               : LeafTraversalMode::kArrayElementsOnly;
    generatePredicate(context, expr->fieldRef(), std::move(makePredicate), traversalMode);
}

/**
 * Generates and pushes a constant boolean expression for either alwaysTrue or alwaysFalse.
 */
void generateAlwaysBoolean(MatchExpressionVisitorContext* context, bool value) {
    auto& frame = context->evalStack.topFrame();
    frame.pushExpr(context->stateHelper.makeState(value));
}

/**
 * Generates a SBE plan stage sub-tree which implements the bitwise match expression 'expr'. The
 * various bit test expressions accept a numeric, BinData or position list bitmask. Here we handle
 * building an EExpression for both the numeric and BinData or position list forms of the bitmask.
 */
void generateBitTest(MatchExpressionVisitorContext* context,
                     const BitTestMatchExpression* expr,
                     const sbe::BitTestBehavior& bitOp) {
    auto makePredicate = [expr, bitOp](sbe::value::SlotId inputSlot,
                                       EvalStage inputStage) -> EvalExprStagePair {
        auto [bitPosTag, bitPosVal] = convertBitTestBitPositions(expr);

        // An EExpression for the BinData and position list for the binary case of
        // BitTestMatchExpressions. This function will be applied to values carrying BinData
        // elements.
        auto binaryBitTestExpr = makeFunction(
            "bitTestPosition"_sd,
            sbe::makeE<sbe::EConstant>(bitPosTag, bitPosVal),
            makeVariable(inputSlot),
            makeConstant(sbe::value::TypeTags::NumberInt32, static_cast<int32_t>(bitOp)));

        // Build An EExpression for the numeric bitmask case. The AllSet case tests if (mask &
        // value) == mask, and AllClear case tests if (mask & value) == 0. The AnyClear and
        // AnySet cases are the negation of the AllSet and AllClear cases, respectively.
        auto numericBitTestFnName = [&]() {
            if (bitOp == sbe::BitTestBehavior::AllSet || bitOp == sbe::BitTestBehavior::AnyClear) {
                return "bitTestMask"_sd;
            }
            if (bitOp == sbe::BitTestBehavior::AllClear || bitOp == sbe::BitTestBehavior::AnySet) {
                return "bitTestZero"_sd;
            }
            MONGO_UNREACHABLE_TASSERT(5610200);
        }();

        // We round NumberDecimal values to the nearest integer to match the classic execution
        // engine's behavior for now. Note that this behavior is _not_ consistent with MongoDB's
        // documentation. At some point, we should consider removing this call to round() to make
        // SBE's behavior consistent with MongoDB's documentation.
        auto numericBitTestInputExpr = sbe::makeE<sbe::EIf>(
            sbe::makeE<sbe::ETypeMatch>(makeVariable(inputSlot),
                                        getBSONTypeMask(sbe::value::TypeTags::NumberDecimal)),
            makeFunction("round"_sd, makeVariable(inputSlot)),
            makeVariable(inputSlot));

        // Convert the value to a 64-bit integer, and then pass the converted value along with the
        // mask to the appropriate bit-test function. If the value cannot be losslessly converted
        // to a 64-bit integer, this expression will return Nothing.
        auto numericBitTestExpr =
            makeFunction(numericBitTestFnName,
                         makeConstant(sbe::value::TypeTags::NumberInt64, expr->getBitMask()),
                         sbe::makeE<sbe::ENumericConvert>(std::move(numericBitTestInputExpr),
                                                          sbe::value::TypeTags::NumberInt64));

        // For the AnyClear and AnySet cases, negate the output of the bit-test function.
        if (bitOp == sbe::BitTestBehavior::AnyClear || bitOp == sbe::BitTestBehavior::AnySet) {
            numericBitTestExpr = makeNot(std::move(numericBitTestExpr));
        }

        // numericBitTestExpr might produce Nothing, so we wrap it with makeFillEmptyFalse().
        return {sbe::makeE<sbe::EIf>(makeFunction("isBinData"_sd, makeVariable(inputSlot)),
                                     std::move(binaryBitTestExpr),
                                     makeFillEmptyFalse(std::move(numericBitTestExpr))),
                std::move(inputStage)};
    };

    generatePredicate(
        context, expr->fieldRef(), std::move(makePredicate), LeafTraversalMode::kArrayElementsOnly);
}

// Each logical expression child is evaluated in a separate EvalFrame. Set up a new EvalFrame with a
// limit-1/coscan tree.
void pushFrameForLogicalExpressionChild(MatchExpressionVisitorContext* context,
                                        size_t numChildren) {
    if (numChildren <= 1) {
        // For logical expressions with no children, we return constant (handled in the
        // post-visitor). For expressions with 1 child, we evaluate the child within the current
        // EvalFrame.
        return;
    }

    const auto& frame = context->evalStack.topFrame();
    context->evalStack.emplaceFrame(EvalStage{}, frame.data().inputSlot);
}

// Build specified logical expression with branches stored on stack.
void buildLogicalExpression(sbe::EPrimBinary::Op op,
                            size_t numChildren,
                            MatchExpressionVisitorContext* context) {
    if (numChildren == 0) {
        // If logical expression does not have any children, constant is returned.
        generateAlwaysBoolean(context, op == sbe::EPrimBinary::logicAnd);
        return;
    } else if (numChildren == 1) {
        // For expressions with 1 child, do nothing and return. The post-visitor for the child
        // expression has already done all the necessary work.
        return;
    }

    // Move the children's outputs off of the evalStack into a vector in preparation for
    // calling generateShortCircuitingLogicalOp().
    std::vector<EvalExprStagePair> branches;
    for (size_t i = 0; i < numChildren; ++i) {
        auto [expr, stage] = context->evalStack.popFrame();
        branches.emplace_back(std::move(expr), std::move(stage));
    }
    std::reverse(branches.begin(), branches.end());

    auto& frame = context->evalStack.topFrame();
    auto&& [expr, opStage] = generateShortCircuitingLogicalOp(op,
                                                              std::move(branches),
                                                              context->planNodeId,
                                                              context->state.slotIdGenerator,
                                                              context->stateHelper);
    frame.pushExpr(std::move(expr));

    // Join frame.stage with opStage.
    frame.setStage(makeLoopJoin(frame.extractStage(), std::move(opStage), context->planNodeId));
}

/**
 * Helper to use for 'makePredicate' argument of 'generatePredicate' function for $elemMatch
 * expressions.
 */
EvalExprStagePair elemMatchMakePredicate(MatchExpressionVisitorContext* context,
                                         sbe::value::SlotId filterSlot,
                                         EvalStage& filterStage,
                                         sbe::value::SlotId childInputSlot,
                                         sbe::value::SlotId inputSlot,
                                         EvalStage inputStage) {
    // The 'filterStage' subtree was generated to read from 'childInputSlot', based on
    // the assumption that 'childInputSlot' is some correlated slot that will be made
    // available by childStages's parent. We add a projection here to 'inputStage' to
    // feed 'inputSlot' into 'childInputSlot'.
    auto isInputArray = context->state.slotId();
    auto fromBranch = makeProject(std::move(inputStage),
                                  context->planNodeId,
                                  childInputSlot,
                                  sbe::makeE<sbe::EVariable>(inputSlot),
                                  isInputArray,
                                  makeFunction("isArray", sbe::makeE<sbe::EVariable>(inputSlot)));

    auto [innerResultSlot, innerBranch] = [&]() -> std::pair<sbe::value::SlotId, EvalStage> {
        if (!context->stateHelper.stateContainsValue()) {
            return {filterSlot, std::move(filterStage)};
        }

        auto resultSlot = context->state.slotId();
        return {resultSlot,
                makeProject(std::move(filterStage),
                            context->planNodeId,
                            resultSlot,
                            context->stateHelper.makeInitialState(
                                context->stateHelper.getBool(filterSlot)))};
    }();

    innerBranch = makeFilter<true>(
        std::move(innerBranch), sbe::makeE<sbe::EVariable>(isInputArray), context->planNodeId);

    // Generate the traverse.
    auto traverseSlot = context->state.slotId();
    auto traverseStage = context->stateHelper.makeTraverseCombinator(
        std::move(fromBranch),
        std::move(innerBranch),  // NOLINT(bugprone-use-after-move)
        childInputSlot,
        traverseSlot,
        innerResultSlot,
        context->planNodeId,
        context->state.frameIdGenerator);

    // There are some cases where 'traverseOutputSlot' gets set to Nothing when TraverseStage
    // doesn't match anything. One  example of when this happens is when innerBranch->getNext()
    // returns EOF every time it is called by TraverseStage. In these cases $elemMatch should return
    // false instead of Nothing.
    auto projectExpr = makeFunction("fillEmpty",
                                    sbe::makeE<sbe::EVariable>(traverseSlot),
                                    context->stateHelper.makeState(false));

    return {std::move(projectExpr), std::move(traverseStage)};
}

/**
 * A match expression pre-visitor used for maintaining nested logical expressions while traversing
 * the match expression tree.
 */
class MatchExpressionPreVisitor final : public MatchExpressionConstVisitor {
public:
    MatchExpressionPreVisitor(MatchExpressionVisitorContext* context) : _context(context) {}

    void visit(const AlwaysFalseMatchExpression* expr) final {}
    void visit(const AlwaysTrueMatchExpression* expr) final {}

    void visit(const AndMatchExpression* expr) final {
        if (expr == _context->topLevelAnd) {
            // Usually, we implement AND expression using limit-1/union tree. Each branch of a union
            // stage represents AND's argument. For top-level AND we apply an optimization that
            // allows us to get rid of limit-1/union tree.
            // Firstly, we add filter stage on top of tree for each of AND's arguments. This ensures
            // that respective tree does not return ADVANCED if argument evaluates to false.
            // Secondly, we place trees of AND's arguments on top of each other. This guarantees
            // that the whole resulting tree for AND does not return ADVANCED if one of arguments
            // did not returned ADVANCED (e.g. evaluated to false).
            // First step is performed in 'MatchExpressionInVisitor' and
            // 'MatchExpressionPostVisitor'. Second step is achieved by evaluating each child within
            // one EvalFrame, so that each child builds directly on top of
            // '_context->evalStack.topFrame().extractStage()'.
            return;
        }

        // For non-top-level $and's, we evaluate each child in its own EvalFrame.
        pushFrameForLogicalExpressionChild(_context, expr->numChildren());
    }

    void visit(const BitsAllClearMatchExpression* expr) final {}
    void visit(const BitsAllSetMatchExpression* expr) final {}
    void visit(const BitsAnyClearMatchExpression* expr) final {}
    void visit(const BitsAnySetMatchExpression* expr) final {}

    void visit(const ElemMatchObjectMatchExpression* matchExpr) final {
        // ElemMatchObjectMatchExpression is guaranteed to always have exactly 1 child
        invariant(matchExpr->numChildren() == 1);

        // We evaluate $elemMatch's child in a new EvalFrame. For the child's EvalFrame, we set the
        // 'stage' field to be a null tree, and we set the 'inputSlot' field to be a newly allocated
        // slot (childInputSlot). childInputSlot is a "correlated slot" that will be set up later
        // (handled in the post-visitor).
        auto childInputSlot = _context->state.slotId();
        _context->evalStack.emplaceFrame(EvalStage{}, childInputSlot);
    }

    void visit(const ElemMatchValueMatchExpression* matchExpr) final {
        invariant(matchExpr->numChildren() >= 1);

        // We evaluate each child in its own EvalFrame. Set up a new EvalFrame with a null tree
        // for the first child. For all of the children's EvalFrames, we set the 'inputSlot' field
        // to 'childInputSlot'. childInputSlot is a "correlated slot" that will be set up later in
        // the post-visitor (childInputSlot will be the correlated parameter of a TraverseStage).
        auto childInputSlot = _context->state.slotId();
        _context->evalStack.emplaceFrame(EvalStage{}, childInputSlot);
    }

    void visit(const EqualityMatchExpression* expr) final {}
    void visit(const ExistsMatchExpression* expr) final {}
    void visit(const ExprMatchExpression* expr) final {}
    void visit(const GTEMatchExpression* expr) final {}
    void visit(const GTMatchExpression* expr) final {}
    void visit(const GeoMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const GeoNearMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InMatchExpression* expr) final {}
    void visit(const InternalBucketGeoWithinMatchExpression* expr) final {}
    void visit(const InternalExprEqMatchExpression* expr) final {}
    void visit(const InternalExprGTMatchExpression* expr) final {}
    void visit(const InternalExprGTEMatchExpression* expr) final {}
    void visit(const InternalExprLTMatchExpression* expr) final {}
    void visit(const InternalExprLTEMatchExpression* expr) final {}
    void visit(const InternalSchemaAllElemMatchFromIndexMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaAllowedPropertiesMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaBinDataEncryptedTypeExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaBinDataSubTypeExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaCondMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaEqMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaFmodMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaMatchArrayIndexMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaMaxItemsMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaMaxLengthMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaMaxPropertiesMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaMinItemsMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaMinLengthMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaMinPropertiesMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaObjectMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaRootDocEqMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaTypeExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaUniqueItemsMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const InternalSchemaXorMatchExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const LTEMatchExpression* expr) final {}
    void visit(const LTMatchExpression* expr) final {}
    void visit(const ModMatchExpression* expr) final {}
    void visit(const NorMatchExpression* expr) final {
        pushFrameForLogicalExpressionChild(_context, expr->numChildren());
    }

    void visit(const NotMatchExpression* expr) final {
        invariant(expr->numChildren() == 1);
    }

    void visit(const OrMatchExpression* expr) final {
        pushFrameForLogicalExpressionChild(_context, expr->numChildren());
    }

    void visit(const RegexMatchExpression* expr) final {}
    void visit(const SizeMatchExpression* expr) final {}

    void visit(const TextMatchExpression* expr) final {
        // The QueryPlanner always converts a $text predicate into a query solution involving the
        // 'TextNode' which is translated to an SBE plan elsewhere. Therefore, no $text predicates
        // should remain in the MatchExpression tree when converting it to SBE.
        MONGO_UNREACHABLE;
    }

    void visit(const TextNoOpMatchExpression* expr) final {
        // No-op $text match expressions exist as a crutch for parsing a $text predicate without
        // having access to the FTS subsystem. We should never attempt to execute a MatchExpression
        // containing such a no-op node.
        MONGO_UNREACHABLE;
    }

    void visit(const TwoDPtInAnnulusExpression* expr) final {
        unsupportedExpression(expr);
    }
    void visit(const TypeMatchExpression* expr) final {}
    void visit(const WhereMatchExpression* expr) final {}
    void visit(const WhereNoOpMatchExpression* expr) final {
        unsupportedExpression(expr);
    }

private:
    void unsupportedExpression(const MatchExpression* expr) const {
        // We're guaranteed to not fire this assertion by implementing a mechanism in the upper
        // layer which directs the query to the classic engine when an unsupported expression
        // appears.
        tasserted(4822878,
                  str::stream() << "Unsupported match expression in SBE stage builder: "
                                << expr->matchType());
    }

    MatchExpressionVisitorContext* _context;
};

/**
 * A match expression post-visitor which does all the job to translate the match expression tree
 * into an SBE plan stage sub-tree.
 */
class MatchExpressionPostVisitor final : public MatchExpressionConstVisitor {
public:
    MatchExpressionPostVisitor(MatchExpressionVisitorContext* context) : _context(context) {}

    void visit(const AlwaysFalseMatchExpression* expr) final {
        generateAlwaysBoolean(_context, false);
    }

    void visit(const AlwaysTrueMatchExpression* expr) final {
        generateAlwaysBoolean(_context, true);
    }

    void visit(const AndMatchExpression* expr) final {
        if (expr == _context->topLevelAnd) {
            // For a top-level $and with no children, do nothing and return. For top-level $and's
            // with at least one, we evaluate each child within the current EvalFrame.
            if (expr->numChildren() >= 1) {
                // Process the output of the last child.
                if (_context->stateHelper.stateContainsValue()) {
                    projectCurrentExprToOutputSlot(_context);
                }

                auto& frame = _context->evalStack.topFrame();
                invariant(frame.exprsCount() > 0);
                frame.setStage(
                    makeFilter<false>(frame.extractStage(),
                                      _context->stateHelper.getBool(frame.popExpr().extractExpr()),
                                      _context->planNodeId));
            }
            return;
        }

        buildLogicalExpression(sbe::EPrimBinary::logicAnd, expr->numChildren(), _context);
    }

    void visit(const BitsAllClearMatchExpression* expr) final {
        generateBitTest(_context, expr, sbe::BitTestBehavior::AllClear);
    }

    void visit(const BitsAllSetMatchExpression* expr) final {
        generateBitTest(_context, expr, sbe::BitTestBehavior::AllSet);
    }

    void visit(const BitsAnyClearMatchExpression* expr) final {
        generateBitTest(_context, expr, sbe::BitTestBehavior::AnyClear);
    }

    void visit(const BitsAnySetMatchExpression* expr) final {
        generateBitTest(_context, expr, sbe::BitTestBehavior::AnySet);
    }

    void visit(const ElemMatchObjectMatchExpression* matchExpr) final {
        using namespace std::placeholders;
        // ElemMatchObjectMatchExpression is guaranteed to always have exactly 1 child
        invariant(matchExpr->numChildren() == 1);

        // Extract the input slot, the output, and the stage from of the child's EvalFrame, and
        // remove the child's EvalFrame from the stack.
        tassert(5273405,
                "Eval frame's input slot is not defined",
                _context->evalStack.topFrame().data().inputSlot);
        auto childInputSlot = *_context->evalStack.topFrame().data().inputSlot;
        auto [filterSlot, filterStage] = [&]() {
            auto [expr, stage] = _context->evalStack.popFrame();
            auto [predicateSlot, predicateStage] = projectEvalExpr(std::move(expr),
                                                                   std::move(stage),
                                                                   _context->planNodeId,
                                                                   _context->state.slotIdGenerator);

            auto isObjectOrArrayExpr =
                makeBinaryOp(sbe::EPrimBinary::logicOr,
                             makeFunction("isObject", sbe::makeE<sbe::EVariable>(childInputSlot)),
                             makeFunction("isArray", sbe::makeE<sbe::EVariable>(childInputSlot)));
            predicateStage = makeFilter<true>(
                std::move(predicateStage), std::move(isObjectOrArrayExpr), _context->planNodeId);
            return std::make_pair(predicateSlot, std::move(predicateStage));
        }();

        // We're using 'kDoNotTraverseLeaf' traverse mode, so we're guaranteed that 'makePredcate'
        // will only be called once, so it's safe to bind the reference to 'filterStage' subtree
        // here.
        auto makePredicate = std::bind(&elemMatchMakePredicate,
                                       _context,
                                       filterSlot,
                                       std::ref(filterStage),
                                       childInputSlot,
                                       _1,
                                       _2);

        // 'makePredicate' defined above returns a state instead of plain boolean value, so there is
        // no need to use combinator for it.
        generatePredicate(_context,
                          matchExpr->fieldRef(),
                          std::move(makePredicate),
                          LeafTraversalMode::kDoNotTraverseLeaf,
                          false /* useCombinator */);
    }

    void visit(const ElemMatchValueMatchExpression* matchExpr) final {
        using namespace std::placeholders;
        auto numChildren = matchExpr->numChildren();
        invariant(numChildren >= 1);

        tassert(5273406,
                "Eval frame's input slot is not defined",
                _context->evalStack.topFrame().data().inputSlot);
        auto childInputSlot = *_context->evalStack.topFrame().data().inputSlot;

        // Move the children's outputs off of the evalStack into a vector in preparation for
        // calling generateShortCircuitingLogicalOp().
        std::vector<EvalExprStagePair> childStages;
        for (size_t i = 0; i < numChildren; ++i) {
            auto [expr, stage] = _context->evalStack.popFrame();
            childStages.emplace_back(std::move(expr), std::move(stage));
        }
        std::reverse(childStages.begin(), childStages.end());

        auto [filterExpr, filterStage] =
            generateShortCircuitingLogicalOp(sbe::EPrimBinary::logicAnd,
                                             std::move(childStages),
                                             _context->planNodeId,
                                             _context->state.slotIdGenerator,
                                             _context->stateHelper);

        sbe::value::SlotId filterSlot;
        std::tie(filterSlot, filterStage) = projectEvalExpr(std::move(filterExpr),
                                                            std::move(filterStage),
                                                            _context->planNodeId,
                                                            _context->state.slotIdGenerator);

        // We're using 'kDoNotTraverseLeaf' traverse mode, so we're guaranteed that 'makePredcate'
        // will only be called once, so it's safe to bind the reference to 'filterStage' subtree
        // here.
        auto makePredicate = std::bind(&elemMatchMakePredicate,
                                       _context,
                                       filterSlot,
                                       std::ref(filterStage),
                                       childInputSlot,
                                       _1,
                                       _2);

        // 'makePredicate' defined above returns a state instead of plain boolean value, so there is
        // no need to use combinator for it.
        generatePredicate(_context,
                          matchExpr->fieldRef(),
                          std::move(makePredicate),
                          LeafTraversalMode::kDoNotTraverseLeaf,
                          false /* useCombinator */);
    }

    void visit(const EqualityMatchExpression* expr) final {
        generateComparison(_context, expr, sbe::EPrimBinary::eq);
    }

    void visit(const ExistsMatchExpression* expr) final {
        const auto traversalMode = LeafTraversalMode::kDoNotTraverseLeaf;

        auto makePredicate = [expr, context = _context](sbe::value::SlotId inputSlot,
                                                        EvalStage inputStage) -> EvalExprStagePair {
            auto resultExpr = sbe::makeE<sbe::EFunction>(
                "exists", sbe::makeEs(sbe::makeE<sbe::EVariable>(inputSlot)));

            // $exists is always applied to the leaf of the field path. For kDoNotTraverseLeaf mode,
            // generatePredicate() does not convert the predicate value to state when generating
            // traversal for leaf nodes of field path. For this reason, we need to perform this
            // conversion manually.
            if (expr->fieldRef() && !expr->fieldRef()->empty() &&
                context->evalStack.topFrame().data().inputSlot) {
                resultExpr = context->stateHelper.makeState(std::move(resultExpr));
            }

            return {std::move(resultExpr), std::move(inputStage)};
        };

        generatePredicate(_context, expr->fieldRef(), std::move(makePredicate), traversalMode);
    }

    void visit(const ExprMatchExpression* matchExpr) final {
        auto& frame = _context->evalStack.topFrame();

        // The $expr expression must by applied to the current $$ROOT document, so make sure that
        // an input slot associated with the current frame is the same slot as the input slot for
        // the entire match expression we're translating
        tassert(5273407, "Match expression's input slot is not defined", _context->inputSlot);
        tassert(5273408, "Eval frame's input slot is not defined", frame.data().inputSlot);
        tassert(5273409,
                "Eval frame for $expr is not computed over expression's input slot",
                *frame.data().inputSlot == *_context->inputSlot);

        auto currentStage = stageOrLimitCoScan(frame.extractStage(), _context->planNodeId);
        auto&& [expr, stage] = generateExpression(_context->state,
                                                  matchExpr->getExpression().get(),
                                                  std::move(currentStage),
                                                  *frame.data().inputSlot,
                                                  _context->planNodeId);
        auto frameId = _context->state.frameId();

        // We will need to convert the result of $expr to a boolean value, so we'll wrap it into an
        // expression which does exactly that.
        auto logicExpr = generateCoerceToBoolExpression(sbe::EVariable{frameId, 0});

        auto localBindExpr = sbe::makeE<sbe::ELocalBind>(
            frameId, sbe::makeEs(expr.extractExpr()), std::move(logicExpr));

        frame.pushExpr(_context->stateHelper.makeState(std::move(localBindExpr)));
        frame.setStage(std::move(stage));
    }

    void visit(const GTEMatchExpression* expr) final {
        generateComparison(_context, expr, sbe::EPrimBinary::greaterEq);
    }

    void visit(const GTMatchExpression* expr) final {
        generateComparison(_context, expr, sbe::EPrimBinary::greater);
    }

    void visit(const GeoMatchExpression* expr) final {}
    void visit(const GeoNearMatchExpression* expr) final {}

    void visit(const InMatchExpression* expr) final {
        auto&& [arrSetTag, arrSetVal, hasArray, hasNull] = convertInExpressionEqualities(expr);
        sbe::value::ValueGuard arrSetGuard{arrSetTag, arrSetVal};

        const auto traversalMode = hasArray ? LeafTraversalMode::kArrayAndItsElements
                                            : LeafTraversalMode::kArrayElementsOnly;

        // If the InMatchExpression doesn't carry any regex patterns, we can just check if the value
        // in bound to the inputSlot is a member of the equalities set.
        if (expr->getRegexes().size() == 0) {
            auto makePredicate =
                [&, arrSetTag = arrSetTag, arrSetVal = arrSetVal, hasNull = hasNull](
                    sbe::value::SlotId inputSlot, EvalStage inputStage) -> EvalExprStagePair {
                // We have to match nulls and undefined if a 'null' is present in equalities.
                auto inputExpr = !hasNull
                    ? makeVariable(inputSlot)
                    : sbe::makeE<sbe::EIf>(generateNullOrMissing(sbe::EVariable(inputSlot)),
                                           makeConstant(sbe::value::TypeTags::Null, 0),
                                           makeVariable(inputSlot));

                arrSetGuard.reset();
                return {makeIsMember(std::move(inputExpr),
                                     sbe::makeE<sbe::EConstant>(arrSetTag, arrSetVal),
                                     _context->state.env),
                        std::move(inputStage)};
            };

            generatePredicate(_context, expr->fieldRef(), std::move(makePredicate), traversalMode);
            return;
        } else {
            // If the InMatchExpression contains regex patterns, then we need to handle a regex-only
            // case and a case where both equalities and regexes are present. The regex-only case is
            // handled by building a traversal stage to traverse the array of regexes and call the
            // 'regexMatch' built-in to check if the field being traversed has a value that matches
            // a regex. The combined case uses a short-circuiting limit-1/union OR stage to first
            // exhaust the equalities 'isMember' check, and then if no match is found it executes
            // the regex-only traversal stage.
            auto& regexes = expr->getRegexes();
            auto& equalities = expr->getEqualities();

            auto [arrTag, arrVal] = sbe::value::makeNewArray();
            sbe::value::ValueGuard arrGuard{arrTag, arrVal};

            auto arr = sbe::value::getArrayView(arrVal);

            if (regexes.size()) {
                arr->reserve(regexes.size());

                for (auto&& r : regexes) {
                    auto [regexTag, regexVal] =
                        sbe::value::makeNewPcreRegex(r->getString(), r->getFlags());
                    arr->push_back(regexTag, regexVal);
                }
            }

            auto makePredicate = [&,
                                  arrSetTag = arrSetTag,
                                  arrSetVal = arrSetVal,
                                  arrTag = arrTag,
                                  arrVal = arrVal,
                                  hasNull = hasNull](sbe::value::SlotId inputSlot,
                                                     EvalStage inputStage) -> EvalExprStagePair {
                auto regexArraySlot{_context->state.slotId()};
                auto regexInputSlot{_context->state.slotId()};
                auto regexOutputSlot{_context->state.slotId()};

                // Build a traverse stage that traverses the query regex pattern array. Here the
                // FROM branch binds an array constant carrying the regex patterns to a slot. Then
                // the inner branch executes 'regexMatch' once per regex.
                auto [regexTag, regexVal] = sbe::value::copyValue(arrTag, arrVal);

                auto regexFromStage =
                    makeProject(equalities.size() > 0 ? EvalStage{} : std::move(inputStage),
                                _context->planNodeId,
                                regexArraySlot,
                                sbe::makeE<sbe::EConstant>(regexTag, regexVal));

                auto regexInnerStage =
                    makeProject(EvalStage{},
                                _context->planNodeId,
                                regexInputSlot,
                                makeFillEmptyFalse(sbe::makeE<sbe::EFunction>(
                                    "regexMatch",
                                    sbe::makeEs(sbe::makeE<sbe::EVariable>(regexArraySlot),
                                                sbe::makeE<sbe::EVariable>(inputSlot)))));

                auto regexStage =
                    makeTraverse(std::move(regexFromStage),
                                 std::move(regexInnerStage),
                                 regexArraySlot,
                                 regexOutputSlot,
                                 regexInputSlot,
                                 makeBinaryOp(sbe::EPrimBinary::logicOr,
                                              sbe::makeE<sbe::EVariable>(regexOutputSlot),
                                              sbe::makeE<sbe::EVariable>(regexInputSlot)),
                                 sbe::makeE<sbe::EVariable>(regexOutputSlot),
                                 _context->planNodeId,
                                 0);

                // If equalities are present in addition to regexes, build a limit-1/union
                // short-circuiting OR between a filter stage that checks membership of the field
                // being traversed in the equalities and the regex traverse stage
                if (equalities.size() > 0) {
                    std::vector<EvalExprStagePair> branches;

                    // We have to match nulls and undefined if a 'null' is present in equalities.
                    auto inputExpr = !hasNull
                        ? makeVariable(inputSlot)
                        : sbe::makeE<sbe::EIf>(generateNullOrMissing(sbe::EVariable(inputSlot)),
                                               makeConstant(sbe::value::TypeTags::Null, 0),
                                               makeVariable(inputSlot));

                    arrSetGuard.reset();
                    branches.emplace_back(
                        makeIsMember(std::move(inputExpr),
                                     sbe::makeE<sbe::EConstant>(arrSetTag, arrSetVal),
                                     _context->state.env),
                        EvalStage{});
                    branches.emplace_back(regexOutputSlot, std::move(regexStage));

                    auto [shortCircuitingExpr, shortCircuitingStage] =
                        generateShortCircuitingLogicalOp(sbe::EPrimBinary::logicOr,
                                                         std::move(branches),
                                                         _context->planNodeId,
                                                         _context->state.slotIdGenerator,
                                                         BooleanStateHelper{});

                    inputStage =
                        makeLoopJoin(std::move(inputStage),  // NOLINT(bugprone-use-after-move)
                                     std::move(shortCircuitingStage),
                                     _context->planNodeId);

                    return {std::move(shortCircuitingExpr), std::move(inputStage)};
                }

                return {regexOutputSlot, std::move(regexStage)};
            };
            generatePredicate(_context, expr->fieldRef(), std::move(makePredicate), traversalMode);
        }
    }
    // The following are no-ops. The internal expr comparison match expression are produced
    // internally by rewriting an $expr expression to an AND($expr, $_internalExpr[OP]), which can
    // later be eliminated by via a conversion into EXACT index bounds, or remains present. In the
    // latter case we can simply ignore it, as the result of AND($expr, $_internalExpr[OP]) is equal
    // to just $expr.
    void visit(const InternalExprEqMatchExpression* expr) final {
        generateAlwaysBoolean(_context, true);
    }
    void visit(const InternalExprGTMatchExpression* expr) final {
        generateAlwaysBoolean(_context, true);
    }
    void visit(const InternalExprGTEMatchExpression* expr) final {
        generateAlwaysBoolean(_context, true);
    }
    void visit(const InternalExprLTMatchExpression* expr) final {
        generateAlwaysBoolean(_context, true);
    }
    void visit(const InternalExprLTEMatchExpression* expr) final {
        generateAlwaysBoolean(_context, true);
    }

    void visit(const InternalBucketGeoWithinMatchExpression* expr) final {}
    void visit(const InternalSchemaAllElemMatchFromIndexMatchExpression* expr) final {}
    void visit(const InternalSchemaAllowedPropertiesMatchExpression* expr) final {}
    void visit(const InternalSchemaBinDataEncryptedTypeExpression* expr) final {}
    void visit(const InternalSchemaBinDataSubTypeExpression* expr) final {}
    void visit(const InternalSchemaCondMatchExpression* expr) final {}
    void visit(const InternalSchemaEqMatchExpression* expr) final {}
    void visit(const InternalSchemaFmodMatchExpression* expr) final {}
    void visit(const InternalSchemaMatchArrayIndexMatchExpression* expr) final {}
    void visit(const InternalSchemaMaxItemsMatchExpression* expr) final {}
    void visit(const InternalSchemaMaxLengthMatchExpression* expr) final {}
    void visit(const InternalSchemaMaxPropertiesMatchExpression* expr) final {}
    void visit(const InternalSchemaMinItemsMatchExpression* expr) final {}
    void visit(const InternalSchemaMinLengthMatchExpression* expr) final {}
    void visit(const InternalSchemaMinPropertiesMatchExpression* expr) final {}
    void visit(const InternalSchemaObjectMatchExpression* expr) final {}
    void visit(const InternalSchemaRootDocEqMatchExpression* expr) final {}
    void visit(const InternalSchemaTypeExpression* expr) final {}
    void visit(const InternalSchemaUniqueItemsMatchExpression* expr) final {}
    void visit(const InternalSchemaXorMatchExpression* expr) final {}

    void visit(const LTEMatchExpression* expr) final {
        generateComparison(_context, expr, sbe::EPrimBinary::lessEq);
    }

    void visit(const LTMatchExpression* expr) final {
        generateComparison(_context, expr, sbe::EPrimBinary::less);
    }

    void visit(const ModMatchExpression* expr) final {
        // The mod function returns the result of the mod operation between the operand and
        // given divisor, so construct an expression to then compare the result of the operation
        // to the given remainder.
        auto makePredicate = [expr, context = _context](sbe::value::SlotId inputSlot,
                                                        EvalStage inputStage) -> EvalExprStagePair {
            auto frameId = context->state.frameId();
            sbe::EVariable dividend{inputSlot};
            sbe::EVariable dividendConvertedToNumberInt64{frameId, 0};
            auto truncatedArgument = sbe::makeE<sbe::ENumericConvert>(
                makeFunction("trunc"_sd, dividend.clone()), sbe::value::TypeTags::NumberInt64);
            auto modExpression = makeBinaryOp(
                sbe::EPrimBinary::logicAnd,
                // Return false if the dividend cannot be represented as a 64 bit integer.
                makeNot(generateNullOrMissing(dividendConvertedToNumberInt64)),
                makeFillEmptyFalse(makeBinaryOp(
                    sbe::EPrimBinary::eq,
                    makeFunction(
                        "mod"_sd,
                        dividendConvertedToNumberInt64.clone(),
                        makeConstant(sbe::value::TypeTags::NumberInt64,
                                     sbe::value::bitcastFrom<int64_t>(expr->getDivisor()))),
                    makeConstant(sbe::value::TypeTags::NumberInt64,
                                 sbe::value::bitcastFrom<int64_t>(expr->getRemainder())))));
            return {
                makeBinaryOp(sbe::EPrimBinary::logicAnd,
                             makeNot(makeBinaryOp(sbe::EPrimBinary::logicOr,
                                                  generateNonNumericCheck(dividend),
                                                  makeBinaryOp(sbe::EPrimBinary::logicOr,
                                                               generateNaNCheck(dividend),
                                                               generateInfinityCheck(dividend)))),
                             sbe::makeE<sbe::ELocalBind>(frameId,
                                                         sbe::makeEs(std::move(truncatedArgument)),
                                                         std::move(modExpression))),
                std::move(inputStage)};
        };

        generatePredicate(_context,
                          expr->fieldRef(),
                          std::move(makePredicate),
                          LeafTraversalMode::kArrayElementsOnly);
    }

    void visit(const NorMatchExpression* expr) final {
        // $nor is implemented as a negation of $or. First step is to build $or expression from
        // stack.
        buildLogicalExpression(sbe::EPrimBinary::logicOr, expr->numChildren(), _context);

        // Second step is to negate the result of $or expression.
        // Here we discard the index value of the state even if it was set by expressions below NOR.
        // This matches the behaviour of classic engine, which does not pass 'MatchDetails' object
        // to children of NOR and thus does not get any information on 'elemMatchKey' from them.
        auto& frame = _context->evalStack.topFrame();
        frame.pushExpr(_context->stateHelper.makeState(
            makeNot(_context->stateHelper.getBool(frame.popExpr().extractExpr()))));
    }

    void visit(const NotMatchExpression* expr) final {
        auto& frame = _context->evalStack.topFrame();

        // Negate the result of $not's child.
        // Here we discard the index value of the state even if it was set by expressions below NOT.
        // This matches the behaviour of classic engine, which does not pass 'MatchDetails' object
        // to children of NOT and thus does not get any information on 'elemMatchKey' from them.
        frame.pushExpr(_context->stateHelper.makeState(
            makeNot(_context->stateHelper.getBool(frame.popExpr().extractExpr()))));
    }

    void visit(const OrMatchExpression* expr) final {
        buildLogicalExpression(sbe::EPrimBinary::logicOr, expr->numChildren(), _context);
    }

    void visit(const RegexMatchExpression* expr) final {
        auto makePredicate = [expr](sbe::value::SlotId inputSlot,
                                    EvalStage inputStage) -> EvalExprStagePair {
            auto [bsonRegexTag, bsonRegexVal] =
                sbe::value::makeNewBsonRegex(expr->getString(), expr->getFlags());
            auto bsonRegexExpr = makeConstant(bsonRegexTag, bsonRegexVal);

            auto [compiledRegexTag, compiledRegexVal] =
                sbe::value::makeNewPcreRegex(expr->getString(), expr->getFlags());
            auto compiledRegexExpr = makeConstant(compiledRegexTag, compiledRegexVal);

            auto resultExpr = makeBinaryOp(
                sbe::EPrimBinary::logicOr,
                makeFillEmptyFalse(makeBinaryOp(
                    sbe::EPrimBinary::eq, makeVariable(inputSlot), std::move(bsonRegexExpr))),
                makeFillEmptyFalse(makeFunction(
                    "regexMatch", std::move(compiledRegexExpr), makeVariable(inputSlot))));

            return {std::move(resultExpr), std::move(inputStage)};
        };

        generatePredicate(_context,
                          expr->fieldRef(),
                          std::move(makePredicate),
                          LeafTraversalMode::kArrayElementsOnly);
    }

    void visit(const SizeMatchExpression* expr) final {
        generateArraySize(_context, expr);
    }

    void visit(const TextMatchExpression* expr) final {}
    void visit(const TextNoOpMatchExpression* expr) final {}
    void visit(const TwoDPtInAnnulusExpression* expr) final {}

    void visit(const TypeMatchExpression* expr) final {
        const auto traversalMode = expr->typeSet().hasType(BSONType::Array)
            ? LeafTraversalMode::kDoNotTraverseLeaf
            : LeafTraversalMode::kArrayElementsOnly;

        auto makePredicate =
            [expr, traversalMode, context = _context](sbe::value::SlotId inputSlot,
                                                      EvalStage inputStage) -> EvalExprStagePair {
            const MatcherTypeSet& ts = expr->typeSet();
            auto resultExpr = makeFillEmptyFalse(
                sbe::makeE<sbe::ETypeMatch>(makeVariable(inputSlot), ts.getBSONTypeMask()));

            // $type is always applied to the leaf of the field path. For kDoNotTraverseLeaf mode,
            // generatePredicate() does not convert the predicate value to state when generating
            // traversal for leaf nodes of field path. For this reason, we need to perform this
            // conversion manually.
            if (expr->fieldRef() && !expr->fieldRef()->empty() &&
                context->evalStack.topFrame().data().inputSlot &&
                traversalMode == LeafTraversalMode::kDoNotTraverseLeaf) {
                resultExpr = context->stateHelper.makeState(std::move(resultExpr));
            }

            return {std::move(resultExpr), std::move(inputStage)};
        };

        generatePredicate(_context, expr->fieldRef(), std::move(makePredicate), traversalMode);
    }

    void visit(const WhereMatchExpression* expr) final {
        auto makePredicate = [expr](sbe::value::SlotId inputSlot,
                                    EvalStage inputStage) -> EvalExprStagePair {
            auto [predicateTag, predicateValue] =
                sbe::value::makeCopyJsFunction(expr->getPredicate());
            auto predicate = sbe::makeE<sbe::EConstant>(predicateTag, predicateValue);

            auto whereExpr = sbe::makeE<sbe::EFunction>(
                "runJsPredicate",
                sbe::makeEs(std::move(predicate), sbe::makeE<sbe::EVariable>(inputSlot)));
            return {std::move(whereExpr), std::move(inputStage)};
        };

        generatePredicate(_context,
                          expr->fieldRef(),
                          std::move(makePredicate),
                          LeafTraversalMode::kDoNotTraverseLeaf);
    }

    void visit(const WhereNoOpMatchExpression* expr) final {}

private:
    MatchExpressionVisitorContext* _context;
};

/**
 * A match expression in-visitor used for maintaining the counter of the processed child
 * expressions of the nested logical expressions in the match expression tree being traversed.
 */
class MatchExpressionInVisitor final : public MatchExpressionConstVisitor {
public:
    MatchExpressionInVisitor(MatchExpressionVisitorContext* context) : _context(context) {}

    void visit(const AlwaysFalseMatchExpression* expr) final {}
    void visit(const AlwaysTrueMatchExpression* expr) final {}

    void visit(const AndMatchExpression* expr) final {
        if (expr == _context->topLevelAnd) {
            // For a top-level $and, we evaluate each child within the current EvalFrame.
            auto& frame = _context->evalStack.topFrame();
            invariant(frame.exprsCount() > 0);
            frame.setStage(
                makeFilter<false>(frame.extractStage(),
                                  _context->stateHelper.getBool(frame.popExpr().extractExpr()),
                                  _context->planNodeId));
            return;
        }

        // For non-top-level $and's, we evaluate each child in its own EvalFrame, and we
        // leave these EvalFrames on the stack until we're done evaluating all the children.
        pushFrameForLogicalExpressionChild(_context, expr->numChildren());
    }

    void visit(const BitsAllClearMatchExpression* expr) final {}
    void visit(const BitsAllSetMatchExpression* expr) final {}
    void visit(const BitsAnyClearMatchExpression* expr) final {}
    void visit(const BitsAnySetMatchExpression* expr) final {}

    void visit(const ElemMatchObjectMatchExpression* matchExpr) final {
        // ElemMatchObjectMatchExpression is guaranteed to always have exactly 1 child, so we don't
        // need to do anything here.
    }

    void visit(const ElemMatchValueMatchExpression* matchExpr) final {
        const auto& frame = _context->evalStack.topFrame();

        // We leave each child's EvalFrame on the stack until we're finished evaluating all of
        // the children. Set up a new EvalFrame for the next child with a null tree and with the
        // 'inputSlot' field set to 'childInputSlot'. childInputSlot is a "correlated slot" that
        // will be set up later (handled in the post-visitor).
        _context->evalStack.emplaceFrame(EvalStage{}, frame.data().inputSlot);
    }

    void visit(const EqualityMatchExpression* expr) final {}
    void visit(const ExistsMatchExpression* expr) final {}
    void visit(const ExprMatchExpression* expr) final {}
    void visit(const GTEMatchExpression* expr) final {}
    void visit(const GTMatchExpression* expr) final {}
    void visit(const GeoMatchExpression* expr) final {}
    void visit(const GeoNearMatchExpression* expr) final {}
    void visit(const InMatchExpression* expr) final {}
    void visit(const InternalBucketGeoWithinMatchExpression* expr) final {}
    void visit(const InternalExprEqMatchExpression* expr) final {}
    void visit(const InternalExprGTMatchExpression* expr) final {}
    void visit(const InternalExprGTEMatchExpression* expr) final {}
    void visit(const InternalExprLTMatchExpression* expr) final {}
    void visit(const InternalExprLTEMatchExpression* expr) final {}
    void visit(const InternalSchemaAllElemMatchFromIndexMatchExpression* expr) final {}
    void visit(const InternalSchemaAllowedPropertiesMatchExpression* expr) final {}
    void visit(const InternalSchemaBinDataEncryptedTypeExpression* expr) final {}
    void visit(const InternalSchemaBinDataSubTypeExpression* expr) final {}
    void visit(const InternalSchemaCondMatchExpression* expr) final {}
    void visit(const InternalSchemaEqMatchExpression* expr) final {}
    void visit(const InternalSchemaFmodMatchExpression* expr) final {}
    void visit(const InternalSchemaMatchArrayIndexMatchExpression* expr) final {}
    void visit(const InternalSchemaMaxItemsMatchExpression* expr) final {}
    void visit(const InternalSchemaMaxLengthMatchExpression* expr) final {}
    void visit(const InternalSchemaMaxPropertiesMatchExpression* expr) final {}
    void visit(const InternalSchemaMinItemsMatchExpression* expr) final {}
    void visit(const InternalSchemaMinLengthMatchExpression* expr) final {}
    void visit(const InternalSchemaMinPropertiesMatchExpression* expr) final {}
    void visit(const InternalSchemaObjectMatchExpression* expr) final {}
    void visit(const InternalSchemaRootDocEqMatchExpression* expr) final {}
    void visit(const InternalSchemaTypeExpression* expr) final {}
    void visit(const InternalSchemaUniqueItemsMatchExpression* expr) final {}
    void visit(const InternalSchemaXorMatchExpression* expr) final {}
    void visit(const LTEMatchExpression* expr) final {}
    void visit(const LTMatchExpression* expr) final {}
    void visit(const ModMatchExpression* expr) final {}

    void visit(const NorMatchExpression* expr) final {
        // We leave the EvalFrame of each child on the stack until we're done evaluating all the
        // children.
        pushFrameForLogicalExpressionChild(_context, expr->numChildren());
    }

    void visit(const NotMatchExpression* expr) final {}

    void visit(const OrMatchExpression* expr) final {
        // We leave the EvalFrame of each child on the stack until we're done evaluating all the
        // children.
        pushFrameForLogicalExpressionChild(_context, expr->numChildren());
    }

    void visit(const RegexMatchExpression* expr) final {}
    void visit(const SizeMatchExpression* expr) final {}
    void visit(const TextMatchExpression* expr) final {}
    void visit(const TextNoOpMatchExpression* expr) final {}
    void visit(const TwoDPtInAnnulusExpression* expr) final {}
    void visit(const TypeMatchExpression* expr) final {}
    void visit(const WhereMatchExpression* expr) final {}
    void visit(const WhereNoOpMatchExpression* expr) final {}

private:
    MatchExpressionVisitorContext* _context;
};
}  // namespace

std::pair<boost::optional<sbe::value::SlotId>, EvalStage> generateFilter(
    StageBuilderState& state,
    const MatchExpression* root,
    EvalStage stage,
    sbe::value::SlotId inputSlot,
    PlanNodeId planNodeId,
    bool trackIndex) {
    // The planner adds an $and expression without the operands if the query was empty. We can bail
    // out early without generating the filter plan stage if this is the case.
    if (root->matchType() == MatchExpression::AND && root->numChildren() == 0) {
        return {boost::none, std::move(stage)};
    }

    auto stateHelper = makeFilterStateHelper(trackIndex);
    MatchExpressionVisitorContext context{
        state, std::move(stage), inputSlot, root, planNodeId, *stateHelper};
    MatchExpressionPreVisitor preVisitor{&context};
    MatchExpressionInVisitor inVisitor{&context};
    MatchExpressionPostVisitor postVisitor{&context};
    MatchExpressionWalker walker{&preVisitor, &inVisitor, &postVisitor};
    tree_walker::walk<true, MatchExpression>(root, &walker);

    auto [resultSlot, resultStage] = context.done();
    return {resultSlot, std::move(resultStage)};
}

EvalStage generateIndexFilter(StageBuilderState& state,
                              const MatchExpression* root,
                              EvalStage stage,
                              sbe::value::SlotVector keySlots,
                              std::vector<std::string> keyFields,
                              PlanNodeId planNodeId) {
    // The planner adds an $and expression without the operands if the query was empty. We can bail
    // out early without generating the filter plan stage if this is the case.
    if (root->matchType() == MatchExpression::AND && root->numChildren() == 0) {
        return stage;
    }

    // Index filters never need to track the index of a matching element in the array as they cannot
    // be used with a positional projection.
    const bool trackIndex = false;
    auto stateHelper = makeFilterStateHelper(trackIndex);
    MatchExpressionVisitorContext context{state,
                                          std::move(stage),
                                          std::move(keySlots),
                                          std::move(keyFields),
                                          root,
                                          planNodeId,
                                          *stateHelper};
    MatchExpressionPreVisitor preVisitor{&context};
    MatchExpressionInVisitor inVisitor{&context};
    MatchExpressionPostVisitor postVisitor{&context};
    MatchExpressionWalker walker{&preVisitor, &inVisitor, &postVisitor};
    tree_walker::walk<true, MatchExpression>(root, &walker);

    auto [resultSlot, resultStage] = context.done();
    tassert(5273411, "Index filter must not track a matching element index", !resultSlot);
    return std::move(resultStage);
}

std::tuple<sbe::value::TypeTags, sbe::value::Value, bool, bool> convertInExpressionEqualities(
    const InMatchExpression* expr) {
    auto& equalities = expr->getEqualities();
    auto [arrSetTag, arrSetVal] = sbe::value::makeNewArraySet();
    sbe::value::ValueGuard arrSetGuard{arrSetTag, arrSetVal};

    auto arrSet = sbe::value::getArraySetView(arrSetVal);

    auto hasArray = false;
    auto hasNull = false;
    if (equalities.size()) {
        arrSet->reserve(equalities.size());
        for (auto&& equality : equalities) {
            auto [tagView, valView] =
                sbe::bson::convertFrom<true>(equality.rawdata(),
                                             equality.rawdata() + equality.size(),
                                             equality.fieldNameSize() - 1);

            hasNull |= tagView == sbe::value::TypeTags::Null;
            hasArray |= sbe::value::isArray(tagView);

            // An ArraySet assumes ownership of it's values so we have to make a copy here.
            auto [tag, val] = sbe::value::copyValue(tagView, valView);
            arrSet->push_back(tag, val);
        }
    }

    arrSetGuard.reset();
    return {arrSetTag, arrSetVal, hasArray, hasNull};
}

std::pair<sbe::value::TypeTags, sbe::value::Value> convertBitTestBitPositions(
    const BitTestMatchExpression* expr) {
    auto bitPositions = expr->getBitPositions();

    // Build an array set of bit positions for the bitmask, and remove duplicates in the
    // bitPositions vector since duplicates aren't handled in the match expression parser by
    // checking if an item has already been seen.
    auto [bitPosTag, bitPosVal] = sbe::value::makeNewArray();
    sbe::value::ValueGuard arrGuard{bitPosTag, bitPosVal};

    auto arr = sbe::value::getArrayView(bitPosVal);
    if (bitPositions.size()) {
        arr->reserve(bitPositions.size());

        std::set<uint32_t> seenBits;
        for (size_t index = 0; index < bitPositions.size(); ++index) {
            auto currentBit = bitPositions[index];
            if (auto result = seenBits.insert(currentBit); result.second) {
                arr->push_back(sbe::value::TypeTags::NumberInt64,
                               sbe::value::bitcastFrom<int64_t>(currentBit));
            }
        }
    }

    arrGuard.reset();
    return {bitPosTag, bitPosVal};
}

}  // namespace mongo::stage_builder