summaryrefslogtreecommitdiff
path: root/src/mongo/db/repl/oplog_applier_impl.cpp
blob: f7f01d129882584b760b81389d1c19c54a8b13c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
/**
 *    Copyright (C) 2018-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#include "mongo/db/repl/oplog_applier_impl.h"

#include "mongo/db/catalog/collection_catalog.h"
#include "mongo/db/catalog/collection_write_path.h"
#include "mongo/db/catalog/database.h"
#include "mongo/db/catalog/database_holder.h"
#include "mongo/db/catalog/document_validation.h"
#include "mongo/db/catalog_raii.h"
#include "mongo/db/change_stream_change_collection_manager.h"
#include "mongo/db/change_stream_serverless_helpers.h"
#include "mongo/db/client.h"
#include "mongo/db/commands/fsync.h"
#include "mongo/db/concurrency/lock_state.h"
#include "mongo/db/db_raii.h"
#include "mongo/db/repl/apply_ops.h"
#include "mongo/db/repl/oplog_applier_utils.h"
#include "mongo/db/repl/repl_server_parameters_gen.h"
#include "mongo/db/repl/transaction_oplog_application.h"
#include "mongo/db/session/logical_session_id.h"
#include "mongo/db/stats/counters.h"
#include "mongo/db/stats/timer_stats.h"
#include "mongo/db/storage/control/journal_flusher.h"
#include "mongo/db/storage/storage_util.h"
#include "mongo/logv2/log.h"
#include "mongo/platform/basic.h"
#include "mongo/util/fail_point.h"
#include "mongo/util/log_with_sampling.h"

#define MONGO_LOGV2_DEFAULT_COMPONENT ::mongo::logv2::LogComponent::kReplication

namespace mongo {
namespace repl {
namespace {

MONGO_FAIL_POINT_DEFINE(pauseBatchApplicationBeforeCompletion);
MONGO_FAIL_POINT_DEFINE(pauseBatchApplicationAfterWritingOplogEntries);
MONGO_FAIL_POINT_DEFINE(hangAfterRecordingOpApplicationStartTime);

// The oplog entries applied
CounterMetric opsAppliedStats("repl.apply.ops");

// Tracks the oplog application batch size.
CounterMetric oplogApplicationBatchSize("repl.apply.batchSize");

// Number and time of each ApplyOps worker pool round
auto& applyBatchStats = makeServerStatusMetric<TimerStats>("repl.apply.batches");

/**
 * Used for logging a report of ops that take longer than "slowMS" to apply. This is called
 * right before returning from applyOplogEntryOrGroupedInserts, and it returns the same status.
 */
Status finishAndLogApply(OperationContext* opCtx,
                         ClockSource* clockSource,
                         Status finalStatus,
                         Date_t applyStartTime,
                         const OplogEntryOrGroupedInserts& entryOrGroupedInserts) {

    if (finalStatus.isOK()) {
        auto applyEndTime = clockSource->now();
        auto opDuration = durationCount<Milliseconds>(applyEndTime - applyStartTime);

        if (shouldLogSlowOpWithSampling(opCtx,
                                        MONGO_LOGV2_DEFAULT_COMPONENT,
                                        Milliseconds(opDuration),
                                        Milliseconds(serverGlobalParams.slowMS.load()))
                .first) {

            logv2::DynamicAttributes attrs;

            auto redacted = redact(entryOrGroupedInserts.toBSON());
            if (entryOrGroupedInserts.getOp().getOpType() == OpTypeEnum::kCommand) {
                attrs.add("command", redacted);
            } else {
                attrs.add("CRUD", redacted);
            }

            attrs.add("duration", Milliseconds(opDuration));

            LOGV2(51801, "Applied op", attrs);
        }
    }
    return finalStatus;
}

void _addOplogChainOpsToWriterVectors(OperationContext* opCtx,
                                      std::vector<OplogEntry*>* partialTxnList,
                                      std::vector<std::vector<OplogEntry>>* derivedOps,
                                      OplogEntry* op,
                                      CachedCollectionProperties* collPropertiesCache,
                                      std::vector<std::vector<const OplogEntry*>>* writerVectors) {
    std::vector<OplogEntry> txnOps;
    bool shouldSerialize = false;
    std::tie(txnOps, shouldSerialize) =
        readTransactionOperationsFromOplogChainAndCheckForCommands(opCtx, *op, *partialTxnList);
    derivedOps->emplace_back(txnOps);
    partialTxnList->clear();

    // Transaction entries cannot have different session updates.
    OplogApplierUtils::addDerivedOps(
        opCtx, &derivedOps->back(), writerVectors, collPropertiesCache, shouldSerialize);
}

Status _insertDocumentsToOplogAndChangeCollections(
    OperationContext* opCtx,
    std::vector<InsertStatement>::const_iterator begin,
    std::vector<InsertStatement>::const_iterator end,
    bool skipWritesToOplog) {
    WriteUnitOfWork wunit(opCtx);

    if (!skipWritesToOplog) {
        AutoGetOplog autoOplog(opCtx, OplogAccessMode::kWrite);
        auto& oplogColl = autoOplog.getCollection();
        if (!oplogColl) {
            return {ErrorCodes::NamespaceNotFound, "Oplog collection does not exist"};
        }

        auto status = collection_internal::insertDocuments(
            opCtx, oplogColl, begin, end, nullptr /* OpDebug */, false /* fromMigrate */);
        if (!status.isOK()) {
            return status;
        }
    }

    // Write the corresponding oplog entries to tenants respective change
    // collections in the serverless.
    if (change_stream_serverless_helpers::isChangeCollectionsModeActive()) {
        auto status =
            ChangeStreamChangeCollectionManager::get(opCtx).insertDocumentsToChangeCollection(
                opCtx,
                begin,
                end,
                !skipWritesToOplog /* hasAcquiredGlobalIXLock */,
                nullptr /* OpDebug */);
        if (!status.isOK()) {
            return status;
        }
    }

    wunit.commit();

    return Status::OK();
}

}  // namespace


namespace {

class ApplyBatchFinalizer {
public:
    ApplyBatchFinalizer(ReplicationCoordinator* replCoord) : _replCoord(replCoord) {}
    virtual ~ApplyBatchFinalizer(){};

    virtual void record(const OpTimeAndWallTime& newOpTimeAndWallTime) {
        _recordApplied(newOpTimeAndWallTime);
    };

protected:
    void _recordApplied(const OpTimeAndWallTime& newOpTimeAndWallTime) {
        // We have to use setMyLastAppliedOpTimeAndWallTimeForward since this thread races with
        // ReplicationExternalStateImpl::onTransitionToPrimary.
        _replCoord->setMyLastAppliedOpTimeAndWallTimeForward(newOpTimeAndWallTime);
        // We know we're at a no-holes point and we've already advanced visibility; we need
        // to notify waiters since we changed the lastAppliedSnapshot.
        signalOplogWaiters();
    }

    void _recordDurable(const OpTimeAndWallTime& newOpTimeAndWallTime) {
        // We have to use setMyLastDurableOpTimeAndWallTimeForward since this thread races with
        // ReplicationExternalStateImpl::onTransitionToPrimary.
        _replCoord->setMyLastDurableOpTimeAndWallTimeForward(newOpTimeAndWallTime);
    }

private:
    // Used to update the replication system's progress.
    ReplicationCoordinator* _replCoord;
};

class ApplyBatchFinalizerForJournal : public ApplyBatchFinalizer {
public:
    ApplyBatchFinalizerForJournal(ReplicationCoordinator* replCoord)
        : ApplyBatchFinalizer(replCoord),
          _waiterThread{&ApplyBatchFinalizerForJournal::_run, this} {};
    ~ApplyBatchFinalizerForJournal();

    void record(const OpTimeAndWallTime& newOpTimeAndWallTime) override;

private:
    /**
     * Loops continuously, waiting for writes to be flushed to disk and then calls
     * ReplicationCoordinator::setMyLastOptime with _latestOpTime.
     * Terminates once _shutdownSignaled is set true.
     */
    void _run();

    // Protects _cond, _shutdownSignaled, and _latestOpTime.
    Mutex _mutex = MONGO_MAKE_LATCH("OplogApplierImpl::_mutex");
    // Used to alert our thread of a new OpTime.
    stdx::condition_variable _cond;
    // The next OpTime to set as the ReplicationCoordinator's lastOpTime after flushing.
    OpTimeAndWallTime _latestOpTimeAndWallTime;
    // Once this is set to true the _run method will terminate.
    bool _shutdownSignaled = false;
    // Thread that will _run(). Must be initialized last as it depends on the other variables.
    stdx::thread _waiterThread;
};

ApplyBatchFinalizerForJournal::~ApplyBatchFinalizerForJournal() {
    stdx::unique_lock<Latch> lock(_mutex);
    _shutdownSignaled = true;
    _cond.notify_all();
    lock.unlock();

    _waiterThread.join();
}

void ApplyBatchFinalizerForJournal::record(const OpTimeAndWallTime& newOpTimeAndWallTime) {
    _recordApplied(newOpTimeAndWallTime);

    stdx::unique_lock<Latch> lock(_mutex);
    _latestOpTimeAndWallTime = newOpTimeAndWallTime;
    _cond.notify_all();
}

void ApplyBatchFinalizerForJournal::_run() {
    Client::initThread("ApplyBatchFinalizerForJournal");

    while (true) {
        OpTimeAndWallTime latestOpTimeAndWallTime = {OpTime(), Date_t()};

        {
            stdx::unique_lock<Latch> lock(_mutex);
            while (_latestOpTimeAndWallTime.opTime.isNull() && !_shutdownSignaled) {
                _cond.wait(lock);
            }

            if (_shutdownSignaled) {
                return;
            }

            latestOpTimeAndWallTime = _latestOpTimeAndWallTime;
            _latestOpTimeAndWallTime = {OpTime(), Date_t()};
        }

        auto opCtx = cc().makeOperationContext();
        JournalFlusher::get(opCtx.get())->waitForJournalFlush();
        _recordDurable(latestOpTimeAndWallTime);
    }
}

}  // namespace

OplogApplierImpl::OplogApplierImpl(executor::TaskExecutor* executor,
                                   OplogBuffer* oplogBuffer,
                                   Observer* observer,
                                   ReplicationCoordinator* replCoord,
                                   ReplicationConsistencyMarkers* consistencyMarkers,
                                   StorageInterface* storageInterface,
                                   const OplogApplier::Options& options,
                                   ThreadPool* writerPool)
    : OplogApplier(executor, oplogBuffer, observer, options),
      _replCoord(replCoord),
      _writerPool(writerPool),
      _storageInterface(storageInterface),
      _consistencyMarkers(consistencyMarkers),
      _beginApplyingOpTime(options.beginApplyingOpTime) {}

void OplogApplierImpl::_run(OplogBuffer* oplogBuffer) {
    // Start up a thread from the batcher to pull from the oplog buffer into the batcher's oplog
    // batch.
    _oplogBatcher->startup(_storageInterface);

    ON_BLOCK_EXIT([this] { _oplogBatcher->shutdown(); });

    // We don't start data replication for arbiters at all and it's not allowed to reconfig
    // arbiterOnly field for any member.
    invariant(!_replCoord->getMemberState().arbiter());

    std::unique_ptr<ApplyBatchFinalizer> finalizer{
        getGlobalServiceContext()->getStorageEngine()->isEphemeral()
            ? new ApplyBatchFinalizer(_replCoord)
            : new ApplyBatchFinalizerForJournal(_replCoord)};

    while (true) {  // Exits on message from OplogBatcher.
        // Use a new operation context each iteration, as otherwise we may appear to use a single
        // collection name to refer to collections with different UUIDs.
        const ServiceContext::UniqueOperationContext opCtxPtr = cc().makeOperationContext();
        OperationContext& opCtx = *opCtxPtr;

        // The oplog applier is crucial for stability of the replica set. As a result we mark it as
        // having Immediate priority. This makes the operation skip waiting for ticket acquisition
        // and flow control.
        SetAdmissionPriorityForLock priority(&opCtx, AdmissionContext::Priority::kImmediate);

        // For pausing replication in tests.
        if (MONGO_unlikely(rsSyncApplyStop.shouldFail())) {
            LOGV2(21229,
                  "Oplog Applier - rsSyncApplyStop fail point enabled. Blocking until fail "
                  "point is disabled");
            rsSyncApplyStop.pauseWhileSet(&opCtx);
        }

        // Transition to SECONDARY state, if possible.
        _replCoord->finishRecoveryIfEligible(&opCtx);

        // Blocks up to a second waiting for a batch to be ready to apply. If one doesn't become
        // ready in time, we'll loop again so we can do the above checks periodically.
        OplogBatch ops = _oplogBatcher->getNextBatch(Seconds(1));
        if (ops.empty()) {
            if (ops.mustShutdown()) {
                // Shut down and exit oplog application loop.
                return;
            }
            if (MONGO_unlikely(rsSyncApplyStop.shouldFail())) {
                continue;
            }
            if (ops.termWhenExhausted()) {
                // Signal drain complete if we're in Draining state and the buffer is empty.
                // Since we check the states of batcher and oplog buffer without synchronization,
                // they can be stale. We make sure the applier is still draining in the given term
                // before and after the check, so that if the oplog buffer was exhausted, then
                // it still will be.
                _replCoord->signalDrainComplete(&opCtx, *ops.termWhenExhausted());
            }
            continue;  // Try again.
        }

        // Extract some info from ops that we'll need after releasing the batch below.
        const auto firstOpTimeInBatch = ops.front().getOpTime();
        const auto lastOpInBatch = ops.back();
        const auto lastOpTimeInBatch = lastOpInBatch.getOpTime();
        const auto lastWallTimeInBatch = lastOpInBatch.getWallClockTime();
        const auto lastAppliedOpTimeAtStartOfBatch = _replCoord->getMyLastAppliedOpTime();

        // Make sure the oplog doesn't go back in time or repeat an entry.
        if (firstOpTimeInBatch <= lastAppliedOpTimeAtStartOfBatch) {
            fassert(34361,
                    Status(ErrorCodes::OplogOutOfOrder,
                           str::stream() << "Attempted to apply an oplog entry ("
                                         << firstOpTimeInBatch.toString()
                                         << ") which is not greater than our last applied OpTime ("
                                         << lastAppliedOpTimeAtStartOfBatch.toString() << ")."));
        }

        // Don't allow the fsync+lock thread to see intermediate states of batch application.
        stdx::lock_guard<SimpleMutex> fsynclk(filesLockedFsync);

        // Apply the operations in this batch. '_applyOplogBatch' returns the optime of the
        // last op that was applied, which should be the last optime in the batch.
        auto swLastOpTimeAppliedInBatch = _applyOplogBatch(&opCtx, ops.releaseBatch());
        if (swLastOpTimeAppliedInBatch.getStatus().code() == ErrorCodes::InterruptedAtShutdown) {
            // If an operation was interrupted at shutdown, fail the batch without advancing
            // appliedThrough as if this were an unclean shutdown. This ensures the stable timestamp
            // does not advance, and a checkpoint cannot be taken at a timestamp that includes this
            // batch. On startup, we will recover from an earlier stable checkpoint and apply the
            // operations from this batch again.
            return;
        }
        fassertNoTrace(34437, swLastOpTimeAppliedInBatch);
        invariant(swLastOpTimeAppliedInBatch.getValue() == lastOpTimeInBatch);

        // Update various things that care about our last applied optime.

        // 1. Ensure that the last applied op time hasn't changed since the start of this batch.
        const auto lastAppliedOpTimeAtEndOfBatch = _replCoord->getMyLastAppliedOpTime();
        invariant(lastAppliedOpTimeAtStartOfBatch == lastAppliedOpTimeAtEndOfBatch,
                  str::stream() << "the last known applied OpTime has changed from "
                                << lastAppliedOpTimeAtStartOfBatch.toString() << " to "
                                << lastAppliedOpTimeAtEndOfBatch.toString()
                                << " in the middle of batch application");

        // 2. Update oplog visibility by notifying the storage engine of the new oplog entries.
        const bool orderedCommit = true;
        _storageInterface->oplogDiskLocRegister(
            &opCtx, lastOpTimeInBatch.getTimestamp(), orderedCommit);

        // 3. Finalize this batch. The finalizer advances the global timestamp to lastOpTimeInBatch.
        finalizer->record({lastOpTimeInBatch, lastWallTimeInBatch});
    }
}


// Schedules the writes to the oplog and the change collection for 'ops' into threadPool. The caller
// must guarantee that 'ops' stays valid until all scheduled work in the thread pool completes.
void scheduleWritesToOplogAndChangeCollection(OperationContext* opCtx,
                                              StorageInterface* storageInterface,
                                              ThreadPool* writerPool,
                                              const std::vector<OplogEntry>& ops,
                                              bool skipWritesToOplog) {
    // Skip performing any writes during the startup recovery when running in the non-serverless
    // environment.
    if (skipWritesToOplog && !change_stream_serverless_helpers::isChangeCollectionsModeActive()) {
        return;
    }

    auto makeOplogWriterForRange = [storageInterface, &ops, skipWritesToOplog](size_t begin,
                                                                               size_t end) {
        // The returned function will be run in a separate thread after this returns. Therefore
        // all captures other than 'ops' must be by value since they will not be available. The
        // caller guarantees that 'ops' will stay in scope until the spawned threads complete.
        return [storageInterface, &ops, begin, end, skipWritesToOplog](auto status) {
            invariant(status);
            auto opCtx = cc().makeOperationContext();

            // Oplog writes are crucial to the stability of the replica set. We mark the operations
            // as having Immediate priority so that it skips waiting for ticket acquisition and flow
            // control.
            SetAdmissionPriorityForLock priority(opCtx.get(),
                                                 AdmissionContext::Priority::kImmediate);

            UnreplicatedWritesBlock uwb(opCtx.get());
            ShouldNotConflictWithSecondaryBatchApplicationBlock shouldNotConflictBlock(
                opCtx->lockState());

            std::vector<InsertStatement> docs;
            docs.reserve(end - begin);
            for (size_t i = begin; i < end; i++) {
                docs.emplace_back(InsertStatement{ops[i].getEntry().getRaw(),
                                                  ops[i].getOpTime().getTimestamp(),
                                                  ops[i].getOpTime().getTerm()});
            }

            // TODO SERVER-67168 the 'nsOrUUID' is used only to log the debug message when retrying
            // inserts on the oplog and change collections. The 'writeConflictRetry' assumes
            // operations are done on a single namespace. But the method
            // '_insertDocumentsToOplogAndChangeCollections' can perform inserts on the oplog and
            // multiple change collections, ie. several namespaces. As such 'writeConflictRetry'
            // will not log the correct namespace when retrying. Refactor this code to log the
            // correct namespace in the log message.
            NamespaceStringOrUUID nsOrUUID = !skipWritesToOplog
                ? NamespaceString::kRsOplogNamespace
                : NamespaceString::makeChangeCollectionNSS(boost::none /* tenantId */);

            fassert(6663400,
                    storage_helpers::insertBatchAndHandleRetry(
                        opCtx.get(), nsOrUUID, docs, [&](auto* opCtx, auto begin, auto end) {
                            return _insertDocumentsToOplogAndChangeCollections(
                                opCtx, begin, end, skipWritesToOplog);
                        }));
        };
    };

    // We want to be able to take advantage of bulk inserts so we don't use multiple threads if it
    // would result too little work per thread. This also ensures that we can amortize the
    // setup/teardown overhead across many writes.
    const size_t kMinOplogEntriesPerThread = 16;
    const bool enoughToMultiThread =
        ops.size() >= kMinOplogEntriesPerThread * writerPool->getStats().options.maxThreads;

    // Storage engines support parallel writes to the oplog because they are required to ensure that
    // oplog entries are ordered correctly, even if inserted out-of-order.
    if (!enoughToMultiThread) {
        writerPool->schedule(makeOplogWriterForRange(0, ops.size()));
        return;
    }


    const size_t numOplogThreads = writerPool->getStats().options.maxThreads;
    const size_t numOpsPerThread = ops.size() / numOplogThreads;
    for (size_t thread = 0; thread < numOplogThreads; thread++) {
        size_t begin = thread * numOpsPerThread;
        size_t end = (thread == numOplogThreads - 1) ? ops.size() : begin + numOpsPerThread;
        writerPool->schedule(makeOplogWriterForRange(begin, end));
    }
}

StatusWith<OpTime> OplogApplierImpl::_applyOplogBatch(OperationContext* opCtx,
                                                      std::vector<OplogEntry> ops) {
    invariant(!ops.empty());

    LOGV2_DEBUG(21230,
                2,
                "replication batch size is {size}",
                "Replication batch size",
                "size"_attr = ops.size());

    // Stop all readers until we're done. This also prevents doc-locking engines from deleting old
    // entries from the oplog until we finish writing.
    Lock::ParallelBatchWriterMode pbwm(opCtx);

    invariant(_replCoord);
    if (_replCoord->getApplierState() == ReplicationCoordinator::ApplierState::Stopped) {
        LOGV2_FATAL_CONTINUE(21234, "Attempting to replicate ops while primary");
        return {ErrorCodes::CannotApplyOplogWhilePrimary,
                "attempting to replicate ops while primary"};
    }

    // Increment the batch size stat.
    oplogApplicationBatchSize.increment(ops.size());

    std::vector<WorkerMultikeyPathInfo> multikeyVector(_writerPool->getStats().options.maxThreads);
    {
        // Each node records cumulative batch application stats for itself using this timer.
        TimerHolder timer(&applyBatchStats);

        // We must wait for the all work we've dispatched to complete before leaving this block
        // because the spawned threads refer to objects on the stack
        ON_BLOCK_EXIT([&] { _writerPool->waitForIdle(); });

        // Write batch of ops into oplog.
        if (!getOptions().skipWritesToOplog) {
            _consistencyMarkers->setOplogTruncateAfterPoint(
                opCtx, _replCoord->getMyLastAppliedOpTime().getTimestamp());
        }

        scheduleWritesToOplogAndChangeCollection(
            opCtx, _storageInterface, _writerPool, ops, getOptions().skipWritesToOplog);

        // Holds 'pseudo operations' generated by secondaries to aid in replication.
        // Keep in scope until all operations in 'ops' and 'derivedOps' have been applied.
        // Pseudo operations include:
        // - applyOps operations expanded to individual ops.
        // - ops to update config.transactions. Normal writes to config.transactions in the
        //   primary don't create an oplog entry, so extract info from writes with transactions
        //   and create a pseudo oplog.
        std::vector<std::vector<OplogEntry>> derivedOps;

        std::vector<std::vector<const OplogEntry*>> writerVectors(
            _writerPool->getStats().options.maxThreads);
        fillWriterVectors(opCtx, &ops, &writerVectors, &derivedOps);

        // Wait for writes to finish before applying ops.
        _writerPool->waitForIdle();

        // Use this fail point to hold the PBWM lock after we have written the oplog entries but
        // before we have applied them.
        if (MONGO_unlikely(pauseBatchApplicationAfterWritingOplogEntries.shouldFail())) {
            LOGV2(21231,
                  "pauseBatchApplicationAfterWritingOplogEntries fail point enabled. Blocking "
                  "until fail point is disabled");
            pauseBatchApplicationAfterWritingOplogEntries.pauseWhileSet(opCtx);
        }

        // Read `minValid` prior to it possibly being written to.
        const bool isDataConsistent =
            _consistencyMarkers->getMinValid(opCtx) < ops.front().getOpTime();

        // Reset consistency markers in case the node fails while applying ops.
        if (!getOptions().skipWritesToOplog) {
            _consistencyMarkers->setOplogTruncateAfterPoint(opCtx, Timestamp());
        }

        {

            std::vector<Status> statusVector(_writerPool->getStats().options.maxThreads,
                                             Status::OK());
            // Doles out all the work to the writer pool threads. writerVectors is not modified,
            // but  applyOplogBatchPerWorker will modify the vectors that it contains.
            invariant(writerVectors.size() == statusVector.size());
            for (size_t i = 0; i < writerVectors.size(); i++) {
                if (writerVectors[i].empty())
                    continue;

                _writerPool->schedule([this,
                                       &writer = writerVectors.at(i),
                                       &status = statusVector.at(i),
                                       &multikeyVector = multikeyVector.at(i),
                                       isDataConsistent = isDataConsistent](auto scheduleStatus) {
                    invariant(scheduleStatus);

                    auto opCtx = cc().makeOperationContext();

                    // Applying an Oplog batch is crucial to the stability of the Replica Set. We
                    // mark it as having Immediate priority so that it skips waiting for ticket
                    // acquisition and flow control.
                    SetAdmissionPriorityForLock priority(opCtx.get(),
                                                         AdmissionContext::Priority::kImmediate);

                    opCtx->setEnforceConstraints(false);

                    status = opCtx->runWithoutInterruptionExceptAtGlobalShutdown([&] {
                        return applyOplogBatchPerWorker(
                            opCtx.get(), &writer, &multikeyVector, isDataConsistent);
                    });
                });
            }

            _writerPool->waitForIdle();

            // If any of the statuses is not ok, return error.
            for (auto it = statusVector.cbegin(); it != statusVector.cend(); ++it) {
                const auto& status = *it;
                if (!status.isOK()) {
                    LOGV2_FATAL_CONTINUE(
                        21235,
                        "Failed to apply batch of operations. Number of operations in "
                        "batch: {numOperationsInBatch}. First operation: {firstOperation}. "
                        "Last operation: "
                        "{lastOperation}. Oplog application failed in writer thread "
                        "{failedWriterThread}: {error}",
                        "Failed to apply batch of operations",
                        "numOperationsInBatch"_attr = ops.size(),
                        "firstOperation"_attr = redact(ops.front().toBSONForLogging()),
                        "lastOperation"_attr = redact(ops.back().toBSONForLogging()),
                        "failedWriterThread"_attr = std::distance(statusVector.cbegin(), it),
                        "error"_attr = redact(status));
                    return status;
                }
            }
        }
    }

    // Use this fail point to hold the PBWM lock and prevent the batch from completing.
    if (MONGO_unlikely(pauseBatchApplicationBeforeCompletion.shouldFail())) {
        LOGV2(21232,
              "pauseBatchApplicationBeforeCompletion fail point enabled. Blocking until fail "
              "point is disabled");
        while (MONGO_unlikely(pauseBatchApplicationBeforeCompletion.shouldFail())) {
            if (inShutdown()) {
                LOGV2_FATAL_NOTRACE(
                    50798,
                    "Turn off pauseBatchApplicationBeforeCompletion before attempting "
                    "clean shutdown");
            }
            sleepmillis(100);
        }
    }

    Timestamp firstTimeInBatch = ops.front().getTimestamp();
    // Set any indexes to multikey that this batch ignored. This must be done while holding the
    // parallel batch writer mode lock.
    for (const WorkerMultikeyPathInfo& infoVector : multikeyVector) {
        for (const MultikeyPathInfo& info : infoVector) {
            // We timestamp every multikey write with the first timestamp in the batch. It is always
            // safe to set an index as multikey too early, just not too late. We conservatively pick
            // the first timestamp in the batch since we do not have enough information to find out
            // the timestamp of the first write that set the given multikey path.
            fassert(50686,
                    _storageInterface->setIndexIsMultikey(opCtx,
                                                          info.nss,
                                                          info.collectionUUID,
                                                          info.indexName,
                                                          info.multikeyMetadataKeys,
                                                          info.multikeyPaths,
                                                          firstTimeInBatch));
        }
    }

    // Increment the counter for the number of ops applied during catchup if the node is in catchup
    // mode.
    _replCoord->incrementNumCatchUpOpsIfCatchingUp(ops.size());

    // We have now written all database writes and updated the oplog to match.
    return ops.back().getOpTime();
}

/**
 * ops - This only modifies the isForCappedCollection field on each op. It does not alter the ops
 *      vector in any other way.
 * writerVectors - Set of operations for each worker thread to apply.
 * derivedOps - If provided, this function inserts a decomposition of applyOps operations
 *      and instructions for updating the transactions table.  Required if processing oplogs
 *      with transactions.
 * sessionUpdateTracker - if provided, keeps track of session info from ops.
 */
void OplogApplierImpl::_deriveOpsAndFillWriterVectors(
    OperationContext* opCtx,
    std::vector<OplogEntry>* ops,
    std::vector<std::vector<const OplogEntry*>>* writerVectors,
    std::vector<std::vector<OplogEntry>>* derivedOps,
    SessionUpdateTracker* sessionUpdateTracker) noexcept {

    LogicalSessionIdMap<std::vector<OplogEntry*>> partialTxnOps;
    CachedCollectionProperties collPropertiesCache;

    for (auto&& op : *ops) {
        // If the operation's optime is before or the same as the beginApplyingOpTime we don't want
        // to apply it, so don't include it in writerVectors.
        if (op.getOpTime() <= getOptions().beginApplyingOpTime) {
            continue;
        }

        // We need to track all types of ops, including type 'n' (these are generated from chunk
        // migrations).
        if (sessionUpdateTracker) {
            if (auto newOplogWrites = sessionUpdateTracker->updateSession(op)) {
                derivedOps->emplace_back(std::move(*newOplogWrites));
                OplogApplierUtils::addDerivedOps(opCtx,
                                                 &derivedOps->back(),
                                                 writerVectors,
                                                 &collPropertiesCache,
                                                 false /*serial*/);
            }
        }


        // If this entry is part of a multi-oplog-entry transaction, ignore it until the commit.
        // We must save it here because we are not guaranteed it has been written to the oplog
        // yet.
        // We also do this for prepare during initial sync.
        if (op.isPartialTransaction() ||
            (op.shouldPrepare() && getOptions().mode == OplogApplication::Mode::kInitialSync)) {
            auto& partialTxnList = partialTxnOps[*op.getSessionId()];
            // If this operation belongs to an existing partial transaction, partialTxnList
            // must contain the previous operations of the transaction.
            invariant(partialTxnList.empty() ||
                      partialTxnList.front()->getTxnNumber() == op.getTxnNumber());
            partialTxnList.push_back(&op);
            continue;
        }

        if (op.getCommandType() == OplogEntry::CommandType::kAbortTransaction) {
            auto& partialTxnList = partialTxnOps[*op.getSessionId()];
            partialTxnList.clear();
        }

        // Extract applyOps operations and fill writers with extracted operations using this
        // function.
        if (op.isTerminalApplyOps()) {
            auto logicalSessionId = op.getSessionId();
            // applyOps entries generated by a transaction must have a sessionId and a
            // transaction number.
            if (logicalSessionId && op.getTxnNumber()) {
                // On commit of unprepared transactions, get transactional operations from the
                // oplog and fill writers with those operations.
                // Flush partialTxnList operations for current transaction.
                auto& partialTxnList = partialTxnOps[*logicalSessionId];
                _addOplogChainOpsToWriterVectors(
                    opCtx, &partialTxnList, derivedOps, &op, &collPropertiesCache, writerVectors);
            } else {
                // The applyOps entry was not generated as part of a transaction.
                invariant(!op.getPrevWriteOpTimeInTransaction());

                derivedOps->emplace_back(ApplyOps::extractOperations(op));

                // Nested entries cannot have different session updates.
                OplogApplierUtils::addDerivedOps(opCtx,
                                                 &derivedOps->back(),
                                                 writerVectors,
                                                 &collPropertiesCache,
                                                 false /*serial*/);
            }
            continue;
        }

        // If we see a commitTransaction command that is a part of a prepared transaction during
        // initial sync, find the prepare oplog entry, extract applyOps operations, and fill writers
        // with the extracted operations.
        if (op.isPreparedCommit() && (getOptions().mode == OplogApplication::Mode::kInitialSync)) {
            auto logicalSessionId = op.getSessionId();
            auto& partialTxnList = partialTxnOps[*logicalSessionId];
            _addOplogChainOpsToWriterVectors(
                opCtx, &partialTxnList, derivedOps, &op, &collPropertiesCache, writerVectors);
            continue;
        }

        OplogApplierUtils::addToWriterVector(opCtx, &op, writerVectors, &collPropertiesCache);
    }
}

void OplogApplierImpl::fillWriterVectors(
    OperationContext* opCtx,
    std::vector<OplogEntry>* ops,
    std::vector<std::vector<const OplogEntry*>>* writerVectors,
    std::vector<std::vector<OplogEntry>>* derivedOps) noexcept {

    SessionUpdateTracker sessionUpdateTracker;
    _deriveOpsAndFillWriterVectors(opCtx, ops, writerVectors, derivedOps, &sessionUpdateTracker);

    auto newOplogWrites = sessionUpdateTracker.flushAll();
    if (!newOplogWrites.empty()) {
        derivedOps->emplace_back(std::move(newOplogWrites));
        _deriveOpsAndFillWriterVectors(
            opCtx, &derivedOps->back(), writerVectors, derivedOps, nullptr);
    }
}

void OplogApplierImpl::fillWriterVectors_forTest(
    OperationContext* opCtx,
    std::vector<OplogEntry>* ops,
    std::vector<std::vector<const OplogEntry*>>* writerVectors,
    std::vector<std::vector<OplogEntry>>* derivedOps) noexcept {
    fillWriterVectors(opCtx, ops, writerVectors, derivedOps);
}

Status applyOplogEntryOrGroupedInserts(OperationContext* opCtx,
                                       const OplogEntryOrGroupedInserts& entryOrGroupedInserts,
                                       OplogApplication::Mode oplogApplicationMode,
                                       const bool isDataConsistent) {
    // Guarantees that applyOplogEntryOrGroupedInserts' context matches that of its calling
    // function, applyOplogBatchPerWorker.
    invariant(!opCtx->writesAreReplicated());

    // Count each log op application as a separate operation, for reporting purposes

    auto incrementOpsAppliedStats = [] { opsAppliedStats.increment(1); };

    auto clockSource = opCtx->getServiceContext()->getFastClockSource();
    auto applyStartTime = clockSource->now();

    if (MONGO_unlikely(hangAfterRecordingOpApplicationStartTime.shouldFail())) {
        LOGV2(21233,
              "applyOplogEntryOrGroupedInserts - fail point "
              "hangAfterRecordingOpApplicationStartTime "
              "enabled. Blocking until fail point is disabled");
        hangAfterRecordingOpApplicationStartTime.pauseWhileSet();
    }

    auto status = OplogApplierUtils::applyOplogEntryOrGroupedInsertsCommon(opCtx,
                                                                           entryOrGroupedInserts,
                                                                           oplogApplicationMode,
                                                                           isDataConsistent,
                                                                           incrementOpsAppliedStats,
                                                                           &replOpCounters);

    auto op = entryOrGroupedInserts.getOp();
    if (op.getOpType() == OpTypeEnum::kNoop) {
        // No-ops should never fail application, since there's nothing to do.
        invariant(status.isOK());

        auto opObj = op.getObject();
        if (opObj.hasField(ReplicationCoordinator::newPrimaryMsgField) &&
            opObj.getField(ReplicationCoordinator::newPrimaryMsgField).str() ==
                ReplicationCoordinator::newPrimaryMsg) {

            ReplicationMetrics::get(opCtx).setParticipantNewTermDates(op.getWallClockTime(),
                                                                      applyStartTime);
        }

        return status;
    } else {
        return finishAndLogApply(opCtx, clockSource, status, applyStartTime, entryOrGroupedInserts);
    }
}

Status OplogApplierImpl::applyOplogBatchPerWorker(OperationContext* opCtx,
                                                  std::vector<const OplogEntry*>* ops,
                                                  WorkerMultikeyPathInfo* workerMultikeyPathInfo,
                                                  const bool isDataConsistent) {
    UnreplicatedWritesBlock uwb(opCtx);
    // Since we swap the locker in stash / unstash transaction resources,
    // ShouldNotConflictWithSecondaryBatchApplicationBlock will touch the locker that has been
    // destroyed by unstash in its destructor. Thus we set the flag explicitly.
    opCtx->lockState()->setShouldConflictWithSecondaryBatchApplication(false);

    // Ensure future transactions read without a timestamp.
    invariant(RecoveryUnit::ReadSource::kNoTimestamp ==
              opCtx->recoveryUnit()->getTimestampReadSource());

    // When querying indexes, we return the record matching the key if it exists, or an adjacent
    // document. This means that it is possible for us to hit a prepare conflict if we query for an
    // incomplete key and an adjacent key is prepared.
    // We ignore prepare conflicts on secondaries because they may encounter prepare conflicts that
    // did not occur on the primary.
    opCtx->recoveryUnit()->setPrepareConflictBehavior(
        PrepareConflictBehavior::kIgnoreConflictsAllowWrites);

    {  // Ensure that the MultikeyPathTracker stops tracking paths.
        ON_BLOCK_EXIT([opCtx] { MultikeyPathTracker::get(opCtx).stopTrackingMultikeyPathInfo(); });
        MultikeyPathTracker::get(opCtx).startTrackingMultikeyPathInfo();
        auto status = OplogApplierUtils::applyOplogBatchCommon(
            opCtx,
            ops,
            getOptions().mode,
            getOptions().allowNamespaceNotFoundErrorsOnCrudOps,
            isDataConsistent,
            &applyOplogEntryOrGroupedInserts);
        if (!status.isOK())
            return status;
    }

    invariant(!MultikeyPathTracker::get(opCtx).isTrackingMultikeyPathInfo());
    invariant(workerMultikeyPathInfo->empty());
    auto newPaths = MultikeyPathTracker::get(opCtx).getMultikeyPathInfo();
    if (!newPaths.empty()) {
        workerMultikeyPathInfo->swap(newPaths);
    }

    return Status::OK();
}

}  // namespace repl
}  // namespace mongo