summaryrefslogtreecommitdiff
path: root/src/mongo/db/repl/replication_coordinator_impl.cpp
blob: 357d461c64fb97f2d4481dda0799c6ea98ce6b65 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
/**
 *    Copyright (C) 2018-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kReplication
#define LOG_FOR_ELECTION(level) \
    MONGO_LOG_COMPONENT(level, ::mongo::logger::LogComponent::kReplicationElection)

#include "mongo/platform/basic.h"

#include "mongo/db/repl/replication_coordinator_impl.h"

#include <algorithm>
#include <limits>

#include "mongo/base/status.h"
#include "mongo/bson/json.h"
#include "mongo/bson/timestamp.h"
#include "mongo/client/fetcher.h"
#include "mongo/client/read_preference.h"
#include "mongo/db/audit.h"
#include "mongo/db/catalog/commit_quorum_options.h"
#include "mongo/db/client.h"
#include "mongo/db/commands.h"
#include "mongo/db/commands/test_commands_enabled.h"
#include "mongo/db/concurrency/d_concurrency.h"
#include "mongo/db/concurrency/replication_state_transition_lock_guard.h"
#include "mongo/db/curop_failpoint_helpers.h"
#include "mongo/db/index/index_descriptor.h"
#include "mongo/db/index_builds_coordinator.h"
#include "mongo/db/kill_sessions_local.h"
#include "mongo/db/logical_clock.h"
#include "mongo/db/logical_time.h"
#include "mongo/db/logical_time_validator.h"
#include "mongo/db/mongod_options_storage_gen.h"
#include "mongo/db/operation_context_noop.h"
#include "mongo/db/prepare_conflict_tracker.h"
#include "mongo/db/repl/always_allow_non_local_writes.h"
#include "mongo/db/repl/check_quorum_for_config_change.h"
#include "mongo/db/repl/data_replicator_external_state_initial_sync.h"
#include "mongo/db/repl/is_master_response.h"
#include "mongo/db/repl/last_vote.h"
#include "mongo/db/repl/read_concern_args.h"
#include "mongo/db/repl/repl_client_info.h"
#include "mongo/db/repl/repl_server_parameters_gen.h"
#include "mongo/db/repl/repl_set_config_checks.h"
#include "mongo/db/repl/repl_set_heartbeat_args_v1.h"
#include "mongo/db/repl/repl_set_heartbeat_response.h"
#include "mongo/db/repl/repl_set_request_votes_args.h"
#include "mongo/db/repl/repl_settings.h"
#include "mongo/db/repl/replication_coordinator_impl_gen.h"
#include "mongo/db/repl/replication_metrics.h"
#include "mongo/db/repl/replication_process.h"
#include "mongo/db/repl/rslog.h"
#include "mongo/db/repl/storage_interface.h"
#include "mongo/db/repl/topology_coordinator.h"
#include "mongo/db/repl/transaction_oplog_application.h"
#include "mongo/db/repl/update_position_args.h"
#include "mongo/db/repl/vote_requester.h"
#include "mongo/db/server_options.h"
#include "mongo/db/session_catalog.h"
#include "mongo/db/storage/storage_options.h"
#include "mongo/db/write_concern.h"
#include "mongo/db/write_concern_options.h"
#include "mongo/executor/connection_pool_stats.h"
#include "mongo/executor/network_interface.h"
#include "mongo/platform/mutex.h"
#include "mongo/rpc/metadata/oplog_query_metadata.h"
#include "mongo/rpc/metadata/repl_set_metadata.h"
#include "mongo/stdx/functional.h"
#include "mongo/util/assert_util.h"
#include "mongo/util/fail_point_service.h"
#include "mongo/util/log.h"
#include "mongo/util/scopeguard.h"
#include "mongo/util/stacktrace.h"
#include "mongo/util/time_support.h"
#include "mongo/util/timer.h"

namespace mongo {
namespace repl {

MONGO_FAIL_POINT_DEFINE(stepdownHangBeforePerformingPostMemberStateUpdateActions);
MONGO_FAIL_POINT_DEFINE(holdStableTimestampAtSpecificTimestamp);
MONGO_FAIL_POINT_DEFINE(stepdownHangBeforeRSTLEnqueue);
// Fail setMaintenanceMode with ErrorCodes::NotSecondary to simulate a concurrent election.
MONGO_FAIL_POINT_DEFINE(setMaintenanceModeFailsWithNotSecondary);

// Tracks the last state transition performed in this replca set.
std::string lastStateTransition;
ServerStatusMetricField<std::string> displayLastStateTransition(
    "repl.stateTransition.lastStateTransition", &lastStateTransition);

// Tracks the number of operations killed on state transition.
Counter64 userOpsKilled;
ServerStatusMetricField<Counter64> displayUserOpsKilled("repl.stateTransition.userOperationsKilled",
                                                        &userOpsKilled);

// Tracks the number of operations left running on state transition.
Counter64 userOpsRunning;
ServerStatusMetricField<Counter64> displayUserOpsRunning(
    "repl.stateTransition.userOperationsRunning", &userOpsRunning);

using CallbackArgs = executor::TaskExecutor::CallbackArgs;
using CallbackFn = executor::TaskExecutor::CallbackFn;
using CallbackHandle = executor::TaskExecutor::CallbackHandle;
using EventHandle = executor::TaskExecutor::EventHandle;
using executor::NetworkInterface;
using NextAction = Fetcher::NextAction;

namespace {

const char kLocalDB[] = "local";

void lockAndCall(stdx::unique_lock<Latch>* lk, const stdx::function<void()>& fn) {
    if (!lk->owns_lock()) {
        lk->lock();
    }
    fn();
}

/**
 * Implements the force-reconfig behavior of incrementing config version by a large random
 * number.
 */
BSONObj incrementConfigVersionByRandom(BSONObj config) {
    BSONObjBuilder builder;
    for (BSONObjIterator iter(config); iter.more(); iter.next()) {
        BSONElement elem = *iter;
        if (elem.fieldNameStringData() == ReplSetConfig::kVersionFieldName && elem.isNumber()) {
            std::unique_ptr<SecureRandom> generator(SecureRandom::create());
            const int random = std::abs(static_cast<int>(generator->nextInt64()) % 100000);
            builder.appendIntOrLL(ReplSetConfig::kVersionFieldName,
                                  elem.numberLong() + 10000 + random);
        } else {
            builder.append(elem);
        }
    }
    return builder.obj();
}

}  // namespace

ReplicationCoordinatorImpl::Waiter::Waiter(OpTime _opTime, const WriteConcernOptions* _writeConcern)
    : opTime(std::move(_opTime)), writeConcern(_writeConcern) {}

BSONObj ReplicationCoordinatorImpl::Waiter::toBSON() const {
    BSONObjBuilder bob;
    bob.append("opTime", opTime.toBSON());
    if (writeConcern) {
        bob.append("writeConcern", writeConcern->toBSON());
    }
    return bob.obj();
};

std::string ReplicationCoordinatorImpl::Waiter::toString() const {
    return toBSON().toString();
};


ReplicationCoordinatorImpl::ThreadWaiter::ThreadWaiter(OpTime _opTime,
                                                       const WriteConcernOptions* _writeConcern,
                                                       stdx::condition_variable* _condVar)
    : Waiter(_opTime, _writeConcern), condVar(_condVar) {}

void ReplicationCoordinatorImpl::ThreadWaiter::notify_inlock() {
    invariant(condVar);

    ++notifyCount;
    condVar->notify_all();
}

ReplicationCoordinatorImpl::CallbackWaiter::CallbackWaiter(OpTime _opTime,
                                                           FinishFunc _finishCallback)
    : Waiter(_opTime, nullptr), finishCallback(std::move(_finishCallback)) {}

void ReplicationCoordinatorImpl::CallbackWaiter::notify_inlock() {
    invariant(finishCallback);
    finishCallback();
}


class ReplicationCoordinatorImpl::WaiterGuard {
public:
    /**
     * Constructor takes the list of waiters and enqueues itself on the list, removing itself
     * in the destructor.
     *
     * Usually waiters will be signaled and removed when their criteria are satisfied, but
     * wait_until() with timeout may signal waiters earlier and this guard will remove the waiter
     * properly.
     *
     * _list is guarded by ReplicationCoordinatorImpl::_mutex, thus it is illegal to construct one
     * of these without holding _mutex
     */
    WaiterGuard(const stdx::unique_lock<Latch>& lock, WaiterList* list, Waiter* waiter)
        : _lock(lock), _list(list), _waiter(waiter) {
        invariant(_lock.owns_lock());
        list->add_inlock(_waiter);
    }

    ~WaiterGuard() {
        invariant(_lock.owns_lock());
        _list->remove_inlock(_waiter);
    }

private:
    const stdx::unique_lock<Latch>& _lock;
    WaiterList* _list;
    Waiter* _waiter;
};

void ReplicationCoordinatorImpl::WaiterList::add_inlock(WaiterType waiter) {
    _list.push_back(waiter);
}

void ReplicationCoordinatorImpl::WaiterList::signalIf_inlock(
    stdx::function<bool(WaiterType)> func) {
    for (auto it = _list.begin(); it != _list.end();) {
        if (!func(*it)) {
            // This element doesn't match, so we advance the iterator to the next one.
            ++it;
            continue;
        }

        if (!(*it)->runs_once()) {
            (*it)->notify_inlock();
            // Keep the waiter on the list and let the guard remove it instead. Advance the
            // iterator since we are skipping the removal.
            ++it;
            continue;
        }

        // Remove the waiter from the list if it was only meant to be notified once.
        WaiterType waiter = std::move(*it);

        if (it == std::prev(_list.end())) {
            // Iterator will be invalid after erasing the last element, so set it to the
            // next one (i.e. end()).
            it = _list.erase(it);
        } else {
            // Iterator is still valid after pop_back().
            std::swap(*it, _list.back());
            _list.pop_back();
        }
        // It's important to call notify() after the waiter has been removed from the list
        // since notify() might remove the waiter itself.
        waiter->notify_inlock();
    }
}


void ReplicationCoordinatorImpl::WaiterList::signalAll_inlock() {
    this->signalIf_inlock([](Waiter* waiter) { return true; });
}

bool ReplicationCoordinatorImpl::WaiterList::remove_inlock(WaiterType waiter) {
    auto it = std::find(_list.begin(), _list.end(), waiter);
    if (it == _list.end()) {
        return false;
    }
    std::swap(*it, _list.back());
    _list.pop_back();
    return true;
}

namespace {
ReplicationCoordinator::Mode getReplicationModeFromSettings(const ReplSettings& settings) {
    if (settings.usingReplSets()) {
        return ReplicationCoordinator::modeReplSet;
    }
    return ReplicationCoordinator::modeNone;
}

InitialSyncerOptions createInitialSyncerOptions(
    ReplicationCoordinator* replCoord, ReplicationCoordinatorExternalState* externalState) {
    InitialSyncerOptions options;
    options.getMyLastOptime = [replCoord]() { return replCoord->getMyLastAppliedOpTime(); };
    options.setMyLastOptime = [replCoord,
                               externalState](const OpTimeAndWallTime& opTimeAndWallTime,
                                              ReplicationCoordinator::DataConsistency consistency) {
        // Note that setting the last applied opTime forward also advances the global timestamp.
        replCoord->setMyLastAppliedOpTimeAndWallTimeForward(opTimeAndWallTime, consistency);
    };
    options.resetOptimes = [replCoord]() { replCoord->resetMyLastOpTimes(); };
    options.syncSourceSelector = replCoord;
    options.oplogFetcherMaxFetcherRestarts =
        externalState->getOplogFetcherInitialSyncMaxFetcherRestarts();
    return options;
}
}  // namespace

ReplicationCoordinatorImpl::ReplicationCoordinatorImpl(
    ServiceContext* service,
    const ReplSettings& settings,
    std::unique_ptr<ReplicationCoordinatorExternalState> externalState,
    std::unique_ptr<executor::TaskExecutor> executor,
    std::unique_ptr<TopologyCoordinator> topCoord,
    ReplicationProcess* replicationProcess,
    StorageInterface* storage,
    int64_t prngSeed)
    : _service(service),
      _settings(settings),
      _replMode(getReplicationModeFromSettings(settings)),
      _topCoord(std::move(topCoord)),
      _replExecutor(std::move(executor)),
      _externalState(std::move(externalState)),
      _inShutdown(false),
      _memberState(MemberState::RS_STARTUP),
      _rsConfigState(kConfigPreStart),
      _selfIndex(-1),
      _sleptLastElection(false),
      _readWriteAbility(stdx::make_unique<ReadWriteAbility>(!settings.usingReplSets())),
      _replicationProcess(replicationProcess),
      _storage(storage),
      _random(prngSeed) {

    _termShadow.store(OpTime::kUninitializedTerm);

    invariant(_service);

    if (!isReplEnabled()) {
        return;
    }

    _externalState->setupNoopWriter(Seconds(periodicNoopIntervalSecs));
}

ReplicationCoordinatorImpl::~ReplicationCoordinatorImpl() = default;

void ReplicationCoordinatorImpl::waitForStartUpComplete_forTest() {
    _waitForStartUpComplete();
}

void ReplicationCoordinatorImpl::_waitForStartUpComplete() {
    CallbackHandle handle;
    {
        stdx::unique_lock<Latch> lk(_mutex);
        while (_rsConfigState == kConfigPreStart || _rsConfigState == kConfigStartingUp) {
            _rsConfigStateChange.wait(lk);
        }
        handle = _finishLoadLocalConfigCbh;
    }
    if (handle.isValid()) {
        _replExecutor->wait(handle);
    }
}

ReplSetConfig ReplicationCoordinatorImpl::getReplicaSetConfig_forTest() {
    stdx::lock_guard<Latch> lk(_mutex);
    return _rsConfig;
}

Date_t ReplicationCoordinatorImpl::getElectionTimeout_forTest() const {
    stdx::lock_guard<Latch> lk(_mutex);
    if (!_handleElectionTimeoutCbh.isValid()) {
        return Date_t();
    }
    return _handleElectionTimeoutWhen;
}

Milliseconds ReplicationCoordinatorImpl::getRandomizedElectionOffset_forTest() {
    stdx::lock_guard<Latch> lk(_mutex);
    return _getRandomizedElectionOffset_inlock();
}

boost::optional<Date_t> ReplicationCoordinatorImpl::getPriorityTakeover_forTest() const {
    stdx::lock_guard<Latch> lk(_mutex);
    if (!_priorityTakeoverCbh.isValid()) {
        return boost::none;
    }
    return _priorityTakeoverWhen;
}

boost::optional<Date_t> ReplicationCoordinatorImpl::getCatchupTakeover_forTest() const {
    stdx::lock_guard<Latch> lk(_mutex);
    if (!_catchupTakeoverCbh.isValid()) {
        return boost::none;
    }
    return _catchupTakeoverWhen;
}

executor::TaskExecutor::CallbackHandle ReplicationCoordinatorImpl::getCatchupTakeoverCbh_forTest()
    const {
    return _catchupTakeoverCbh;
}

OpTime ReplicationCoordinatorImpl::getCurrentCommittedSnapshotOpTime() const {
    stdx::lock_guard<Latch> lk(_mutex);
    return _getCurrentCommittedSnapshotOpTime_inlock();
}

OpTimeAndWallTime ReplicationCoordinatorImpl::getCurrentCommittedSnapshotOpTimeAndWallTime() const {
    stdx::lock_guard<Latch> lk(_mutex);
    return _getCurrentCommittedSnapshotOpTimeAndWallTime_inlock();
}

OpTime ReplicationCoordinatorImpl::_getCurrentCommittedSnapshotOpTime_inlock() const {
    if (_currentCommittedSnapshot) {
        return _currentCommittedSnapshot->opTime;
    }
    return OpTime();
}

OpTimeAndWallTime ReplicationCoordinatorImpl::_getCurrentCommittedSnapshotOpTimeAndWallTime_inlock()
    const {
    if (_currentCommittedSnapshot) {
        return _currentCommittedSnapshot.get();
    }
    return OpTimeAndWallTime();
}

LogicalTime ReplicationCoordinatorImpl::_getCurrentCommittedLogicalTime_inlock() const {
    return LogicalTime(_getCurrentCommittedSnapshotOpTime_inlock().getTimestamp());
}

void ReplicationCoordinatorImpl::appendDiagnosticBSON(mongo::BSONObjBuilder* bob) {
    BSONObjBuilder eBuilder(bob->subobjStart("executor"));
    _replExecutor->appendDiagnosticBSON(&eBuilder);
}

void ReplicationCoordinatorImpl::appendConnectionStats(executor::ConnectionPoolStats* stats) const {
    _replExecutor->appendConnectionStats(stats);
}

bool ReplicationCoordinatorImpl::_startLoadLocalConfig(OperationContext* opCtx) {
    // Create necessary replication collections to guarantee that if a checkpoint sees data after
    // initial sync has completed, it also sees these collections.
    fassert(50708, _replicationProcess->getConsistencyMarkers()->createInternalCollections(opCtx));

    _replicationProcess->getConsistencyMarkers()->initializeMinValidDocument(opCtx);

    fassert(51240, _externalState->createLocalLastVoteCollection(opCtx));

    StatusWith<LastVote> lastVote = _externalState->loadLocalLastVoteDocument(opCtx);
    if (!lastVote.isOK()) {
        severe() << "Error loading local voted for document at startup; " << lastVote.getStatus();
        fassertFailedNoTrace(40367);
    }
    if (lastVote.getValue().getTerm() == OpTime::kInitialTerm) {
        // This log line is checked in unit tests.
        log() << "Did not find local initialized voted for document at startup.";
    }
    {
        stdx::lock_guard<Latch> lk(_mutex);
        _topCoord->loadLastVote(lastVote.getValue());
    }

    // Check that we have a local Rollback ID. If we do not have one, create one.
    auto status = _replicationProcess->refreshRollbackID(opCtx);
    if (!status.isOK()) {
        if (status == ErrorCodes::NamespaceNotFound) {
            log() << "Did not find local Rollback ID document at startup. Creating one.";
            auto initializingStatus = _replicationProcess->initializeRollbackID(opCtx);
            fassert(40424, initializingStatus);
        } else {
            severe() << "Error loading local Rollback ID document at startup; " << status;
            fassertFailedNoTrace(40428);
        }
    }

    StatusWith<BSONObj> cfg = _externalState->loadLocalConfigDocument(opCtx);
    if (!cfg.isOK()) {
        log() << "Did not find local replica set configuration document at startup;  "
              << cfg.getStatus();
        return true;
    }
    ReplSetConfig localConfig;
    status = localConfig.initialize(cfg.getValue());
    if (!status.isOK()) {
        if (status.code() == ErrorCodes::RepairedReplicaSetNode) {
            severe()
                << "This instance has been repaired and may contain modified replicated data that "
                   "would not match other replica set members. To see your repaired data, start "
                   "mongod without the --replSet option. When you are finished recovering your "
                   "data and would like to perform a complete re-sync, please refer to the "
                   "documentation here: "
                   "https://docs.mongodb.com/manual/tutorial/resync-replica-set-member/";
            fassertFailedNoTrace(50923);
        }
        error() << "Locally stored replica set configuration does not parse; See "
                   "http://www.mongodb.org/dochub/core/recover-replica-set-from-invalid-config "
                   "for information on how to recover from this. Got \""
                << status << "\" while parsing " << cfg.getValue();
        fassertFailedNoTrace(28545);
    }

    // Read the last op from the oplog after cleaning up any partially applied batches.
    const auto stableTimestamp = boost::none;
    _replicationProcess->getReplicationRecovery()->recoverFromOplog(opCtx, stableTimestamp);
    reconstructPreparedTransactions(opCtx, OplogApplication::Mode::kRecovering);

    const auto lastOpTimeAndWallTimeResult = _externalState->loadLastOpTimeAndWallTime(opCtx);

    // Use a callback here, because _finishLoadLocalConfig calls isself() which requires
    // that the server's networking layer be up and running and accepting connections, which
    // doesn't happen until startReplication finishes.
    auto handle =
        _replExecutor->scheduleWork([=](const executor::TaskExecutor::CallbackArgs& args) {
            _finishLoadLocalConfig(args, localConfig, lastOpTimeAndWallTimeResult, lastVote);
        });
    if (handle == ErrorCodes::ShutdownInProgress) {
        handle = CallbackHandle{};
    }
    fassert(40446, handle);
    stdx::lock_guard<Latch> lk(_mutex);
    _finishLoadLocalConfigCbh = std::move(handle.getValue());

    return false;
}

void ReplicationCoordinatorImpl::_finishLoadLocalConfig(
    const executor::TaskExecutor::CallbackArgs& cbData,
    const ReplSetConfig& localConfig,
    const StatusWith<OpTimeAndWallTime>& lastOpTimeAndWallTimeStatus,
    const StatusWith<LastVote>& lastVoteStatus) {
    if (!cbData.status.isOK()) {
        LOG(1) << "Loading local replica set configuration failed due to " << cbData.status;
        return;
    }

    StatusWith<int> myIndex =
        validateConfigForStartUp(_externalState.get(), localConfig, getServiceContext());
    if (!myIndex.isOK()) {
        if (myIndex.getStatus() == ErrorCodes::NodeNotFound ||
            myIndex.getStatus() == ErrorCodes::InvalidReplicaSetConfig) {
            warning() << "Locally stored replica set configuration does not have a valid entry "
                         "for the current node; waiting for reconfig or remote heartbeat; Got \""
                      << myIndex.getStatus() << "\" while validating " << localConfig.toBSON();
            myIndex = StatusWith<int>(-1);
        } else {
            error() << "Locally stored replica set configuration is invalid; See "
                       "http://www.mongodb.org/dochub/core/recover-replica-set-from-invalid-config"
                       " for information on how to recover from this. Got \""
                    << myIndex.getStatus() << "\" while validating " << localConfig.toBSON();
            fassertFailedNoTrace(28544);
        }
    }

    if (localConfig.getReplSetName() != _settings.ourSetName()) {
        warning() << "Local replica set configuration document reports set name of "
                  << localConfig.getReplSetName() << ", but command line reports "
                  << _settings.ourSetName() << "; waiting for reconfig or remote heartbeat";
        myIndex = StatusWith<int>(-1);
    }

    if (serverGlobalParams.enableMajorityReadConcern && localConfig.getNumMembers() == 3 &&
        localConfig.getNumDataBearingMembers() == 2) {
        log() << startupWarningsLog;
        log() << "** WARNING: This replica set has a Primary-Secondary-Arbiter architecture, but "
                 "readConcern:majority is enabled "
              << startupWarningsLog;
        log() << "**          for this node. This is not a recommended configuration. Please see "
              << startupWarningsLog;
        log() << "**          https://dochub.mongodb.org/core/psa-disable-rc-majority"
              << startupWarningsLog;
        log() << startupWarningsLog;
    }

    // Do not check optime, if this node is an arbiter.
    bool isArbiter =
        myIndex.getValue() != -1 && localConfig.getMemberAt(myIndex.getValue()).isArbiter();
    OpTimeAndWallTime lastOpTimeAndWallTime = {OpTime(), Date_t()};
    if (!isArbiter) {
        if (!lastOpTimeAndWallTimeStatus.isOK()) {
            warning() << "Failed to load timestamp and/or wall clock time of most recently applied "
                         "operation: "
                      << lastOpTimeAndWallTimeStatus.getStatus();
        } else {
            lastOpTimeAndWallTime = lastOpTimeAndWallTimeStatus.getValue();
        }
    } else {
        // The node is an arbiter hence will not need logical clock for external operations.
        LogicalClock::get(getServiceContext())->disable();
        if (auto validator = LogicalTimeValidator::get(getServiceContext())) {
            validator->stopKeyManager();
        }
    }

    const auto lastOpTime = lastOpTimeAndWallTime.opTime;
    // Restore the current term according to the terms of last oplog entry and last vote.
    // The initial term of OpTime() is 0.
    long long term = lastOpTime.getTerm();
    if (lastVoteStatus.isOK()) {
        long long lastVoteTerm = lastVoteStatus.getValue().getTerm();
        if (term < lastVoteTerm) {
            term = lastVoteTerm;
        }
    }

    auto opCtx = cc().makeOperationContext();
    auto consistency = DataConsistency::Inconsistent;
    if (!lastOpTime.isNull()) {

        // If we have an oplog, it is still possible that our data is not in a consistent state. For
        // example, if we are starting up after a crash following a post-rollback RECOVERING state.
        // To detect this, we see if our last optime is >= the 'minValid' optime, which
        // should be persistent across node crashes.
        OpTime minValid = _replicationProcess->getConsistencyMarkers()->getMinValid(opCtx.get());
        consistency =
            (lastOpTime >= minValid) ? DataConsistency::Consistent : DataConsistency::Inconsistent;
    }

    // Update the global timestamp before setting the last applied opTime forward so the last
    // applied optime is never greater than the latest cluster time in the logical clock.
    _externalState->setGlobalTimestamp(getServiceContext(), lastOpTime.getTimestamp());

    stdx::unique_lock<Latch> lock(_mutex);
    invariant(_rsConfigState == kConfigStartingUp);
    const PostMemberStateUpdateAction action =
        _setCurrentRSConfig(lock, opCtx.get(), localConfig, myIndex.getValue());

    // Set our last applied and durable optimes to the top of the oplog, if we have one.
    if (!lastOpTime.isNull()) {
        bool isRollbackAllowed = false;
        _setMyLastAppliedOpTimeAndWallTime(
            lock, lastOpTimeAndWallTime, isRollbackAllowed, consistency);
        _setMyLastDurableOpTimeAndWallTime(lock, lastOpTimeAndWallTime, isRollbackAllowed);
        _reportUpstream_inlock(std::move(lock));  // unlocks _mutex.
    } else {
        lock.unlock();
    }

    {
        stdx::lock_guard<Latch> lk(_mutex);
        // Step down is impossible, so we don't need to wait for the returned event.
        _updateTerm_inlock(term);
    }
    LOG(1) << "Current term is now " << term;
    _performPostMemberStateUpdateAction(action);

    if (!isArbiter && myIndex.getValue() != -1) {
        _externalState->startThreads(_settings);
        _startDataReplication(opCtx.get());
    }
}

void ReplicationCoordinatorImpl::_stopDataReplication(OperationContext* opCtx) {
    std::shared_ptr<InitialSyncer> initialSyncerCopy;
    {
        stdx::lock_guard<Latch> lk(_mutex);
        if (!_startedSteadyStateReplication) {
            return;
        }

        _startedSteadyStateReplication = false;
        _initialSyncer.swap(initialSyncerCopy);
    }
    if (initialSyncerCopy) {
        LOG(1)
            << "ReplicationCoordinatorImpl::_stopDataReplication calling InitialSyncer::shutdown.";
        const auto status = initialSyncerCopy->shutdown();
        if (!status.isOK()) {
            warning() << "InitialSyncer shutdown failed: " << status;
        }
        initialSyncerCopy.reset();
        // Do not return here, fall through.
    }
    LOG(1) << "ReplicationCoordinatorImpl::_stopDataReplication calling "
              "ReplCoordExtState::stopDataReplication.";
    _externalState->stopDataReplication(opCtx);
}

void ReplicationCoordinatorImpl::_startDataReplication(OperationContext* opCtx,
                                                       stdx::function<void()> startCompleted) {
    stdx::unique_lock<Latch> lk(_mutex);
    if (_startedSteadyStateReplication) {
        return;
    }

    _startedSteadyStateReplication = true;

    // Check to see if we need to do an initial sync.
    const auto lastOpTime = _getMyLastAppliedOpTime_inlock();
    const auto needsInitialSync =
        lastOpTime.isNull() || _externalState->isInitialSyncFlagSet(opCtx);
    if (!needsInitialSync) {
        // Start steady replication, since we already have data.
        // ReplSetConfig has been installed, so it's either in STARTUP2 or REMOVED.
        auto memberState = _getMemberState_inlock();
        invariant(memberState.startup2() || memberState.removed());

        lk.unlock();
        invariant(setFollowerMode(MemberState::RS_RECOVERING));
        _externalState->startSteadyStateReplication(opCtx, this);
        return;
    }

    // Do initial sync.
    if (!_externalState->getTaskExecutor()) {
        log() << "not running initial sync during test.";
        return;
    }

    auto onCompletion = [this, startCompleted](const StatusWith<OpTimeAndWallTime>& opTimeStatus) {
        {
            stdx::lock_guard<Latch> lock(_mutex);
            if (opTimeStatus == ErrorCodes::CallbackCanceled) {
                log() << "Initial Sync has been cancelled: " << opTimeStatus.getStatus();
                return;
            } else if (!opTimeStatus.isOK()) {
                if (_inShutdown) {
                    log() << "Initial Sync failed during shutdown due to "
                          << opTimeStatus.getStatus();
                    return;
                } else {
                    error() << "Initial sync failed, shutting down now. Restart the server "
                               "to attempt a new initial sync.";
                    fassertFailedWithStatusNoTrace(40088, opTimeStatus.getStatus());
                }
            }

            const auto lastApplied = opTimeStatus.getValue();
            _setMyLastAppliedOpTimeAndWallTime(
                lock, lastApplied, false, DataConsistency::Consistent);

            _topCoord->resetMaintenanceCount();
        }

        if (startCompleted) {
            startCompleted();
        }
        // Because initial sync completed, we can only be in STARTUP2, not REMOVED.
        // Transition from STARTUP2 to RECOVERING and start the producer and the applier.
        invariant(getMemberState().startup2());
        invariant(setFollowerMode(MemberState::RS_RECOVERING));
        auto opCtxHolder = cc().makeOperationContext();
        _externalState->startSteadyStateReplication(opCtxHolder.get(), this);
    };

    std::shared_ptr<InitialSyncer> initialSyncerCopy;
    try {
        {
            if (_inShutdown) {
                log() << "Initial Sync not starting because replication is shutting down.";
                return;
            }
            initialSyncerCopy = std::make_shared<InitialSyncer>(
                createInitialSyncerOptions(this, _externalState.get()),
                stdx::make_unique<DataReplicatorExternalStateInitialSync>(this,
                                                                          _externalState.get()),
                _externalState->getDbWorkThreadPool(),
                _storage,
                _replicationProcess,
                onCompletion);
            _initialSyncer = initialSyncerCopy;
        }
        // InitialSyncer::startup() must be called outside lock because it uses features (eg.
        // setting the initial sync flag) which depend on the ReplicationCoordinatorImpl.
        lk.unlock();
        uassertStatusOK(initialSyncerCopy->startup(opCtx, numInitialSyncAttempts.load()));
    } catch (...) {
        auto status = exceptionToStatus();
        log() << "Initial Sync failed to start: " << status;
        if (ErrorCodes::CallbackCanceled == status || ErrorCodes::isShutdownError(status.code())) {
            return;
        }
        fassertFailedWithStatusNoTrace(40354, status);
    }
}

void ReplicationCoordinatorImpl::startup(OperationContext* opCtx) {
    if (!isReplEnabled()) {
        if (ReplSettings::shouldRecoverFromOplogAsStandalone()) {
            uassert(ErrorCodes::InvalidOptions,
                    str::stream() << "Cannot set parameter 'recoverToOplogTimestamp' "
                                  << "when recovering from the oplog as a standalone",
                    recoverToOplogTimestamp.empty());
            _replicationProcess->getReplicationRecovery()->recoverFromOplogAsStandalone(opCtx);
        }

        if (storageGlobalParams.readOnly && !recoverToOplogTimestamp.empty()) {
            BSONObj recoverToTimestampObj = fromjson(recoverToOplogTimestamp);
            uassert(ErrorCodes::BadValue,
                    str::stream() << "'recoverToOplogTimestamp' needs to have a 'timestamp' field",
                    recoverToTimestampObj.hasField("timestamp"));

            Timestamp recoverToTimestamp = recoverToTimestampObj.getField("timestamp").timestamp();
            uassert(ErrorCodes::BadValue,
                    str::stream() << "'recoverToOplogTimestamp' needs to be a valid timestamp",
                    !recoverToTimestamp.isNull());

            StatusWith<BSONObj> cfg = _externalState->loadLocalConfigDocument(opCtx);
            uassert(ErrorCodes::InvalidReplicaSetConfig,
                    str::stream()
                        << "No replica set config document was found, 'recoverToOplogTimestamp' "
                        << "must be used with a node that was previously part of a replica set",
                    cfg.isOK());

            // Need to perform replication recovery up to and including the given timestamp.
            // Temporarily turn off read-only mode for this procedure as we'll have to do writes.
            storageGlobalParams.readOnly = false;
            ON_BLOCK_EXIT([&] { storageGlobalParams.readOnly = true; });
            _replicationProcess->getReplicationRecovery()->recoverFromOplogUpTo(opCtx,
                                                                                recoverToTimestamp);
        }

        stdx::lock_guard<Latch> lk(_mutex);
        _setConfigState_inlock(kConfigReplicationDisabled);
        return;
    }
    invariant(_settings.usingReplSets());
    invariant(!ReplSettings::shouldRecoverFromOplogAsStandalone());

    {
        stdx::lock_guard<Latch> lk(_mutex);
        fassert(18822, !_inShutdown);
        _setConfigState_inlock(kConfigStartingUp);
        _topCoord->setStorageEngineSupportsReadCommitted(
            _externalState->isReadCommittedSupportedByStorageEngine(opCtx));
    }

    // Initialize the cached pointer to the oplog collection.
    acquireOplogCollectionForLogging(opCtx);

    _replExecutor->startup();

    bool doneLoadingConfig = _startLoadLocalConfig(opCtx);
    if (doneLoadingConfig) {
        // If we're not done loading the config, then the config state will be set by
        // _finishLoadLocalConfig.
        stdx::lock_guard<Latch> lk(_mutex);
        invariant(!_rsConfig.isInitialized());
        _setConfigState_inlock(kConfigUninitialized);
    }
}

void ReplicationCoordinatorImpl::enterTerminalShutdown() {
    stdx::lock_guard lk(_mutex);
    _inTerminalShutdown = true;
}

void ReplicationCoordinatorImpl::shutdown(OperationContext* opCtx) {
    // Shutdown must:
    // * prevent new threads from blocking in awaitReplication
    // * wake up all existing threads blocking in awaitReplication
    // * Shut down and join the execution resources it owns.

    if (!_settings.usingReplSets()) {
        return;
    }

    log() << "shutting down replication subsystems";

    // Used to shut down outside of the lock.
    std::shared_ptr<InitialSyncer> initialSyncerCopy;
    {
        stdx::unique_lock<Latch> lk(_mutex);
        fassert(28533, !_inShutdown);
        _inShutdown = true;
        if (_rsConfigState == kConfigPreStart) {
            warning() << "ReplicationCoordinatorImpl::shutdown() called before "
                         "startup() finished.  Shutting down without cleaning up the "
                         "replication system";
            return;
        }
        if (_rsConfigState == kConfigStartingUp) {
            // Wait until we are finished starting up, so that we can cleanly shut everything down.
            lk.unlock();
            _waitForStartUpComplete();
            lk.lock();
            fassert(18823, _rsConfigState != kConfigStartingUp);
        }
        _replicationWaiterList.signalAll_inlock();
        _opTimeWaiterList.signalAll_inlock();
        _wMajorityWriteAvailabilityWaiter.reset();
        _currentCommittedSnapshotCond.notify_all();
        _initialSyncer.swap(initialSyncerCopy);
    }


    // joining the replication executor is blocking so it must be run outside of the mutex
    if (initialSyncerCopy) {
        LOG(1) << "ReplicationCoordinatorImpl::shutdown calling InitialSyncer::shutdown.";
        const auto status = initialSyncerCopy->shutdown();
        if (!status.isOK()) {
            warning() << "InitialSyncer shutdown failed: " << status;
        }
        initialSyncerCopy->join();
        initialSyncerCopy.reset();
    }
    _externalState->shutdown(opCtx);
    _replExecutor->shutdown();
    _replExecutor->join();
}

const ReplSettings& ReplicationCoordinatorImpl::getSettings() const {
    return _settings;
}

ReplicationCoordinator::Mode ReplicationCoordinatorImpl::getReplicationMode() const {
    return _replMode;
}

MemberState ReplicationCoordinatorImpl::getMemberState() const {
    stdx::lock_guard<Latch> lk(_mutex);
    return _getMemberState_inlock();
}

std::vector<MemberData> ReplicationCoordinatorImpl::getMemberData() const {
    stdx::lock_guard<Latch> lk(_mutex);
    return _topCoord->getMemberData();
}

MemberState ReplicationCoordinatorImpl::_getMemberState_inlock() const {
    return _memberState;
}

Status ReplicationCoordinatorImpl::waitForMemberState(MemberState expectedState,
                                                      Milliseconds timeout) {
    if (timeout < Milliseconds(0)) {
        return Status(ErrorCodes::BadValue, "Timeout duration cannot be negative");
    }

    stdx::unique_lock<Latch> lk(_mutex);
    auto pred = [this, expectedState]() { return _memberState == expectedState; };
    if (!_memberStateChange.wait_for(lk, timeout.toSystemDuration(), pred)) {
        return Status(ErrorCodes::ExceededTimeLimit,
                      str::stream()
                          << "Timed out waiting for state to become " << expectedState.toString()
                          << ". Current state is " << _memberState.toString());
    }
    return Status::OK();
}

Seconds ReplicationCoordinatorImpl::getSlaveDelaySecs() const {
    stdx::lock_guard<Latch> lk(_mutex);
    invariant(_rsConfig.isInitialized());
    if (_selfIndex == -1) {
        // We aren't currently in the set. Return 0 seconds so we can clear out the applier's
        // queue of work.
        return Seconds(0);
    }
    return _rsConfig.getMemberAt(_selfIndex).getSlaveDelay();
}

void ReplicationCoordinatorImpl::clearSyncSourceBlacklist() {
    stdx::lock_guard<Latch> lk(_mutex);
    _topCoord->clearSyncSourceBlacklist();
}

Status ReplicationCoordinatorImpl::setFollowerModeStrict(OperationContext* opCtx,
                                                         const MemberState& newState) {
    invariant(opCtx);
    invariant(opCtx->lockState()->isRSTLExclusive());
    return _setFollowerMode(opCtx, newState);
}

Status ReplicationCoordinatorImpl::setFollowerMode(const MemberState& newState) {
    return _setFollowerMode(nullptr, newState);
}

Status ReplicationCoordinatorImpl::_setFollowerMode(OperationContext* opCtx,
                                                    const MemberState& newState) {
    stdx::unique_lock<Latch> lk(_mutex);
    if (newState == _topCoord->getMemberState()) {
        return Status::OK();
    }
    if (_topCoord->getRole() == TopologyCoordinator::Role::kLeader) {
        return Status(ErrorCodes::NotSecondary,
                      "Cannot set follower mode when node is currently the leader");
    }

    if (auto electionFinishedEvent = _cancelElectionIfNeeded_inlock()) {
        // We were a candidate, which means _topCoord believed us to be in state RS_SECONDARY, and
        // we know that newState != RS_SECONDARY because we would have returned early, above if
        // the old and new state were equal. So, try again after the election is over to
        // finish setting the follower mode.  We cannot wait for the election to finish here as we
        // may be holding a global X lock, so we return a bad status and rely on the caller to
        // retry.
        return Status(ErrorCodes::ElectionInProgress,
                      str::stream() << "Cannot set follower mode to " << newState.toString()
                                    << " because we are in the middle of running an election");
    }

    _topCoord->setFollowerMode(newState.s);

    if (opCtx && _memberState.secondary() && newState == MemberState::RS_ROLLBACK) {
        // If we are switching out of SECONDARY and to ROLLBACK, we must make sure that we hold the
        // RSTL in mode X to prevent readers that have the RSTL in intent mode from reading.
        _readWriteAbility->setCanServeNonLocalReads(opCtx, 0U);
    }

    const PostMemberStateUpdateAction action = _updateMemberStateFromTopologyCoordinator(lk);
    lk.unlock();
    _performPostMemberStateUpdateAction(action);

    return Status::OK();
}

ReplicationCoordinator::ApplierState ReplicationCoordinatorImpl::getApplierState() {
    stdx::lock_guard<Latch> lk(_mutex);
    return _applierState;
}

void ReplicationCoordinatorImpl::signalDrainComplete(OperationContext* opCtx,
                                                     long long termWhenBufferIsEmpty) {
    // This logic is a little complicated in order to avoid acquiring the RSTL in mode X
    // unnecessarily.  This is important because the applier may call signalDrainComplete()
    // whenever it wants, not only when the ReplicationCoordinator is expecting it.
    //
    // The steps are:
    // 1.) Check to see if we're waiting for this signal.  If not, return early.
    // 2.) Otherwise, release the mutex while acquiring the RSTL in mode X, since that might take a
    //     while (NB there's a deadlock cycle otherwise, too).
    // 3.) Re-check to see if we've somehow left drain mode.  If we have not, clear
    //     producer and applier's states, set the flag allowing non-local database writes and
    //     drop the mutex.  At this point, no writes can occur from other threads, due to the RSTL
    //     in mode X.
    // 4.) Drop all temp collections, and log the drops to the oplog.
    // 5.) Log transition to primary in the oplog and set that OpTime as the floor for what we will
    //     consider to be committed.
    // 6.) Drop the RSTL.
    //
    // Because replicatable writes are forbidden while in drain mode, and we don't exit drain
    // mode until we have the RSTL in mode X, which forbids all other threads from making
    // writes, we know that from the time that _canAcceptNonLocalWrites is set until
    // this method returns, no external writes will be processed.  This is important so that a new
    // temp collection isn't introduced on the new primary before we drop all the temp collections.

    // When we go to drop all temp collections, we must replicate the drops.
    invariant(opCtx->writesAreReplicated());

    stdx::unique_lock<Latch> lk(_mutex);
    if (_applierState != ApplierState::Draining) {
        return;
    }
    lk.unlock();

    _externalState->onDrainComplete(opCtx);

    // Kill all user writes and user reads that encounter a prepare conflict. Also kills select
    // internal operations. Although secondaries cannot accept writes, a step up can kill writes
    // that were blocked behind the RSTL lock held by a step down attempt. These writes will be
    // killed with a retryable error code during step up.
    AutoGetRstlForStepUpStepDown arsu(
        this, opCtx, ReplicationCoordinator::OpsKillingStateTransitionEnum::kStepUp);
    lk.lock();

    // Exit drain mode only if we're actually in draining mode, the apply buffer is empty in the
    // current term, and we're allowed to become the write master.
    if (_applierState != ApplierState::Draining ||
        !_topCoord->canCompleteTransitionToPrimary(termWhenBufferIsEmpty)) {
        return;
    }
    _applierState = ApplierState::Stopped;

    invariant(_getMemberState_inlock().primary());
    invariant(!_readWriteAbility->canAcceptNonLocalWrites(opCtx));

    {
        lk.unlock();
        AllowNonLocalWritesBlock writesAllowed(opCtx);
        OpTime firstOpTime = _externalState->onTransitionToPrimary(opCtx);
        lk.lock();

        _topCoord->completeTransitionToPrimary(firstOpTime);
    }

    // Must calculate the commit level again because firstOpTimeOfMyTerm wasn't set when we logged
    // our election in onTransitionToPrimary(), above.
    _updateLastCommittedOpTimeAndWallTime(lk);

    // Update _canAcceptNonLocalWrites.
    _updateWriteAbilityFromTopologyCoordinator(lk, opCtx);
    _updateMemberStateFromTopologyCoordinator(lk);

    log() << "transition to primary complete; database writes are now permitted" << rsLog;
    _drainFinishedCond.notify_all();
    _externalState->startNoopWriter(_getMyLastAppliedOpTime_inlock());
}

Status ReplicationCoordinatorImpl::waitForDrainFinish(Milliseconds timeout) {
    if (timeout < Milliseconds(0)) {
        return Status(ErrorCodes::BadValue, "Timeout duration cannot be negative");
    }

    stdx::unique_lock<Latch> lk(_mutex);
    auto pred = [this]() { return _applierState != ApplierState::Draining; };
    if (!_drainFinishedCond.wait_for(lk, timeout.toSystemDuration(), pred)) {
        return Status(ErrorCodes::ExceededTimeLimit,
                      "Timed out waiting to finish draining applier buffer");
    }

    return Status::OK();
}

void ReplicationCoordinatorImpl::signalUpstreamUpdater() {
    _externalState->forwardSlaveProgress();
}

void ReplicationCoordinatorImpl::setMyHeartbeatMessage(const std::string& msg) {
    stdx::unique_lock<Latch> lock(_mutex);
    _topCoord->setMyHeartbeatMessage(_replExecutor->now(), msg);
}

void ReplicationCoordinatorImpl::setMyLastAppliedOpTimeAndWallTimeForward(
    const OpTimeAndWallTime& opTimeAndWallTime, DataConsistency consistency) {
    // Update the global timestamp before setting the last applied opTime forward so the last
    // applied optime is never greater than the latest cluster time in the logical clock.
    const auto opTime = opTimeAndWallTime.opTime;
    _externalState->setGlobalTimestamp(getServiceContext(), opTime.getTimestamp());

    stdx::unique_lock<Latch> lock(_mutex);
    auto myLastAppliedOpTime = _getMyLastAppliedOpTime_inlock();
    if (opTime > myLastAppliedOpTime) {
        _setMyLastAppliedOpTimeAndWallTime(lock, opTimeAndWallTime, false, consistency);
        _reportUpstream_inlock(std::move(lock));
    } else {
        if (opTime != myLastAppliedOpTime) {
            // In pv1, oplog entries are ordered by non-decreasing term and strictly increasing
            // timestamp. So, in pv1, its not possible for us to get opTime with lower term and
            // timestamp higher than or equal to our current lastAppliedOptime.
            invariant(opTime.getTerm() == OpTime::kUninitializedTerm ||
                      myLastAppliedOpTime.getTerm() == OpTime::kUninitializedTerm ||
                      opTime.getTimestamp() < myLastAppliedOpTime.getTimestamp());
        }

        if (consistency == DataConsistency::Consistent &&
            _readWriteAbility->canAcceptNonLocalWrites(lock) && _rsConfig.getWriteMajority() == 1) {
            // Single vote primaries may have a lagged stable timestamp due to paring back the
            // stable timestamp to the all committed timestamp.
            _setStableTimestampForStorage(lock);
        }
    }
}

void ReplicationCoordinatorImpl::setMyLastDurableOpTimeAndWallTimeForward(
    const OpTimeAndWallTime& opTimeAndWallTime) {
    stdx::unique_lock<Latch> lock(_mutex);
    if (opTimeAndWallTime.opTime > _getMyLastDurableOpTime_inlock()) {
        _setMyLastDurableOpTimeAndWallTime(lock, opTimeAndWallTime, false);
        _reportUpstream_inlock(std::move(lock));
    }
}

void ReplicationCoordinatorImpl::setMyLastAppliedOpTimeAndWallTime(
    const OpTimeAndWallTime& opTimeAndWallTime) {
    const auto opTime = opTimeAndWallTime.opTime;
    // Update the global timestamp before setting the last applied opTime forward so the last
    // applied optime is never greater than the latest cluster time in the logical clock.
    _externalState->setGlobalTimestamp(getServiceContext(), opTime.getTimestamp());

    stdx::unique_lock<Latch> lock(_mutex);
    // The optime passed to this function is required to represent a consistent database state.
    _setMyLastAppliedOpTimeAndWallTime(lock, opTimeAndWallTime, false, DataConsistency::Consistent);
    _reportUpstream_inlock(std::move(lock));
}

void ReplicationCoordinatorImpl::setMyLastDurableOpTimeAndWallTime(
    const OpTimeAndWallTime& opTimeAndWallTime) {
    stdx::unique_lock<Latch> lock(_mutex);
    _setMyLastDurableOpTimeAndWallTime(lock, opTimeAndWallTime, false);
    _reportUpstream_inlock(std::move(lock));
}

void ReplicationCoordinatorImpl::resetMyLastOpTimes() {
    stdx::unique_lock<Latch> lock(_mutex);
    _resetMyLastOpTimes(lock);
    _reportUpstream_inlock(std::move(lock));
}

void ReplicationCoordinatorImpl::_resetMyLastOpTimes(WithLock lk) {
    LOG(1) << "resetting durable/applied optimes.";
    // Reset to uninitialized OpTime
    bool isRollbackAllowed = true;
    _setMyLastAppliedOpTimeAndWallTime(
        lk, {OpTime(), Date_t()}, isRollbackAllowed, DataConsistency::Inconsistent);
    _setMyLastDurableOpTimeAndWallTime(lk, {OpTime(), Date_t()}, isRollbackAllowed);
    _stableOpTimeCandidates.clear();
}

void ReplicationCoordinatorImpl::_reportUpstream_inlock(stdx::unique_lock<Latch> lock) {
    invariant(lock.owns_lock());

    if (getReplicationMode() != modeReplSet) {
        return;
    }

    if (_getMemberState_inlock().primary()) {
        return;
    }

    lock.unlock();

    _externalState->forwardSlaveProgress();  // Must do this outside _mutex
}

void ReplicationCoordinatorImpl::_setMyLastAppliedOpTimeAndWallTime(
    WithLock lk,
    const OpTimeAndWallTime& opTimeAndWallTime,
    bool isRollbackAllowed,
    DataConsistency consistency) {
    const auto opTime = opTimeAndWallTime.opTime;

    // The last applied opTime should never advance beyond the global timestamp (i.e. the latest
    // cluster time). Not enforced if the logical clock is disabled, e.g. for arbiters.
    dassert(!LogicalClock::get(getServiceContext())->isEnabled() ||
            _externalState->getGlobalTimestamp(getServiceContext()) >= opTime.getTimestamp());

    _topCoord->setMyLastAppliedOpTimeAndWallTime(
        opTimeAndWallTime, _replExecutor->now(), isRollbackAllowed);
    // If we are using applied times to calculate the commit level, update it now.
    if (!_rsConfig.getWriteConcernMajorityShouldJournal()) {
        _updateLastCommittedOpTimeAndWallTime(lk);
    }

    // Update the storage engine's lastApplied snapshot before updating the stable timestamp on the
    // storage engine. New transactions reading from the lastApplied snapshot should start before
    // the oldest timestamp is advanced to avoid races. Additionally, update this snapshot before
    // signaling optime waiters. This avoids a race that would allow optime waiters to open
    // transactions on stale lastApplied values because they do not hold or reacquire the
    // replication coordinator mutex when signaled.
    _externalState->updateLastAppliedSnapshot(opTime);

    // Signal anyone waiting on optime changes.
    _opTimeWaiterList.signalIf_inlock(
        [opTime](Waiter* waiter) { return waiter->opTime <= opTime; });

    // Notify the oplog waiters after updating the local snapshot.
    signalOplogWaiters();

    if (opTime.isNull()) {
        return;
    }

    // Add the new applied optime to the list of stable optime candidates and then set the last
    // stable optime. Stable optimes are used to determine the last optime that it is safe to revert
    // the database to, in the event of a rollback via the 'recover to timestamp' method. If we are
    // setting our applied optime to a value that doesn't represent a consistent database state, we
    // should not add it to the set of stable optime candidates. For example, if we are in
    // RECOVERING after a rollback using the 'rollbackViaRefetch' algorithm, we will be inconsistent
    // until we reach the 'minValid' optime.
    if (consistency == DataConsistency::Consistent) {
        invariant(opTime.getTimestamp().getInc() > 0,
                  str::stream() << "Impossible optime received: " << opTime.toString());
        _stableOpTimeCandidates.insert(opTimeAndWallTime);
        // If we are lagged behind the commit optime, set a new stable timestamp here. When majority
        // read concern is disabled, the stable timestamp is set to lastApplied.
        if (opTime <= _topCoord->getLastCommittedOpTime() ||
            !serverGlobalParams.enableMajorityReadConcern) {
            _setStableTimestampForStorage(lk);
        }
    } else if (_getMemberState_inlock().startup2()) {
        // The oplog application phase of initial sync starts timestamping writes, causing
        // WiredTiger to pin this data in memory. Advancing the oldest timestamp in step with the
        // last applied optime here will permit WiredTiger to evict this data as it sees fit.
        _service->getStorageEngine()->setOldestTimestamp(opTime.getTimestamp());
    }
}

void ReplicationCoordinatorImpl::_setMyLastDurableOpTimeAndWallTime(
    WithLock lk, const OpTimeAndWallTime& opTimeAndWallTime, bool isRollbackAllowed) {
    _topCoord->setMyLastDurableOpTimeAndWallTime(
        opTimeAndWallTime, _replExecutor->now(), isRollbackAllowed);
    // If we are using durable times to calculate the commit level, update it now.
    if (_rsConfig.getWriteConcernMajorityShouldJournal()) {
        _updateLastCommittedOpTimeAndWallTime(lk);
    }
}

OpTime ReplicationCoordinatorImpl::getMyLastAppliedOpTime() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _getMyLastAppliedOpTime_inlock();
}

OpTimeAndWallTime ReplicationCoordinatorImpl::getMyLastAppliedOpTimeAndWallTime() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _getMyLastAppliedOpTimeAndWallTime_inlock();
}

OpTimeAndWallTime ReplicationCoordinatorImpl::getMyLastDurableOpTimeAndWallTime() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _getMyLastDurableOpTimeAndWallTime_inlock();
}

OpTime ReplicationCoordinatorImpl::getMyLastDurableOpTime() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _getMyLastDurableOpTime_inlock();
}

Status ReplicationCoordinatorImpl::_validateReadConcern(OperationContext* opCtx,
                                                        const ReadConcernArgs& readConcern) {
    if (readConcern.getArgsAfterClusterTime() &&
        readConcern.getLevel() != ReadConcernLevel::kMajorityReadConcern &&
        readConcern.getLevel() != ReadConcernLevel::kLocalReadConcern &&
        readConcern.getLevel() != ReadConcernLevel::kSnapshotReadConcern) {
        return {
            ErrorCodes::BadValue,
            "Only readConcern level 'majority', 'local', or 'snapshot' is allowed when specifying "
            "afterClusterTime"};
    }

    if (readConcern.getArgsAtClusterTime() &&
        readConcern.getLevel() != ReadConcernLevel::kSnapshotReadConcern) {
        return {ErrorCodes::BadValue,
                "readConcern level 'snapshot' is required when specifying atClusterTime"};
    }

    // We cannot support read concern 'majority' by means of reading from a historical snapshot if
    // the storage layer doesn't support it. In this case, we can support it by using "speculative"
    // majority reads instead.
    if (readConcern.getLevel() == ReadConcernLevel::kMajorityReadConcern &&
        readConcern.getMajorityReadMechanism() ==
            ReadConcernArgs::MajorityReadMechanism::kMajoritySnapshot &&
        !_externalState->isReadCommittedSupportedByStorageEngine(opCtx)) {
        return {ErrorCodes::ReadConcernMajorityNotEnabled,
                str::stream() << "Storage engine does not support read concern: "
                              << readConcern.toString()};
    }

    if (readConcern.getLevel() == ReadConcernLevel::kSnapshotReadConcern &&
        !_externalState->isReadConcernSnapshotSupportedByStorageEngine(opCtx)) {
        return {ErrorCodes::InvalidOptions,
                str::stream() << "Storage engine does not support read concern: "
                              << readConcern.toString()};
    }

    if (readConcern.getArgsAtClusterTime() && !serverGlobalParams.enableMajorityReadConcern) {
        return {ErrorCodes::InvalidOptions,
                "readConcern level 'snapshot' is not supported in sharded clusters when "
                "enableMajorityReadConcern=false. See "
                "https://dochub.mongodb.org/core/"
                "disabled-read-concern-majority-snapshot-restrictions."};
    }

    return Status::OK();
}

Status ReplicationCoordinatorImpl::waitUntilOpTimeForRead(OperationContext* opCtx,
                                                          const ReadConcernArgs& readConcern) {
    auto verifyStatus = _validateReadConcern(opCtx, readConcern);
    if (!verifyStatus.isOK()) {
        return verifyStatus;
    }

    // nothing to wait for
    if (!readConcern.getArgsAfterClusterTime() && !readConcern.getArgsOpTime() &&
        !readConcern.getArgsAtClusterTime()) {
        return Status::OK();
    }

    // We should never wait for replication if we are holding any locks, because this can
    // potentially block for long time while doing network activity.
    if (opCtx->lockState()->isLocked()) {
        return {ErrorCodes::IllegalOperation,
                "Waiting for replication not allowed while holding a lock"};
    }

    return waitUntilOpTimeForReadUntil(opCtx, readConcern, boost::none);
}

Status ReplicationCoordinatorImpl::waitUntilOpTimeForReadUntil(OperationContext* opCtx,
                                                               const ReadConcernArgs& readConcern,
                                                               boost::optional<Date_t> deadline) {
    if (getReplicationMode() != repl::ReplicationCoordinator::modeReplSet) {
        // 'afterOpTime', 'afterClusterTime', and 'atClusterTime' are only supported for replica
        // sets.
        return {ErrorCodes::NotAReplicaSet,
                "node needs to be a replica set member to use read concern"};
    }

    if (_rsConfigState == kConfigUninitialized || _rsConfigState == kConfigInitiating) {
        return {ErrorCodes::NotYetInitialized,
                "Cannot use non-local read concern until replica set is finished initializing."};
    }

    if (readConcern.getArgsAfterClusterTime() || readConcern.getArgsAtClusterTime()) {
        return _waitUntilClusterTimeForRead(opCtx, readConcern, deadline);
    } else {
        return _waitUntilOpTimeForReadDeprecated(opCtx, readConcern);
    }
}

Status ReplicationCoordinatorImpl::_waitUntilOpTime(OperationContext* opCtx,
                                                    bool isMajorityCommittedRead,
                                                    OpTime targetOpTime,
                                                    boost::optional<Date_t> deadline) {
    if (!isMajorityCommittedRead) {
        if (!_externalState->oplogExists(opCtx)) {
            return {ErrorCodes::NotYetInitialized, "The oplog does not exist."};
        }
    }

    stdx::unique_lock<Latch> lock(_mutex);

    if (isMajorityCommittedRead && !_externalState->snapshotsEnabled()) {
        return {ErrorCodes::CommandNotSupported,
                "Current storage engine does not support majority committed reads"};
    }

    auto getCurrentOpTime = [this, isMajorityCommittedRead]() {
        return isMajorityCommittedRead ? _getCurrentCommittedSnapshotOpTime_inlock()
                                       : _getMyLastAppliedOpTime_inlock();
    };

    if (isMajorityCommittedRead && targetOpTime > getCurrentOpTime()) {
        LOG(1) << "waitUntilOpTime: waiting for optime:" << targetOpTime
               << " to be in a snapshot -- current snapshot: " << getCurrentOpTime();
    }

    while (targetOpTime > getCurrentOpTime()) {
        if (_inShutdown) {
            return {ErrorCodes::ShutdownInProgress, "Shutdown in progress"};
        }

        if (isMajorityCommittedRead) {
            // If we are doing a majority committed read we only need to wait for a new snapshot to
            // update getCurrentOpTime() past targetOpTime. This block should only run once and
            // return without further looping.

            LOG(3) << "waitUntilOpTime: waiting for a new snapshot until " << opCtx->getDeadline();

            try {
                opCtx->waitForConditionOrInterrupt(_currentCommittedSnapshotCond, lock, [&] {
                    return _inShutdown || (targetOpTime <= getCurrentOpTime());
                });
            } catch (const DBException& e) {
                return e.toStatus().withContext(
                    str::stream() << "Error waiting for snapshot not less than "
                                  << targetOpTime.toString() << ", current relevant optime is "
                                  << getCurrentOpTime().toString() << ".");
            }

            if (_inShutdown) {
                return {ErrorCodes::ShutdownInProgress, "Shutdown in progress"};
            }

            if (_currentCommittedSnapshot) {
                // It seems that targetOpTime can sometimes be default OpTime{}. When there is no
                // _currentCommittedSnapshot, _getCurrentCommittedSnapshotOpTime_inlock() and thus
                // getCurrentOpTime() also return default OpTime{}. Hence this branch that only runs
                // if _currentCommittedSnapshot actually exists.
                LOG(3) << "Got notified of new snapshot: " << _currentCommittedSnapshot->toString();
            }
            return Status::OK();
        }

        // We just need to wait for the opTime to catch up to what we need (not majority RC).
        stdx::condition_variable condVar;
        ThreadWaiter waiter(targetOpTime, nullptr, &condVar);
        WaiterGuard guard(lock, &_opTimeWaiterList, &waiter);

        LOG(3) << "waitUntilOpTime: OpID " << opCtx->getOpID() << " is waiting for OpTime "
               << waiter << " until " << opCtx->getDeadline();

        try {
            opCtx->waitForConditionOrInterruptUntil(
                condVar, lock, deadline.value_or(Date_t::max()), waiter.makePredicate());
        } catch (const DBException& e) {
            return e.toStatus().withContext(str::stream() << "Error waiting for optime "
                                                          << targetOpTime.toString()
                                                          << ", current relevant optime is "
                                                          << getCurrentOpTime().toString() << ".");
        }

        // If deadline is set no need to wait until the targetTime time is reached.
        if (deadline) {
            return Status::OK();
        }
    }

    lock.unlock();

    if (!isMajorityCommittedRead) {
        // This assumes the read concern is "local" level.
        // We need to wait for all committed writes to be visible, even in the oplog (which uses
        // special visibility rules).  We must do this after waiting for our target optime, because
        // only then do we know that it will fill in all "holes" before that time.  If we do it
        // earlier, we may return when the requested optime has been reached, but other writes
        // at optimes before that time are not yet visible.
        //
        // We wait only on primaries, because on secondaries, other mechanisms assure that the
        // last applied optime is always hole-free, and waiting for all earlier writes to be visible
        // can deadlock against secondary command application.
        //
        // Note that oplog queries by secondary nodes depend on this behavior to wait for
        // all oplog holes to be filled in, despite providing an afterClusterTime field
        // with Timestamp(0,1).
        _storage->waitForAllEarlierOplogWritesToBeVisible(opCtx, /* primaryOnly =*/true);
    }

    return Status::OK();
}

Status ReplicationCoordinatorImpl::_waitUntilClusterTimeForRead(OperationContext* opCtx,
                                                                const ReadConcernArgs& readConcern,
                                                                boost::optional<Date_t> deadline) {
    invariant(readConcern.getArgsAfterClusterTime() || readConcern.getArgsAtClusterTime());
    invariant(!readConcern.getArgsAfterClusterTime() || !readConcern.getArgsAtClusterTime());
    auto clusterTime = readConcern.getArgsAfterClusterTime()
        ? *readConcern.getArgsAfterClusterTime()
        : *readConcern.getArgsAtClusterTime();
    invariant(clusterTime != LogicalTime::kUninitialized);

    // convert clusterTime to opTime so it can be used by the _opTimeWaiterList for wait on
    // readConcern level local.
    auto targetOpTime = OpTime(clusterTime.asTimestamp(), OpTime::kUninitializedTerm);
    invariant(!readConcern.getArgsOpTime());

    // We don't set isMajorityCommittedRead for kSnapshotReadConcern because snapshots are always
    // speculative; we wait for majority when the transaction commits.
    //
    // Speculative majority reads do not need to wait for the commit point to advance to satisfy
    // afterClusterTime reads. Waiting for the lastApplied to advance past the given target optime
    // ensures the recency guarantee for the afterClusterTime read. At the end of the command, we
    // will wait for the lastApplied optime to become majority committed, which then satisfies the
    // durability guarantee.
    const bool isMajorityCommittedRead =
        readConcern.getLevel() == ReadConcernLevel::kMajorityReadConcern &&
        !readConcern.isSpeculativeMajority();

    return _waitUntilOpTime(opCtx, isMajorityCommittedRead, targetOpTime, deadline);
}

// TODO: remove when SERVER-29729 is done
Status ReplicationCoordinatorImpl::_waitUntilOpTimeForReadDeprecated(
    OperationContext* opCtx, const ReadConcernArgs& readConcern) {
    const bool isMajorityCommittedRead =
        readConcern.getLevel() == ReadConcernLevel::kMajorityReadConcern;

    const auto targetOpTime = readConcern.getArgsOpTime().value_or(OpTime());
    return _waitUntilOpTime(opCtx, isMajorityCommittedRead, targetOpTime);
}

Status ReplicationCoordinatorImpl::awaitTimestampCommitted(OperationContext* opCtx, Timestamp ts) {
    // Using an uninitialized term means that this optime will be compared to other optimes only by
    // its timestamp. This allows us to wait only on the timestamp of the commit point surpassing
    // this timestamp, without worrying about terms.
    OpTime waitOpTime(ts, OpTime::kUninitializedTerm);
    const bool isMajorityCommittedRead = true;
    return _waitUntilOpTime(opCtx, isMajorityCommittedRead, waitOpTime);
}

OpTimeAndWallTime ReplicationCoordinatorImpl::_getMyLastAppliedOpTimeAndWallTime_inlock() const {
    return _topCoord->getMyLastAppliedOpTimeAndWallTime();
}

OpTime ReplicationCoordinatorImpl::_getMyLastAppliedOpTime_inlock() const {
    return _topCoord->getMyLastAppliedOpTime();
}

OpTimeAndWallTime ReplicationCoordinatorImpl::_getMyLastDurableOpTimeAndWallTime_inlock() const {
    return _topCoord->getMyLastDurableOpTimeAndWallTime();
}

OpTime ReplicationCoordinatorImpl::_getMyLastDurableOpTime_inlock() const {
    return _topCoord->getMyLastDurableOpTime();
}

Status ReplicationCoordinatorImpl::setLastDurableOptime_forTest(long long cfgVer,
                                                                long long memberId,
                                                                const OpTime& opTime,
                                                                Date_t wallTime) {
    stdx::lock_guard<Latch> lock(_mutex);
    invariant(getReplicationMode() == modeReplSet);

    if (wallTime == Date_t()) {
        wallTime = Date_t() + Seconds(opTime.getSecs());
    }

    const UpdatePositionArgs::UpdateInfo update(
        OpTime(), Date_t(), opTime, wallTime, cfgVer, memberId);
    long long configVersion;
    const auto status = _setLastOptime(lock, update, &configVersion);
    _updateLastCommittedOpTimeAndWallTime(lock);
    return status;
}

Status ReplicationCoordinatorImpl::setLastAppliedOptime_forTest(long long cfgVer,
                                                                long long memberId,
                                                                const OpTime& opTime,
                                                                Date_t wallTime) {
    stdx::lock_guard<Latch> lock(_mutex);
    invariant(getReplicationMode() == modeReplSet);

    if (wallTime == Date_t()) {
        wallTime = Date_t() + Seconds(opTime.getSecs());
    }

    const UpdatePositionArgs::UpdateInfo update(
        opTime, wallTime, OpTime(), Date_t(), cfgVer, memberId);
    long long configVersion;
    const auto status = _setLastOptime(lock, update, &configVersion);
    _updateLastCommittedOpTimeAndWallTime(lock);
    return status;
}

Status ReplicationCoordinatorImpl::_setLastOptime(WithLock lk,
                                                  const UpdatePositionArgs::UpdateInfo& args,
                                                  long long* configVersion) {
    auto result = _topCoord->setLastOptime(args, _replExecutor->now(), configVersion);
    if (!result.isOK())
        return result.getStatus();
    const bool advancedOpTime = result.getValue();
    // Only update committed optime if the remote optimes increased.
    if (advancedOpTime) {
        _updateLastCommittedOpTimeAndWallTime(lk);
    }

    _cancelAndRescheduleLivenessUpdate_inlock(args.memberId);
    return Status::OK();
}

bool ReplicationCoordinatorImpl::_doneWaitingForReplication_inlock(
    const OpTime& opTime, const WriteConcernOptions& writeConcern) {
    // The syncMode cannot be unset.
    invariant(writeConcern.syncMode != WriteConcernOptions::SyncMode::UNSET);
    Status status = _checkIfWriteConcernCanBeSatisfied_inlock(writeConcern);
    if (!status.isOK()) {
        return true;
    }

    const bool useDurableOpTime = writeConcern.syncMode == WriteConcernOptions::SyncMode::JOURNAL;

    if (writeConcern.wMode.empty()) {
        return _topCoord->haveNumNodesReachedOpTime(
            opTime, writeConcern.wNumNodes, useDurableOpTime);
    }

    StringData patternName;
    if (writeConcern.wMode == WriteConcernOptions::kMajority) {
        if (_externalState->snapshotsEnabled() && !gTestingSnapshotBehaviorInIsolation) {
            // Make sure we have a valid "committed" snapshot up to the needed optime.
            if (!_currentCommittedSnapshot) {
                return false;
            }

            // Wait for the "current" snapshot to advance to/past the opTime.
            const auto haveSnapshot = _currentCommittedSnapshot->opTime >= opTime;
            if (!haveSnapshot) {
                LOG(1) << "Required snapshot optime: " << opTime << " is not yet part of the "
                       << "current 'committed' snapshot: " << _currentCommittedSnapshot->opTime;
                return false;
            }

            // Fallthrough to wait for "majority" write concern.
        }

        // Wait for all drop pending collections with drop optime before and at 'opTime' to be
        // removed from storage.
        if (auto dropOpTime = _externalState->getEarliestDropPendingOpTime()) {
            if (*dropOpTime <= opTime) {
                LOG(1) << "Unable to satisfy the requested majority write concern at "
                          "'committed' optime "
                       << opTime
                       << ". There are still drop pending collections (earliest drop optime: "
                       << *dropOpTime
                       << ") that have to be removed from storage before we can "
                          "satisfy the write concern "
                       << writeConcern.toBSON();
                return false;
            }
        }

        // Continue and wait for replication to the majority (of voters).
        // *** Needed for J:True, writeConcernMajorityShouldJournal:False (appliedOpTime snapshot).
        patternName = ReplSetConfig::kMajorityWriteConcernModeName;
    } else {
        patternName = writeConcern.wMode;
    }

    StatusWith<ReplSetTagPattern> tagPattern = _rsConfig.findCustomWriteMode(patternName);
    if (!tagPattern.isOK()) {
        return true;
    }
    return _topCoord->haveTaggedNodesReachedOpTime(opTime, tagPattern.getValue(), useDurableOpTime);
}

ReplicationCoordinator::StatusAndDuration ReplicationCoordinatorImpl::awaitReplication(
    OperationContext* opCtx, const OpTime& opTime, const WriteConcernOptions& writeConcern) {
    Timer timer;
    WriteConcernOptions fixedWriteConcern = populateUnsetWriteConcernOptionsSyncMode(writeConcern);
    stdx::unique_lock<Latch> lock(_mutex);
    auto status = _awaitReplication_inlock(&lock, opCtx, opTime, fixedWriteConcern);
    return {std::move(status), duration_cast<Milliseconds>(timer.elapsed())};
}

BSONObj ReplicationCoordinatorImpl::_getReplicationProgress(WithLock wl) const {
    BSONObjBuilder progress;

    const auto lastCommittedOpTime = _topCoord->getLastCommittedOpTime();
    progress.append("lastCommittedOpTime", lastCommittedOpTime.toBSON());

    const auto currentCommittedSnapshotOpTime = _getCurrentCommittedSnapshotOpTime_inlock();
    progress.append("currentCommittedSnapshotOpTime", currentCommittedSnapshotOpTime.toBSON());

    const auto earliestDropPendingOpTime = _externalState->getEarliestDropPendingOpTime();
    if (earliestDropPendingOpTime) {
        progress.append("earliestDropPendingOpTime", earliestDropPendingOpTime->toBSON());
    }

    _topCoord->fillMemberData(&progress);
    return progress.obj();
}
Status ReplicationCoordinatorImpl::_awaitReplication_inlock(
    stdx::unique_lock<Latch>* lock,
    OperationContext* opCtx,
    const OpTime& opTime,
    const WriteConcernOptions& writeConcern) {

    // We should never wait for replication if we are holding any locks, because this can
    // potentially block for long time while doing network activity.
    if (opCtx->lockState()->isLocked()) {
        return {ErrorCodes::IllegalOperation,
                "Waiting for replication not allowed while holding a lock"};
    }

    const Mode replMode = getReplicationMode();
    if (replMode == modeNone) {
        // no replication check needed (validated above)
        return Status::OK();
    }

    if (opTime.isNull()) {
        // If waiting for the empty optime, always say it's been replicated.
        return Status::OK();
    }

    auto interruptStatus = opCtx->checkForInterruptNoAssert();
    if (!interruptStatus.isOK()) {
        return interruptStatus;
    }

    auto checkForStepDown = [&]() -> Status {
        if (replMode == modeReplSet && !_memberState.primary()) {
            return {ErrorCodes::PrimarySteppedDown,
                    "Primary stepped down while waiting for replication"};
        }

        if (opTime.getTerm() != _topCoord->getTerm()) {
            return {
                ErrorCodes::PrimarySteppedDown,
                str::stream() << "Term changed from " << opTime.getTerm() << " to "
                              << _topCoord->getTerm()
                              << " while waiting for replication, indicating that this node must "
                                 "have stepped down."};
        }

        if (_topCoord->isSteppingDown()) {
            return {ErrorCodes::PrimarySteppedDown,
                    "Received stepdown request while waiting for replication"};
        }
        return Status::OK();
    };

    Status stepdownStatus = checkForStepDown();
    if (!stepdownStatus.isOK()) {
        return stepdownStatus;
    }

    if (writeConcern.wMode.empty()) {
        if (writeConcern.wNumNodes < 1) {
            return Status::OK();
        } else if (writeConcern.wNumNodes == 1 && _getMyLastAppliedOpTime_inlock() >= opTime) {
            return Status::OK();
        }
    }

    auto clockSource = opCtx->getServiceContext()->getFastClockSource();
    const auto wTimeoutDate = [&]() -> const Date_t {
        if (writeConcern.wDeadline != Date_t::max()) {
            return writeConcern.wDeadline;
        }
        if (writeConcern.wTimeout == WriteConcernOptions::kNoTimeout) {
            return Date_t::max();
        }
        return clockSource->now() + clockSource->getPrecision() +
            Milliseconds{writeConcern.wTimeout};
    }();

    // Must hold _mutex before constructing waitInfo as it will modify _replicationWaiterList
    stdx::condition_variable condVar;
    ThreadWaiter waiter(opTime, &writeConcern, &condVar);
    WaiterGuard guard(*lock, &_replicationWaiterList, &waiter);

    auto failGuard = makeGuard([&] {
        if (getTestCommandsEnabled()) {
            log() << "Replication failed for write concern: " << writeConcern.toBSON()
                  << ", waitInfo: " << waiter << ", opID: " << opCtx->getOpID()
                  << ", progress: " << _getReplicationProgress(*lock);
        }
    });

    while (!_doneWaitingForReplication_inlock(opTime, writeConcern)) {

        if (_inShutdown) {
            return {ErrorCodes::ShutdownInProgress, "Replication is being shut down"};
        }

        try {
            if (!opCtx->waitForConditionOrInterruptUntil(
                    condVar, *lock, wTimeoutDate, waiter.makePredicate())) {
                return {ErrorCodes::WriteConcernFailed, "waiting for replication timed out"};
            }
        } catch (const DBException& e) {
            return e.toStatus();
        }

        stepdownStatus = checkForStepDown();
        if (!stepdownStatus.isOK()) {
            return stepdownStatus;
        }
    }

    auto satisfiableStatus = _checkIfWriteConcernCanBeSatisfied_inlock(writeConcern);
    if (!satisfiableStatus.isOK()) {
        return satisfiableStatus;
    }

    failGuard.dismiss();
    return Status::OK();
}

void ReplicationCoordinatorImpl::waitForStepDownAttempt_forTest() {
    auto isSteppingDown = [&]() {
        stdx::unique_lock<Latch> lk(_mutex);
        // If true, we know that a stepdown is underway.
        return (_topCoord->isSteppingDown());
    };

    while (!isSteppingDown()) {
        sleepFor(Milliseconds{10});
    }
}

void ReplicationCoordinatorImpl::updateAndLogStateTransitionMetrics(
    const ReplicationCoordinator::OpsKillingStateTransitionEnum stateTransition,
    const size_t numOpsKilled,
    const size_t numOpsRunning) const {

    // Clear the current metrics before setting.
    userOpsKilled.decrement(userOpsKilled.get());
    userOpsRunning.decrement(userOpsRunning.get());

    switch (stateTransition) {
        case ReplicationCoordinator::OpsKillingStateTransitionEnum::kStepUp:
            lastStateTransition = "stepUp";
            break;
        case ReplicationCoordinator::OpsKillingStateTransitionEnum::kStepDown:
            lastStateTransition = "stepDown";
            break;
        case ReplicationCoordinator::OpsKillingStateTransitionEnum::kRollback:
            lastStateTransition = "rollback";
            break;
        default:
            MONGO_UNREACHABLE;
    }

    userOpsKilled.increment(numOpsKilled);
    userOpsRunning.increment(numOpsRunning);

    BSONObjBuilder bob;
    bob.append("lastStateTransition", lastStateTransition);
    bob.appendNumber("userOpsKilled", userOpsKilled.get());
    bob.appendNumber("userOpsRunning", userOpsRunning.get());

    log() << "State transition ops metrics: " << bob.obj();
}

void ReplicationCoordinatorImpl::_killConflictingOpsOnStepUpAndStepDown(
    AutoGetRstlForStepUpStepDown* arsc, ErrorCodes::Error reason) {
    const OperationContext* rstlOpCtx = arsc->getOpCtx();
    ServiceContext* serviceCtx = rstlOpCtx->getServiceContext();
    invariant(serviceCtx);

    for (ServiceContext::LockedClientsCursor cursor(serviceCtx); Client* client = cursor.next();) {
        stdx::lock_guard<Client> lk(*client);
        if (client->isFromSystemConnection() && !client->shouldKillSystemOperation(lk)) {
            continue;
        }

        OperationContext* toKill = client->getOperationContext();

        // Don't kill step up/step down thread.
        if (toKill && !toKill->isKillPending() && toKill->getOpID() != rstlOpCtx->getOpID()) {
            auto locker = toKill->lockState();
            if (toKill->shouldAlwaysInterruptAtStepDownOrUp() ||
                locker->wasGlobalLockTakenInModeConflictingWithWrites() ||
                PrepareConflictTracker::get(toKill).isWaitingOnPrepareConflict()) {
                serviceCtx->killOperation(lk, toKill, reason);
                arsc->incrementUserOpsKilled();
            } else {
                arsc->incrementUserOpsRunning();
            }
        }
    }
}

ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::AutoGetRstlForStepUpStepDown(
    ReplicationCoordinatorImpl* repl,
    OperationContext* opCtx,
    const ReplicationCoordinator::OpsKillingStateTransitionEnum stateTransition,
    Date_t deadline)
    : _replCord(repl), _opCtx(opCtx), _stateTransition(stateTransition) {
    invariant(_replCord && _opCtx);

    // The state transition should never be rollback within this class.
    invariant(_stateTransition != ReplicationCoordinator::OpsKillingStateTransitionEnum::kRollback);

    // Enqueues RSTL in X mode.
    _rstlLock.emplace(_opCtx, MODE_X, ReplicationStateTransitionLockGuard::EnqueueOnly());

    ON_BLOCK_EXIT([&] { _stopAndWaitForKillOpThread(); });
    _startKillOpThread();

    // Wait for RSTL to be acquired.
    _rstlLock->waitForLockUntil(deadline);
};

void ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::_startKillOpThread() {
    invariant(!_killOpThread);
    _killOpThread = stdx::make_unique<stdx::thread>([this] { _killOpThreadFn(); });
}

void ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::_killOpThreadFn() {
    Client::initThread("RstlKillOpThread");

    invariant(!cc().isFromUserConnection());

    log() << "Starting to kill user operations";
    auto uniqueOpCtx = cc().makeOperationContext();
    OperationContext* opCtx = uniqueOpCtx.get();

    // Set the reason for killing operations.
    ErrorCodes::Error killReason = ErrorCodes::InterruptedDueToReplStateChange;

    while (true) {
        // Reset the value before killing user operations as we only want to track the number
        // of operations that's running after step down.
        _userOpsRunning = 0;
        _replCord->_killConflictingOpsOnStepUpAndStepDown(this, killReason);

        // Destroy all stashed transaction resources, in order to release locks.
        SessionKiller::Matcher matcherAllSessions(
            KillAllSessionsByPatternSet{makeKillAllSessionsByPattern(opCtx)});
        killSessionsAbortUnpreparedTransactions(opCtx, matcherAllSessions, killReason);

        // Operations (like batch insert) that have currently yielded the global lock during step
        // down can reacquire global lock in IX mode when this node steps back up after a brief
        // network partition. And, this can lead to data inconsistency (see SERVER-27534). So,
        // its important we mark operations killed at least once after enqueuing the RSTL lock in
        // X mode for the first time. This ensures that no writing operations will continue
        // after the node's term change.
        {
            stdx::unique_lock<Latch> lock(_mutex);
            if (_stopKillingOps.wait_for(
                    lock, Milliseconds(10).toSystemDuration(), [this] { return _killSignaled; })) {
                log() << "Stopped killing user operations";
                _replCord->updateAndLogStateTransitionMetrics(
                    _stateTransition, getUserOpsKilled(), getUserOpsRunning());
                _killSignaled = false;
                return;
            }
        }
    }
}

void ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::_stopAndWaitForKillOpThread() {
    if (!(_killOpThread && _killOpThread->joinable()))
        return;

    {
        stdx::unique_lock<Latch> lock(_mutex);
        _killSignaled = true;
        _stopKillingOps.notify_all();
    }
    _killOpThread->join();
    _killOpThread.reset();
}

size_t ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::getUserOpsKilled() const {
    return _userOpsKilled;
}

void ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::incrementUserOpsKilled(size_t val) {
    _userOpsKilled += val;
}

size_t ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::getUserOpsRunning() const {
    return _userOpsRunning;
}

void ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::incrementUserOpsRunning(size_t val) {
    _userOpsRunning += val;
}

void ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::rstlRelease() {
    _rstlLock->release();
}

void ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::rstlReacquire() {
    // Ensure that we are not holding the RSTL lock in any mode.
    invariant(!_opCtx->lockState()->isRSTLLocked());

    // Since we have released the RSTL lock at this point, there can be some conflicting
    // operations sneaked in here. We need to kill those operations to acquire the RSTL lock.
    // Also, its ok to start "RstlKillOpthread" thread before RSTL lock enqueue as we kill
    // operations in a loop.
    ON_BLOCK_EXIT([&] { _stopAndWaitForKillOpThread(); });
    _startKillOpThread();
    _rstlLock->reacquire();
}

const OperationContext* ReplicationCoordinatorImpl::AutoGetRstlForStepUpStepDown::getOpCtx() const {
    return _opCtx;
}

void ReplicationCoordinatorImpl::stepDown(OperationContext* opCtx,
                                          const bool force,
                                          const Milliseconds& waitTime,
                                          const Milliseconds& stepdownTime) {

    const Date_t startTime = _replExecutor->now();
    const Date_t stepDownUntil = startTime + stepdownTime;
    const Date_t waitUntil = startTime + waitTime;

    // Note this check is inherently racy - it's always possible for the node to stepdown from some
    // other path before we acquire the global exclusive lock.  This check is just to try to save us
    // from acquiring the global X lock unnecessarily.
    uassert(ErrorCodes::NotWritablePrimary,
            "not primary so can't step down",
            getMemberState().primary());

    // This makes us tell the 'isMaster' command we can't accept writes (though in fact we can,
    // it is not valid to disable writes until we actually acquire the RSTL).
    {
        stdx::lock_guard lk(_mutex);
        _waitingForRSTLAtStepDown++;
    }
    auto clearStepDownFlag = makeGuard([&] {
        stdx::lock_guard lk(_mutex);
        _waitingForRSTLAtStepDown--;
    });

    CurOpFailpointHelpers::waitWhileFailPointEnabled(
        &stepdownHangBeforeRSTLEnqueue, opCtx, "stepdownHangBeforeRSTLEnqueue");

    // To prevent a deadlock between session checkout and RSTL lock taking, disallow new sessions
    // from being checked out. Existing sessions currently checked out will be killed by the
    // killOpThread.
    ScopedBlockSessionCheckouts blockSessions(opCtx);

    // Using 'force' sets the default for the wait time to zero, which means the stepdown will
    // fail if it does not acquire the lock immediately. In such a scenario, we use the
    // stepDownUntil deadline instead.
    auto deadline = force ? stepDownUntil : waitUntil;
    AutoGetRstlForStepUpStepDown arsd(
        this, opCtx, ReplicationCoordinator::OpsKillingStateTransitionEnum::kStepDown, deadline);

    stdx::unique_lock<Latch> lk(_mutex);

    opCtx->checkForInterrupt();

    const long long termAtStart = _topCoord->getTerm();

    // This will cause us to fail if we're already in the process of stepping down, or if we've
    // already successfully stepped down via another path.
    auto abortFn = uassertStatusOK(_topCoord->prepareForStepDownAttempt());

    // Update _canAcceptNonLocalWrites from the TopologyCoordinator now that we're in the middle
    // of a stepdown attempt.  This will prevent us from accepting writes so that if our stepdown
    // attempt fails later we can release the RSTL and go to sleep to allow secondaries to
    // catch up without allowing new writes in.
    _updateWriteAbilityFromTopologyCoordinator(lk, opCtx);
    auto action = _updateMemberStateFromTopologyCoordinator(lk);
    invariant(action == PostMemberStateUpdateAction::kActionNone);
    invariant(!_readWriteAbility->canAcceptNonLocalWrites(lk));

    // We truly cannot accept writes now so  no need for this flag any more.
    _waitingForRSTLAtStepDown--;
    clearStepDownFlag.dismiss();

    auto updateMemberState = [&] {
        invariant(lk.owns_lock());
        invariant(opCtx->lockState()->isRSTLExclusive());

        // Make sure that we leave _canAcceptNonLocalWrites in the proper state.
        _updateWriteAbilityFromTopologyCoordinator(lk, opCtx);
        auto action = _updateMemberStateFromTopologyCoordinator(lk);
        lk.unlock();

        if (MONGO_FAIL_POINT(stepdownHangBeforePerformingPostMemberStateUpdateActions)) {
            log() << "stepping down from primary - "
                     "stepdownHangBeforePerformingPostMemberStateUpdateActions fail point enabled. "
                     "Blocking until fail point is disabled.";
            while (MONGO_FAIL_POINT(stepdownHangBeforePerformingPostMemberStateUpdateActions)) {
                mongo::sleepsecs(1);
                {
                    stdx::lock_guard<Latch> lock(_mutex);
                    if (_inShutdown) {
                        break;
                    }
                }
            }
        }

        _performPostMemberStateUpdateAction(action);
    };
    auto onExitGuard = makeGuard([&] {
        abortFn();
        updateMemberState();
    });

    auto waitTimeout = std::min(waitTime, stepdownTime);
    auto lastAppliedOpTime = _getMyLastAppliedOpTime_inlock();

    {  // Add a scope to ensure that the WaiterGuard destructor runs before the mutex is released.

        // Set up a waiter which will be signalled when we process a heartbeat or updatePosition
        // and have a majority of nodes at our optime.
        stdx::condition_variable condVar;
        const WriteConcernOptions waiterWriteConcern(
            WriteConcernOptions::kMajority, WriteConcernOptions::SyncMode::NONE, waitTimeout);
        ThreadWaiter waiter(lastAppliedOpTime, &waiterWriteConcern, &condVar);
        WaiterGuard guard(lk, &_replicationWaiterList, &waiter);

        // If attemptStepDown() succeeds, we are guaranteed that no concurrent step up or
        // step down can happen afterwards. So, it's safe to release the mutex before
        // yieldLocksForPreparedTransactions().
        while (!_topCoord->tryToStartStepDown(
            termAtStart, _replExecutor->now(), waitUntil, stepDownUntil, force)) {

            // The stepdown attempt failed. We now release the RSTL to allow secondaries to read the
            // oplog, then wait until enough secondaries are caught up for us to finish stepdown.
            arsd.rstlRelease();
            invariant(!opCtx->lockState()->isLocked());

            // Make sure we re-acquire the RSTL before returning so that we're always holding the
            // RSTL when the onExitGuard set up earlier runs.
            ON_BLOCK_EXIT([&] {
                // Need to release _mutex before re-acquiring the RSTL to preserve lock acquisition
                // order rules.
                lk.unlock();

                // Need to re-acquire the RSTL before re-attempting stepdown. We use no timeout here
                // even though that means the lock acquisition could take longer than the stepdown
                // window. Since we'll need the RSTL no matter what to clean up a failed stepdown
                // attempt, we might as well spend whatever time we need to acquire it now.  For
                // the same reason, we also disable lock acquisition interruption, to guarantee that
                // we get the lock eventually.
                UninterruptibleLockGuard noInterrupt(opCtx->lockState());

                // Since we have released the RSTL lock at this point, there can be some read
                // operations sneaked in here, that might hold global lock in S mode or blocked on
                // prepare conflict. We need to kill those operations to avoid 3-way deadlock
                // between read, prepared transaction and step down thread. And, any write
                // operations that gets sneaked in here will fail as we have updated
                // _canAcceptNonLocalWrites to false after our first successful RSTL lock
                // acquisition. So, we won't get into problems like SERVER-27534.
                arsd.rstlReacquire();
                lk.lock();
            });

            // We ignore the case where waitForConditionOrInterruptUntil returns
            // stdx::cv_status::timeout because in that case coming back around the loop and calling
            // tryToStartStepDown again will cause tryToStartStepDown to return ExceededTimeLimit
            // with the proper error message.
            opCtx->waitForConditionOrInterruptUntil(
                condVar, lk, std::min(stepDownUntil, waitUntil), waiter.makePredicate());
        }
    }

    // Prepare for unconditional stepdown success!
    // We need to release the mutex before yielding locks for prepared transactions, which might
    // check out sessions, to avoid deadlocks with checked-out sessions accessing this mutex.
    lk.unlock();

    yieldLocksForPreparedTransactions(opCtx);
    invalidateSessionsForStepdown(opCtx);

    lk.lock();

    // Clear the node's election candidate metrics since it is no longer primary.
    ReplicationMetrics::get(opCtx).clearElectionCandidateMetrics();
    _wMajorityWriteAvailabilityWaiter.reset();

    _topCoord->finishUnconditionalStepDown();

    onExitGuard.dismiss();
    updateMemberState();

    // Schedule work to (potentially) step back up once the stepdown period has ended.
    _scheduleWorkAt(stepDownUntil, [=](const executor::TaskExecutor::CallbackArgs& cbData) {
        _handleTimePassing(cbData);
    });

    // If election handoff is enabled, schedule a step-up immediately instead of waiting for the
    // election timeout to expire.
    if (!force && enableElectionHandoff.load()) {
        _performElectionHandoff();
    }
}

void ReplicationCoordinatorImpl::_performElectionHandoff() {
    stdx::lock_guard<Latch> lock(_mutex);
    auto candidateIndex = _topCoord->chooseElectionHandoffCandidate();

    if (candidateIndex < 0) {
        log() << "Could not find node to hand off election to.";
        return;
    }

    auto target = _rsConfig.getMemberAt(candidateIndex).getHostAndPort();
    executor::RemoteCommandRequest request(
        target, "admin", BSON("replSetStepUp" << 1 << "skipDryRun" << true), nullptr);
    log() << "Handing off election to " << target;

    auto callbackHandleSW = _replExecutor->scheduleRemoteCommand(
        request, [target](const executor::TaskExecutor::RemoteCommandCallbackArgs& callbackData) {
            auto status = callbackData.response.status;

            if (status.isOK()) {
                LOG(1) << "replSetStepUp request to " << target << " succeeded with response -- "
                       << callbackData.response.data;
            } else {
                log() << "replSetStepUp request to " << target << " failed due to " << status;
            }
        });

    auto callbackHandleStatus = callbackHandleSW.getStatus();
    if (!callbackHandleStatus.isOK()) {
        error() << "Failed to schedule ReplSetStepUp request to " << target
                << " for election handoff: " << callbackHandleStatus;
    }
}

void ReplicationCoordinatorImpl::_handleTimePassing(
    const executor::TaskExecutor::CallbackArgs& cbData) {
    if (!cbData.status.isOK()) {
        return;
    }

    // For election protocol v1, call _startElectSelfIfEligibleV1 to avoid race
    // against other elections caused by events like election timeout, replSetStepUp etc.
    _startElectSelfIfEligibleV1(StartElectionReasonEnum::kSingleNodePromptElection);
}

bool ReplicationCoordinatorImpl::isMasterForReportingPurposes() {
    if (!_settings.usingReplSets()) {
        return true;
    }

    stdx::lock_guard<Latch> lock(_mutex);
    invariant(getReplicationMode() == modeReplSet);
    return _getMemberState_inlock().primary();
}

bool ReplicationCoordinatorImpl::canAcceptWritesForDatabase(OperationContext* opCtx,
                                                            StringData dbName) {
    // The answer isn't meaningful unless we hold the ReplicationStateTransitionLock.
    invariant(opCtx->lockState()->isRSTLLocked());
    return canAcceptWritesForDatabase_UNSAFE(opCtx, dbName);
}

bool ReplicationCoordinatorImpl::canAcceptWritesForDatabase_UNSAFE(OperationContext* opCtx,
                                                                   StringData dbName) {
    // _canAcceptNonLocalWrites is always true for standalone nodes, and adjusted based on
    // primary+drain state in replica sets.
    //
    // Stand-alone nodes and drained replica set primaries can always accept writes.  Writes are
    // always permitted to the "local" database.
    if (_readWriteAbility->canAcceptNonLocalWrites_UNSAFE() || alwaysAllowNonLocalWrites(opCtx)) {
        return true;
    }
    if (dbName == kLocalDB) {
        return true;
    }
    return false;
}

bool ReplicationCoordinatorImpl::canAcceptNonLocalWrites() const {
    stdx::lock_guard<Latch> lk(_mutex);
    return _readWriteAbility->canAcceptNonLocalWrites(lk);
}

bool ReplicationCoordinatorImpl::canAcceptWritesFor(OperationContext* opCtx,
                                                    const NamespaceString& ns) {
    invariant(opCtx->lockState()->isRSTLLocked());
    return canAcceptWritesFor_UNSAFE(opCtx, ns);
}

bool ReplicationCoordinatorImpl::canAcceptWritesFor_UNSAFE(OperationContext* opCtx,
                                                           const NamespaceString& ns) {
    StringData dbName = ns.db();
    bool canWriteToDB = canAcceptWritesForDatabase_UNSAFE(opCtx, dbName);

    if (!canWriteToDB && !ns.isSystemDotProfile()) {
        return false;
    }

    // Even if we think we can write to the database we need to make sure we're not trying
    // to write to the oplog in ROLLBACK.
    // If we can accept non local writes (ie we're PRIMARY) then we must not be in ROLLBACK.
    // This check is redundant of the check of _memberState below, but since this can be checked
    // without locking, we do it as an optimization.
    if (_readWriteAbility->canAcceptNonLocalWrites_UNSAFE() || alwaysAllowNonLocalWrites(opCtx)) {
        return true;
    }

    if (!ns.isOplog()) {
        return true;
    }

    stdx::lock_guard<Latch> lock(_mutex);
    if (_memberState.rollback()) {
        return false;
    }
    return true;
}

Status ReplicationCoordinatorImpl::checkCanServeReadsFor(OperationContext* opCtx,
                                                         const NamespaceString& ns,
                                                         bool slaveOk) {
    invariant(opCtx->lockState()->isRSTLLocked());
    return checkCanServeReadsFor_UNSAFE(opCtx, ns, slaveOk);
}

Status ReplicationCoordinatorImpl::checkCanServeReadsFor_UNSAFE(OperationContext* opCtx,
                                                                const NamespaceString& ns,
                                                                bool slaveOk) {
    auto client = opCtx->getClient();
    bool isPrimaryOrSecondary = _readWriteAbility->canServeNonLocalReads_UNSAFE();

    // Always allow reads from the direct client, no matter what.
    if (client->isInDirectClient()) {
        return Status::OK();
    }

    // Oplog reads are not allowed during STARTUP state, but we make an exception for internal
    // reads. Internal reads are required for cleaning up unfinished apply batches.
    if (!isPrimaryOrSecondary && getReplicationMode() == modeReplSet && ns.isOplog()) {
        stdx::lock_guard<Latch> lock(_mutex);
        if ((_memberState.startup() && client->isFromUserConnection()) || _memberState.startup2() ||
            _memberState.rollback()) {
            return Status{ErrorCodes::NotPrimaryOrSecondary,
                          "Oplog collection reads are not allowed while in the rollback or "
                          "startup state."};
        }
    }

    if (canAcceptWritesFor_UNSAFE(opCtx, ns)) {
        return Status::OK();
    }

    if (opCtx->inMultiDocumentTransaction()) {
        if (!_readWriteAbility->canAcceptNonLocalWrites_UNSAFE()) {
            return Status(ErrorCodes::NotWritablePrimary,
                          "Multi-document transactions are only allowed on replica set primaries.");
        }
    }

    if (slaveOk) {
        if (isPrimaryOrSecondary) {
            return Status::OK();
        }
        const auto msg = client->supportsHello()
            ? "not primary or secondary; cannot currently read from this replSet member"_sd
            : "not master or secondary; cannot currently read from this replSet member"_sd;
        return Status(ErrorCodes::NotPrimaryOrSecondary, msg);
    }

    const auto msg = client->supportsHello() ? "not primary and secondaryOk=false"_sd
                                             : "not master and slaveOk=false"_sd;
    return Status(ErrorCodes::NotPrimaryNoSecondaryOk, msg);
}

bool ReplicationCoordinatorImpl::isInPrimaryOrSecondaryState(OperationContext* opCtx) const {
    return _readWriteAbility->canServeNonLocalReads(opCtx);
}

bool ReplicationCoordinatorImpl::isInPrimaryOrSecondaryState_UNSAFE() const {
    return _readWriteAbility->canServeNonLocalReads_UNSAFE();
}

bool ReplicationCoordinatorImpl::shouldRelaxIndexConstraints(OperationContext* opCtx,
                                                             const NamespaceString& ns) {
    if (ReplSettings::shouldRecoverFromOplogAsStandalone()) {
        return true;
    }
    return !canAcceptWritesFor(opCtx, ns);
}

OID ReplicationCoordinatorImpl::getElectionId() {
    stdx::lock_guard<Latch> lock(_mutex);
    return _electionId;
}

int ReplicationCoordinatorImpl::getMyId() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _getMyId_inlock();
}

HostAndPort ReplicationCoordinatorImpl::getMyHostAndPort() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig.getMemberAt(_selfIndex).getHostAndPort();
}

int ReplicationCoordinatorImpl::_getMyId_inlock() const {
    const MemberConfig& self = _rsConfig.getMemberAt(_selfIndex);
    return self.getId().getData();
}

Status ReplicationCoordinatorImpl::resyncData(OperationContext* opCtx, bool waitUntilCompleted) {
    _stopDataReplication(opCtx);
    auto finishedEvent = uassertStatusOK(_replExecutor->makeEvent());
    stdx::function<void()> f;
    if (waitUntilCompleted)
        f = [&finishedEvent, this]() { _replExecutor->signalEvent(finishedEvent); };

    {
        stdx::lock_guard<Latch> lk(_mutex);
        _resetMyLastOpTimes(lk);
    }
    // unlock before calling _startDataReplication().
    _startDataReplication(opCtx, f);
    if (waitUntilCompleted) {
        _replExecutor->waitForEvent(finishedEvent);
    }
    return Status::OK();
}

StatusWith<BSONObj> ReplicationCoordinatorImpl::prepareReplSetUpdatePositionCommand() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _topCoord->prepareReplSetUpdatePositionCommand(
        _getCurrentCommittedSnapshotOpTime_inlock());
}

Status ReplicationCoordinatorImpl::processReplSetGetStatus(
    BSONObjBuilder* response, ReplSetGetStatusResponseStyle responseStyle) {

    BSONObj initialSyncProgress;
    if (responseStyle == ReplSetGetStatusResponseStyle::kInitialSync) {
        std::shared_ptr<InitialSyncer> initialSyncerCopy;
        {
            stdx::lock_guard<Latch> lk(_mutex);
            initialSyncerCopy = _initialSyncer;
        }

        // getInitialSyncProgress must be called outside the ReplicationCoordinatorImpl::_mutex
        // lock. Else it might deadlock with InitialSyncer::_multiApplierCallback where it first
        // acquires InitialSyncer::_mutex and then ReplicationCoordinatorImpl::_mutex.
        if (initialSyncerCopy) {
            initialSyncProgress = initialSyncerCopy->getInitialSyncProgress();
        }
    }

    BSONObj electionCandidateMetrics =
        ReplicationMetrics::get(getServiceContext()).getElectionCandidateMetricsBSON();
    BSONObj electionParticipantMetrics =
        ReplicationMetrics::get(getServiceContext()).getElectionParticipantMetricsBSON();

    stdx::lock_guard<Latch> lk(_mutex);
    Status result(ErrorCodes::InternalError, "didn't set status in prepareStatusResponse");
    _topCoord->prepareStatusResponse(
        TopologyCoordinator::ReplSetStatusArgs{
            _replExecutor->now(),
            static_cast<unsigned>(time(0) - serverGlobalParams.started),
            _getCurrentCommittedSnapshotOpTimeAndWallTime_inlock(),
            initialSyncProgress,
            electionCandidateMetrics,
            electionParticipantMetrics,
            _storage->getLastStableCheckpointTimestampDeprecated(_service),
            _storage->getLastStableRecoveryTimestamp(_service)},
        response,
        &result);
    return result;
}

void ReplicationCoordinatorImpl::fillIsMasterForReplSet(
    IsMasterResponse* response, const SplitHorizon::Parameters& horizonParams) {
    invariant(getSettings().usingReplSets());

    stdx::lock_guard<Latch> lk(_mutex);
    _topCoord->fillIsMasterForReplSet(response, horizonParams);

    OpTime lastOpTime = _getMyLastAppliedOpTime_inlock();
    response->setLastWrite(lastOpTime, lastOpTime.getTimestamp().getSecs());
    if (_currentCommittedSnapshot) {
        response->setLastMajorityWrite(_currentCommittedSnapshot->opTime,
                                       _currentCommittedSnapshot->opTime.getTimestamp().getSecs());
    }

    if (response->isMaster() && !_readWriteAbility->canAcceptNonLocalWrites(lk)) {
        // Report that we are secondary to ismaster callers until drain completes.
        response->setIsMaster(false);
        response->setIsSecondary(true);
    }

    if (_waitingForRSTLAtStepDown) {
        response->setIsMaster(false);
    }

    if (_inShutdown) {
        response->setIsMaster(false);
        response->setIsSecondary(false);
    }
}

void ReplicationCoordinatorImpl::appendSlaveInfoData(BSONObjBuilder* result) {
    stdx::lock_guard<Latch> lock(_mutex);
    _topCoord->fillMemberData(result);
}

ReplSetConfig ReplicationCoordinatorImpl::getConfig() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig;
}

void ReplicationCoordinatorImpl::processReplSetGetConfig(BSONObjBuilder* result) {
    stdx::lock_guard<Latch> lock(_mutex);
    result->append("config", _rsConfig.toBSON());
}

void ReplicationCoordinatorImpl::processReplSetMetadata(const rpc::ReplSetMetadata& replMetadata) {
    EventHandle evh;

    {
        stdx::lock_guard<Latch> lock(_mutex);
        evh = _processReplSetMetadata_inlock(replMetadata);
    }

    if (evh) {
        _replExecutor->waitForEvent(evh);
    }
}

void ReplicationCoordinatorImpl::cancelAndRescheduleElectionTimeout() {
    stdx::lock_guard<Latch> lock(_mutex);
    _cancelAndRescheduleElectionTimeout_inlock();
}

EventHandle ReplicationCoordinatorImpl::_processReplSetMetadata_inlock(
    const rpc::ReplSetMetadata& replMetadata) {
    if (replMetadata.getConfigVersion() != _rsConfig.getConfigVersion()) {
        return EventHandle();
    }
    return _updateTerm_inlock(replMetadata.getTerm());
}

bool ReplicationCoordinatorImpl::getMaintenanceMode() {
    stdx::lock_guard<Latch> lk(_mutex);
    return _topCoord->getMaintenanceCount() > 0;
}

Status ReplicationCoordinatorImpl::setMaintenanceMode(OperationContext* opCtx, bool activate) {
    if (getReplicationMode() != modeReplSet) {
        return Status(ErrorCodes::NoReplicationEnabled,
                      "can only set maintenance mode on replica set members");
    }

    // It is possible that we change state to or from RECOVERING. Thus, we need the RSTL in X mode.
    ReplicationStateTransitionLockGuard transitionGuard(opCtx, MODE_X);

    stdx::unique_lock<Latch> lk(_mutex);
    if (_topCoord->getRole() == TopologyCoordinator::Role::kCandidate ||
        MONGO_unlikely(setMaintenanceModeFailsWithNotSecondary.shouldFail())) {
        return Status(ErrorCodes::NotSecondary, "currently running for election");
    }

    if (_getMemberState_inlock().primary()) {
        return Status(ErrorCodes::NotSecondary, "primaries can't modify maintenance mode");
    }

    int curMaintenanceCalls = _topCoord->getMaintenanceCount();
    if (activate) {
        log() << "going into maintenance mode with " << curMaintenanceCalls
              << " other maintenance mode tasks in progress" << rsLog;
        _topCoord->adjustMaintenanceCountBy(1);
    } else if (curMaintenanceCalls > 0) {
        invariant(_topCoord->getRole() == TopologyCoordinator::Role::kFollower);

        _topCoord->adjustMaintenanceCountBy(-1);

        log() << "leaving maintenance mode (" << curMaintenanceCalls - 1
              << " other maintenance mode tasks ongoing)" << rsLog;
    } else {
        warning() << "Attempted to leave maintenance mode but it is not currently active";
        return Status(ErrorCodes::OperationFailed, "already out of maintenance mode");
    }

    const PostMemberStateUpdateAction action = _updateMemberStateFromTopologyCoordinator(lk);
    lk.unlock();
    _performPostMemberStateUpdateAction(action);
    return Status::OK();
}

Status ReplicationCoordinatorImpl::processReplSetSyncFrom(OperationContext* opCtx,
                                                          const HostAndPort& target,
                                                          BSONObjBuilder* resultObj) {
    Status result(ErrorCodes::InternalError, "didn't set status in prepareSyncFromResponse");
    auto doResync = false;
    {
        stdx::lock_guard<Latch> lk(_mutex);
        _topCoord->prepareSyncFromResponse(target, resultObj, &result);
        // If we are in the middle of an initial sync, do a resync.
        doResync = result.isOK() && _initialSyncer && _initialSyncer->isActive();
    }

    if (doResync) {
        return resyncData(opCtx, false);
    }

    return result;
}

Status ReplicationCoordinatorImpl::processReplSetFreeze(int secs, BSONObjBuilder* resultObj) {
    auto result = [=]() {
        stdx::lock_guard<Latch> lock(_mutex);
        return _topCoord->prepareFreezeResponse(_replExecutor->now(), secs, resultObj);
    }();
    if (!result.isOK()) {
        return result.getStatus();
    }

    if (TopologyCoordinator::PrepareFreezeResponseResult::kSingleNodeSelfElect ==
        result.getValue()) {
        // For election protocol v1, call _startElectSelfIfEligibleV1 to avoid race
        // against other elections caused by events like election timeout, replSetStepUp etc.
        _startElectSelfIfEligibleV1(StartElectionReasonEnum::kSingleNodePromptElection);
    }

    return Status::OK();
}

Status ReplicationCoordinatorImpl::processReplSetReconfig(OperationContext* opCtx,
                                                          const ReplSetReconfigArgs& args,
                                                          BSONObjBuilder* resultObj) {
    log() << "replSetReconfig admin command received from client; new config: "
          << args.newConfigObj;

    stdx::unique_lock<Latch> lk(_mutex);

    while (_rsConfigState == kConfigPreStart || _rsConfigState == kConfigStartingUp) {
        _rsConfigStateChange.wait(lk);
    }

    switch (_rsConfigState) {
        case kConfigSteady:
            break;
        case kConfigUninitialized:
            return Status(ErrorCodes::NotYetInitialized,
                          "Node not yet initialized; use the replSetInitiate command");
        case kConfigReplicationDisabled:
            invariant(
                false);  // should be unreachable due to !_settings.usingReplSets() check above
        case kConfigInitiating:
        case kConfigReconfiguring:
        case kConfigHBReconfiguring:
            return Status(ErrorCodes::ConfigurationInProgress,
                          "Cannot run replSetReconfig because the node is currently updating "
                          "its configuration");
        default:
            severe() << "Unexpected _rsConfigState " << int(_rsConfigState);
            fassertFailed(18914);
    }

    invariant(_rsConfig.isInitialized());

    if (!args.force && !_getMemberState_inlock().primary()) {
        return Status(ErrorCodes::NotWritablePrimary,
                      str::stream()
                          << "replSetReconfig should only be run on PRIMARY, but my state is "
                          << _getMemberState_inlock().toString()
                          << "; use the \"force\" argument to override");
    }

    _setConfigState_inlock(kConfigReconfiguring);
    auto configStateGuard =
        makeGuard([&] { lockAndCall(&lk, [=] { _setConfigState_inlock(kConfigSteady); }); });

    ReplSetConfig oldConfig = _rsConfig;
    lk.unlock();

    ReplSetConfig newConfig;
    BSONObj newConfigObj = args.newConfigObj;
    if (args.force) {
        newConfigObj = incrementConfigVersionByRandom(newConfigObj);
    }

    BSONObj oldConfigObj = oldConfig.toBSON();
    audit::logReplSetReconfig(opCtx->getClient(), &oldConfigObj, &newConfigObj);

    Status status = newConfig.initialize(newConfigObj, oldConfig.getReplicaSetId());
    if (!status.isOK()) {
        error() << "replSetReconfig got " << status << " while parsing " << newConfigObj;
        return Status(ErrorCodes::InvalidReplicaSetConfig, status.reason());
        ;
    }
    if (newConfig.getReplSetName() != _settings.ourSetName()) {
        str::stream errmsg;
        errmsg << "Attempting to reconfigure a replica set with name " << newConfig.getReplSetName()
               << ", but command line reports " << _settings.ourSetName() << "; rejecting";
        error() << std::string(errmsg);
        return Status(ErrorCodes::InvalidReplicaSetConfig, errmsg);
    }

    StatusWith<int> myIndex = validateConfigForReconfig(
        _externalState.get(), oldConfig, newConfig, opCtx->getServiceContext(), args.force);
    if (!myIndex.isOK()) {
        error() << "replSetReconfig got " << myIndex.getStatus() << " while validating "
                << newConfigObj;
        return Status(ErrorCodes::NewReplicaSetConfigurationIncompatible,
                      myIndex.getStatus().reason());
    }

    log() << "replSetReconfig config object with " << newConfig.getNumMembers()
          << " members parses ok";

    if (!args.force) {
        status = checkQuorumForReconfig(
            _replExecutor.get(), newConfig, myIndex.getValue(), _topCoord->getTerm());
        if (!status.isOK()) {
            error() << "replSetReconfig failed; " << status;
            return status;
        }
    }

    status = _externalState->storeLocalConfigDocument(opCtx, newConfig.toBSON());
    if (!status.isOK()) {
        error() << "replSetReconfig failed to store config document; " << status;
        return status;
    }

    configStateGuard.dismiss();
    _finishReplSetReconfig(opCtx, newConfig, args.force, myIndex.getValue());
    return Status::OK();
}

void ReplicationCoordinatorImpl::_finishReplSetReconfig(OperationContext* opCtx,
                                                        const ReplSetConfig& newConfig,
                                                        const bool isForceReconfig,
                                                        int myIndex) {
    // Do not conduct an election during a reconfig, as the node may not be electable post-reconfig.
    executor::TaskExecutor::EventHandle electionFinishedEvent;
    {
        stdx::lock_guard<Latch> lk(_mutex);
        electionFinishedEvent = _cancelElectionIfNeeded_inlock();
    }

    // If there is an election in-progress, there can be at most one. No new election can happen as
    // we have already set our ReplicationCoordinatorImpl::_rsConfigState state to
    // "kConfigReconfiguring" which prevents new elections from happening.
    if (electionFinishedEvent) {
        LOG(2) << "Waiting for election to complete before finishing reconfig to version "
               << newConfig.getConfigVersion();
        // Wait for the election to complete and the node's Role to be set to follower.
        _replExecutor->waitForEvent(electionFinishedEvent);
    }

    boost::optional<AutoGetRstlForStepUpStepDown> arsd;
    stdx::unique_lock<Latch> lk(_mutex);
    if (isForceReconfig && _shouldStepDownOnReconfig(lk, newConfig, myIndex)) {
        _topCoord->prepareForUnconditionalStepDown();
        lk.unlock();

        // To prevent a deadlock between session checkout and RSTL lock taking, disallow new
        // sessions from being checked out. Existing sessions currently checked out will be killed
        // by the killOpThread.
        ScopedBlockSessionCheckouts blockSessions(opCtx);

        // Primary node won't be electable or removed after the configuration change.
        // So, finish the reconfig under RSTL, so that the step down occurs safely.
        arsd.emplace(this, opCtx, ReplicationCoordinator::OpsKillingStateTransitionEnum::kStepDown);

        lk.lock();
        if (_topCoord->isSteppingDownUnconditionally()) {
            invariant(opCtx->lockState()->isRSTLExclusive());
            log() << "stepping down from primary, because we received a new config";
            // We need to release the mutex before yielding locks for prepared transactions, which
            // might check out sessions, to avoid deadlocks with checked-out sessions accessing
            // this mutex.
            lk.unlock();

            yieldLocksForPreparedTransactions(opCtx);
            invalidateSessionsForStepdown(opCtx);

            lk.lock();

            // Clear the node's election candidate metrics since it is no longer primary.
            ReplicationMetrics::get(opCtx).clearElectionCandidateMetrics();
            _wMajorityWriteAvailabilityWaiter.reset();

            // Update _canAcceptNonLocalWrites.
            _updateWriteAbilityFromTopologyCoordinator(lk, opCtx);
        } else {
            // Release the rstl lock as the node might have stepped down due to
            // other unconditional step down code paths like learning new term via heartbeat &
            // liveness timeout. And, no new election can happen as we have already set our
            // ReplicationCoordinatorImpl::_rsConfigState state to "kConfigReconfiguring" which
            // prevents new elections from happening. So, its safe to release the RSTL lock.
            arsd.reset();
        }
    }

    invariant(_rsConfigState == kConfigReconfiguring);
    invariant(_rsConfig.isInitialized());

    const ReplSetConfig oldConfig = _rsConfig;
    const PostMemberStateUpdateAction action = _setCurrentRSConfig(lk, opCtx, newConfig, myIndex);

    // On a reconfig we drop all snapshots so we don't mistakenly read from the wrong one.
    // For example, if we change the meaning of the "committed" snapshot from applied -> durable.
    _dropAllSnapshots_inlock();

    lk.unlock();
    _performPostMemberStateUpdateAction(action);

    // Inform the index builds coordinator of the replica set reconfig.
    IndexBuildsCoordinator::get(opCtx)->onReplicaSetReconfig();
}

Status ReplicationCoordinatorImpl::processReplSetInitiate(OperationContext* opCtx,
                                                          const BSONObj& configObj,
                                                          BSONObjBuilder* resultObj) {
    log() << "replSetInitiate admin command received from client";

    const auto replEnabled = _settings.usingReplSets();
    stdx::unique_lock<Latch> lk(_mutex);
    if (!replEnabled) {
        return Status(ErrorCodes::NoReplicationEnabled, "server is not running with --replSet");
    }
    while (_rsConfigState == kConfigPreStart || _rsConfigState == kConfigStartingUp) {
        _rsConfigStateChange.wait(lk);
    }

    if (_rsConfigState != kConfigUninitialized) {
        resultObj->append("info", "try querying local.system.replset to see current configuration");
        return Status(ErrorCodes::AlreadyInitialized, "already initialized");
    }
    invariant(!_rsConfig.isInitialized());
    _setConfigState_inlock(kConfigInitiating);

    auto configStateGuard =
        makeGuard([&] { lockAndCall(&lk, [=] { _setConfigState_inlock(kConfigUninitialized); }); });

    // When writing our first oplog entry below, disable advancement of the stable timestamp so that
    // we don't set it before setting our initial data timestamp. We will set it after we set our
    // initialDataTimestamp. This will ensure we trigger an initial stable checkpoint properly.
    if (!serverGlobalParams.enableMajorityReadConcern) {
        _shouldSetStableTimestamp = false;
    }
    auto setStableTimestampGuard = makeGuard([&] {
        lockAndCall(&lk, [=] {
            if (!serverGlobalParams.enableMajorityReadConcern) {
                _shouldSetStableTimestamp = true;
            }
        });
    });

    lk.unlock();

    ReplSetConfig newConfig;
    Status status = newConfig.initializeForInitiate(configObj);
    if (!status.isOK()) {
        error() << "replSet initiate got " << status << " while parsing " << configObj;
        return Status(ErrorCodes::InvalidReplicaSetConfig, status.reason());
    }
    if (newConfig.getReplSetName() != _settings.ourSetName()) {
        str::stream errmsg;
        errmsg << "Attempting to initiate a replica set with name " << newConfig.getReplSetName()
               << ", but command line reports " << _settings.ourSetName() << "; rejecting";
        error() << std::string(errmsg);
        return Status(ErrorCodes::InvalidReplicaSetConfig, errmsg);
    }

    StatusWith<int> myIndex =
        validateConfigForInitiate(_externalState.get(), newConfig, opCtx->getServiceContext());
    if (!myIndex.isOK()) {
        error() << "replSet initiate got " << myIndex.getStatus() << " while validating "
                << configObj;
        return Status(ErrorCodes::InvalidReplicaSetConfig, myIndex.getStatus().reason());
    }

    log() << "replSetInitiate config object with " << newConfig.getNumMembers()
          << " members parses ok";

    // In pv1, the TopologyCoordinator has not set the term yet. It will be set to kInitialTerm if
    // the initiate succeeds so we pass that here.
    status = checkQuorumForInitiate(
        _replExecutor.get(), newConfig, myIndex.getValue(), OpTime::kInitialTerm);

    if (!status.isOK()) {
        error() << "replSetInitiate failed; " << status;
        return status;
    }

    status = _externalState->initializeReplSetStorage(opCtx, newConfig.toBSON());
    if (!status.isOK()) {
        error() << "replSetInitiate failed to store config document or create the oplog; "
                << status;
        return status;
    }

    _replicationProcess->getConsistencyMarkers()->initializeMinValidDocument(opCtx);

    auto lastAppliedOpTimeAndWallTime = getMyLastAppliedOpTimeAndWallTime();

    // Since the JournalListener has not yet been set up, we must manually set our
    // durableOpTime.
    setMyLastDurableOpTimeAndWallTime(lastAppliedOpTimeAndWallTime);

    // Sets the initial data timestamp on the storage engine so it can assign a timestamp
    // to data on disk. We do this after writing the "initiating set" oplog entry.
    _storage->setInitialDataTimestamp(getServiceContext(),
                                      lastAppliedOpTimeAndWallTime.opTime.getTimestamp());

    // Set our stable timestamp for storage and re-enable stable timestamp advancement after we have
    // set our initial data timestamp.
    setStableTimestampGuard.dismiss();
    if (!serverGlobalParams.enableMajorityReadConcern) {
        stdx::unique_lock<Latch> lk(_mutex);
        _shouldSetStableTimestamp = true;
        _setStableTimestampForStorage(lk);
    }

    _finishReplSetInitiate(opCtx, newConfig, myIndex.getValue());

    // A configuration passed to replSetInitiate() with the current node as an arbiter
    // will fail validation with a "replSet initiate got ... while validating" reason.
    invariant(!newConfig.getMemberAt(myIndex.getValue()).isArbiter());
    _externalState->startThreads(_settings);
    _startDataReplication(opCtx);

    configStateGuard.dismiss();
    return Status::OK();
}

void ReplicationCoordinatorImpl::_finishReplSetInitiate(OperationContext* opCtx,
                                                        const ReplSetConfig& newConfig,
                                                        int myIndex) {
    stdx::unique_lock<Latch> lk(_mutex);
    invariant(_rsConfigState == kConfigInitiating);
    invariant(!_rsConfig.isInitialized());
    auto action = _setCurrentRSConfig(lk, opCtx, newConfig, myIndex);
    lk.unlock();
    _performPostMemberStateUpdateAction(action);
}

void ReplicationCoordinatorImpl::_setConfigState_inlock(ConfigState newState) {
    if (newState != _rsConfigState) {
        _rsConfigState = newState;
        _rsConfigStateChange.notify_all();
    }
}

void ReplicationCoordinatorImpl::_updateWriteAbilityFromTopologyCoordinator(
    WithLock lk, OperationContext* opCtx) {
    bool canAcceptWrites = _topCoord->canAcceptWrites();
    _readWriteAbility->setCanAcceptNonLocalWrites(lk, opCtx, canAcceptWrites);
}

ReplicationCoordinatorImpl::PostMemberStateUpdateAction
ReplicationCoordinatorImpl::_updateMemberStateFromTopologyCoordinator(WithLock lk) {
    const MemberState newState = _topCoord->getMemberState();
    if (newState == _memberState) {
        if (_topCoord->getRole() == TopologyCoordinator::Role::kCandidate) {
            invariant(_rsConfig.getNumMembers() == 1 && _selfIndex == 0 &&
                      _rsConfig.getMemberAt(0).isElectable());
            // Start election in protocol version 1
            return kActionStartSingleNodeElection;
        }
        return kActionNone;
    }

    PostMemberStateUpdateAction result;
    if (_memberState.primary() || newState.removed() || newState.rollback()) {
        // Wake up any threads blocked in awaitReplication, close connections, etc.
        _replicationWaiterList.signalAll_inlock();
        // Wake up the optime waiter that is waiting for primary catch-up to finish.
        _opTimeWaiterList.signalAll_inlock();

        // _canAcceptNonLocalWrites should already be set.
        invariant(!_readWriteAbility->canAcceptNonLocalWrites(lk));

        serverGlobalParams.validateFeaturesAsMaster.store(false);
        result = (newState.removed() || newState.rollback()) ? kActionRollbackOrRemoved
                                                             : kActionSteppedDown;
    } else {
        result = kActionFollowerModeStateChange;
    }

    // Exit catchup mode if we're in it and enable replication producer and applier on stepdown.
    if (_memberState.primary()) {
        if (_catchupState) {
            // _pendingTermUpdateDuringStepDown is set before stepping down due to hearing about a
            // higher term, so that we can remember the term we heard and update our term as part of
            // finishing stepdown. It is then unset toward the end of stepdown, after the function
            // we are in is called. Thus we must be stepping down due to seeing a higher term if and
            // only if _pendingTermUpdateDuringStepDown is set here.
            if (_pendingTermUpdateDuringStepDown) {
                _catchupState->abort_inlock(PrimaryCatchUpConclusionReason::kFailedWithNewTerm);
            } else {
                _catchupState->abort_inlock(PrimaryCatchUpConclusionReason::kFailedWithError);
            }
        }
        _applierState = ApplierState::Running;
        _externalState->startProducerIfStopped();
    }

    if (_memberState.secondary() && !newState.primary() && !newState.rollback()) {
        // Switching out of SECONDARY, but not to PRIMARY or ROLLBACK. Note that ROLLBACK case is
        // handled separately and requires RSTL lock held, see setFollowerModeStrict.
        _readWriteAbility->setCanServeNonLocalReads_UNSAFE(0U);
    } else if (!_memberState.primary() && newState.secondary()) {
        // Switching into SECONDARY, but not from PRIMARY.
        _readWriteAbility->setCanServeNonLocalReads_UNSAFE(1U);
    }

    if (newState.secondary() && _topCoord->getRole() == TopologyCoordinator::Role::kCandidate) {
        // When transitioning to SECONDARY, the only way for _topCoord to report the candidate
        // role is if the configuration represents a single-node replica set.  In that case, the
        // overriding requirement is to elect this singleton node primary.
        invariant(_rsConfig.getNumMembers() == 1 && _selfIndex == 0 &&
                  _rsConfig.getMemberAt(0).isElectable());
        // Start election in protocol version 1
        result = kActionStartSingleNodeElection;
    }

    if (newState.rollback()) {
        // When we start rollback, we need to drop all snapshots since we may need to create
        // out-of-order snapshots. This would be necessary even if the SnapshotName was completely
        // monotonically increasing because we don't necessarily have a snapshot of every write.
        // If we didn't drop all snapshots on rollback it could lead to the following situation:
        //
        //  |--------|-------------|-------------|
        //  | OpTime | HasSnapshot | Committed   |
        //  |--------|-------------|-------------|
        //  | (0, 1) | *           | *           |
        //  | (0, 2) | *           | ROLLED BACK |
        //  | (1, 2) |             | *           |
        //  |--------|-------------|-------------|
        //
        // When we try to make (1,2) the commit point, we'd find (0,2) as the newest snapshot
        // before the commit point, but it would be invalid to mark it as the committed snapshot
        // since it was never committed.
        //
        // TODO SERVER-19209 We also need to clear snapshots before a resync.
        _dropAllSnapshots_inlock();
    }

    // Upon transitioning out of ROLLBACK, we must clear any stable optime candidates that may have
    // been rolled back.
    if (_memberState.rollback()) {
        // Our 'lastApplied' optime at this point should be the rollback common point. We should
        // remove any stable optime candidates greater than the common point.
        auto lastApplied = _getMyLastAppliedOpTimeAndWallTime_inlock();
        // The upper bound will give us the first optime T such that T > lastApplied.
        auto deletePoint = _stableOpTimeCandidates.upper_bound(lastApplied);
        _stableOpTimeCandidates.erase(deletePoint, _stableOpTimeCandidates.end());

        // Ensure that no snapshots were created while we were in rollback.
        invariant(!_currentCommittedSnapshot);
    }

    // If we are transitioning from secondary, cancel any scheduled takeovers.
    if (_memberState.secondary()) {
        _cancelCatchupTakeover_inlock();
        _cancelPriorityTakeover_inlock();
    }

    // Ensure replication is running if we are no longer REMOVED.
    if (_memberState.removed() && !newState.arbiter()) {
        log() << "Scheduling a task to begin or continue replication";
        _scheduleWorkAt(_replExecutor->now(),
                        [=](const mongo::executor::TaskExecutor::CallbackArgs& cbData) {
                            _externalState->startThreads(_settings);
                            auto opCtx = cc().makeOperationContext();
                            _startDataReplication(opCtx.get());
                        });
    }

    log() << "transition to " << newState << " from " << _memberState << rsLog;
    // Initializes the featureCompatibilityVersion to the latest value, because arbiters do not
    // receive the replicated version. This is to avoid bugs like SERVER-32639.
    if (newState.arbiter()) {
        serverGlobalParams.featureCompatibility.setVersion(
            ServerGlobalParams::FeatureCompatibility::Version::kFullyUpgradedTo42);
    }

    _memberState = newState;

    _cancelAndRescheduleElectionTimeout_inlock();

    // Notifies waiters blocked in waitForMemberState().
    // For testing only.
    _memberStateChange.notify_all();

    return result;
}

void ReplicationCoordinatorImpl::_performPostMemberStateUpdateAction(
    PostMemberStateUpdateAction action) {
    switch (action) {
        case kActionNone:
            break;
        case kActionFollowerModeStateChange:
            _onFollowerModeStateChange();
            break;
        case kActionRollbackOrRemoved:
            _externalState->closeConnections();
        /* FALLTHROUGH */
        case kActionSteppedDown:
            _externalState->shardingOnStepDownHook();
            _externalState->stopNoopWriter();
            break;
        case kActionStartSingleNodeElection:
            // In protocol version 1, single node replset will run an election instead of
            // kActionWinElection as in protocol version 0.
            _startElectSelfV1(StartElectionReasonEnum::kElectionTimeout);
            break;
        default:
            severe() << "Unknown post member state update action " << static_cast<int>(action);
            fassertFailed(26010);
    }
}

void ReplicationCoordinatorImpl::_postWonElectionUpdateMemberState(WithLock lk) {
    invariant(_topCoord->getTerm() != OpTime::kUninitializedTerm);
    _electionId = OID::fromTerm(_topCoord->getTerm());
    auto ts = LogicalClock::get(getServiceContext())->reserveTicks(1).asTimestamp();
    _topCoord->processWinElection(_electionId, ts);
    const PostMemberStateUpdateAction nextAction = _updateMemberStateFromTopologyCoordinator(lk);

    invariant(nextAction == kActionFollowerModeStateChange,
              str::stream() << "nextAction == " << static_cast<int>(nextAction));
    invariant(_getMemberState_inlock().primary());
    // Clear the sync source.
    _onFollowerModeStateChange();
    // Notify all secondaries of the election win.
    _restartHeartbeats_inlock();
    invariant(!_catchupState);
    _catchupState = stdx::make_unique<CatchupState>(this);
    _catchupState->start_inlock();
}

void ReplicationCoordinatorImpl::_onFollowerModeStateChange() {
    _externalState->signalApplierToChooseNewSyncSource();
}

void ReplicationCoordinatorImpl::CatchupState::start_inlock() {
    log() << "Entering primary catch-up mode.";

    // Reset the number of catchup operations performed before starting catchup.
    _numCatchUpOps = 0;

    // No catchup in single node replica set.
    if (_repl->_rsConfig.getNumMembers() == 1) {
        abort_inlock(PrimaryCatchUpConclusionReason::kSkipped);
        return;
    }

    auto catchupTimeout = _repl->_rsConfig.getCatchUpTimeoutPeriod();

    // When catchUpTimeoutMillis is 0, we skip doing catchup entirely.
    if (catchupTimeout == ReplSetConfig::kCatchUpDisabled) {
        log() << "Skipping primary catchup since the catchup timeout is 0.";
        abort_inlock(PrimaryCatchUpConclusionReason::kSkipped);
        return;
    }

    auto mutex = &_repl->_mutex;
    auto timeoutCB = [this, mutex](const CallbackArgs& cbData) {
        if (!cbData.status.isOK()) {
            return;
        }
        stdx::lock_guard<Latch> lk(*mutex);
        // Check whether the callback has been cancelled while holding mutex.
        if (cbData.myHandle.isCanceled()) {
            return;
        }
        log() << "Catchup timed out after becoming primary.";
        abort_inlock(PrimaryCatchUpConclusionReason::kTimedOut);
    };

    // Deal with infinity and overflow - no timeout.
    if (catchupTimeout == ReplSetConfig::kInfiniteCatchUpTimeout ||
        Date_t::max() - _repl->_replExecutor->now() <= catchupTimeout) {
        return;
    }
    // Schedule timeout callback.
    auto timeoutDate = _repl->_replExecutor->now() + catchupTimeout;
    auto status = _repl->_replExecutor->scheduleWorkAt(timeoutDate, std::move(timeoutCB));
    if (!status.isOK()) {
        log() << "Failed to schedule catchup timeout work.";
        abort_inlock(PrimaryCatchUpConclusionReason::kFailedWithError);
        return;
    }
    _timeoutCbh = status.getValue();
}

void ReplicationCoordinatorImpl::CatchupState::abort_inlock(PrimaryCatchUpConclusionReason reason) {
    invariant(_repl->_getMemberState_inlock().primary());

    ReplicationMetrics::get(getGlobalServiceContext())
        .incrementNumCatchUpsConcludedForReason(reason);

    log() << "Exited primary catch-up mode.";
    // Clean up its own members.
    if (_timeoutCbh) {
        _repl->_replExecutor->cancel(_timeoutCbh);
    }
    if (_waiter) {
        _repl->_opTimeWaiterList.remove_inlock(_waiter.get());
    }

    // Enter primary drain mode.
    _repl->_enterDrainMode_inlock();
    // Destroy the state itself.
    _repl->_catchupState.reset();
}

void ReplicationCoordinatorImpl::CatchupState::signalHeartbeatUpdate_inlock() {
    auto targetOpTime = _repl->_topCoord->latestKnownOpTimeSinceHeartbeatRestart();
    // Haven't collected all heartbeat responses.
    if (!targetOpTime) {
        return;
    }

    // We've caught up.
    const auto myLastApplied = _repl->_getMyLastAppliedOpTime_inlock();
    if (*targetOpTime <= myLastApplied) {
        log() << "Caught up to the latest optime known via heartbeats after becoming primary. "
              << "Target optime: " << *targetOpTime << ". My Last Applied: " << myLastApplied;
        // Report the number of ops applied during catchup in replSetGetStatus once the primary is
        // caught up.
        ReplicationMetrics::get(getGlobalServiceContext()).setNumCatchUpOps(_numCatchUpOps);
        abort_inlock(PrimaryCatchUpConclusionReason::kAlreadyCaughtUp);
        return;
    }

    // Reset the target optime if it has changed.
    if (_waiter && _waiter->opTime == *targetOpTime) {
        return;
    }

    ReplicationMetrics::get(getGlobalServiceContext()).setTargetCatchupOpTime(targetOpTime.get());

    log() << "Heartbeats updated catchup target optime to " << *targetOpTime;
    log() << "Latest known optime per replica set member:";
    auto opTimesPerMember = _repl->_topCoord->latestKnownOpTimeSinceHeartbeatRestartPerMember();
    for (auto&& pair : opTimesPerMember) {
        log() << "Member ID: " << pair.first
              << ", latest known optime: " << (pair.second ? (*pair.second).toString() : "unknown");
    }

    if (_waiter) {
        _repl->_opTimeWaiterList.remove_inlock(_waiter.get());
    } else {
        // Only increment the 'numCatchUps' election metric the first time we add a waiter, so that
        // we only increment it once each time a primary has to catch up. If there is already an
        // existing waiter, then the node is catching up and has already been counted.
        ReplicationMetrics::get(getGlobalServiceContext()).incrementNumCatchUps();
    }

    auto targetOpTimeCB = [this, targetOpTime]() {
        // Double check the target time since stepdown may signal us too.
        const auto myLastApplied = _repl->_getMyLastAppliedOpTime_inlock();
        if (*targetOpTime <= myLastApplied) {
            log() << "Caught up to the latest known optime successfully after becoming primary. "
                  << "Target optime: " << *targetOpTime << ". My Last Applied: " << myLastApplied;
            // Report the number of ops applied during catchup in replSetGetStatus once the primary
            // is caught up.
            ReplicationMetrics::get(getGlobalServiceContext()).setNumCatchUpOps(_numCatchUpOps);
            abort_inlock(PrimaryCatchUpConclusionReason::kSucceeded);
        }
    };
    _waiter = stdx::make_unique<CallbackWaiter>(*targetOpTime, targetOpTimeCB);
    _repl->_opTimeWaiterList.add_inlock(_waiter.get());
}

void ReplicationCoordinatorImpl::CatchupState::incrementNumCatchUpOps_inlock(long numOps) {
    _numCatchUpOps += numOps;
}

Status ReplicationCoordinatorImpl::abortCatchupIfNeeded(PrimaryCatchUpConclusionReason reason) {
    stdx::lock_guard<Latch> lk(_mutex);
    if (_catchupState) {
        _catchupState->abort_inlock(reason);
        return Status::OK();
    }
    return Status(ErrorCodes::IllegalOperation, "The node is not in catch-up mode.");
}

void ReplicationCoordinatorImpl::incrementNumCatchUpOpsIfCatchingUp(long numOps) {
    stdx::lock_guard<Latch> lk(_mutex);
    if (_catchupState) {
        _catchupState->incrementNumCatchUpOps_inlock(numOps);
    }
}

void ReplicationCoordinatorImpl::signalDropPendingCollectionsRemovedFromStorage() {
    stdx::lock_guard<Latch> lock(_mutex);
    _wakeReadyWaiters(lock);
}

boost::optional<Timestamp> ReplicationCoordinatorImpl::getRecoveryTimestamp() {
    return _storage->getRecoveryTimestamp(getServiceContext());
}

void ReplicationCoordinatorImpl::_enterDrainMode_inlock() {
    _applierState = ApplierState::Draining;
    _externalState->stopProducer();
}

ReplicationCoordinatorImpl::PostMemberStateUpdateAction
ReplicationCoordinatorImpl::_setCurrentRSConfig(WithLock lk,
                                                OperationContext* opCtx,
                                                const ReplSetConfig& newConfig,
                                                int myIndex) {
    invariant(newConfig.getProtocolVersion() == 1);
    invariant(_settings.usingReplSets());
    _cancelHeartbeats_inlock();
    _setConfigState_inlock(kConfigSteady);

    _topCoord->updateConfig(newConfig, myIndex, _replExecutor->now());

    // updateConfig() can change terms, so update our term shadow to match.
    _termShadow.store(_topCoord->getTerm());

    const ReplSetConfig oldConfig = _rsConfig;
    _rsConfig = newConfig;
    _protVersion.store(_rsConfig.getProtocolVersion());

    // Warn if using the in-memory (ephemeral) storage engine or running running --nojournal with
    // writeConcernMajorityJournalDefault=true.
    StorageEngine* storageEngine = opCtx->getServiceContext()->getStorageEngine();
    if (storageEngine && newConfig.getWriteConcernMajorityShouldJournal() &&
        (!oldConfig.isInitialized() || !oldConfig.getWriteConcernMajorityShouldJournal())) {
        if (storageEngine->isEphemeral()) {
            log() << startupWarningsLog;
            log() << "** WARNING: This replica set node is using in-memory (ephemeral) storage "
                     "with the"
                  << startupWarningsLog;
            log() << "**          writeConcernMajorityJournalDefault option to the replica set "
                     "config "
                  << startupWarningsLog;
            log()
                << "**          set to true. The writeConcernMajorityJournalDefault option to the "
                << startupWarningsLog;
            log() << "**          replica set config must be set to false " << startupWarningsLog;
            log() << "**          or w:majority write concerns will never complete."
                  << startupWarningsLog;
            log()
                << "**          In addition, this node's memory consumption may increase until all"
                << startupWarningsLog;
            log() << "**          available free RAM is exhausted." << startupWarningsLog;
            log() << startupWarningsLog;
        } else if (!storageEngine->isDurable()) {
            log() << startupWarningsLog;
            log() << "** WARNING: This replica set node is running without journaling enabled but "
                     "the "
                  << startupWarningsLog;
            log() << "**          writeConcernMajorityJournalDefault option to the replica set "
                     "config "
                  << startupWarningsLog;
            log() << "**          is set to true. The writeConcernMajorityJournalDefault "
                  << startupWarningsLog;
            log() << "**          option to the replica set config must be set to false "
                  << startupWarningsLog;
            log() << "**          or w:majority write concerns will never complete."
                  << startupWarningsLog;
            log()
                << "**          In addition, this node's memory consumption may increase until all"
                << startupWarningsLog;
            log() << "**          available free RAM is exhausted." << startupWarningsLog;
            log() << startupWarningsLog;
        }
    }


    log() << "New replica set config in use: " << _rsConfig.toBSON() << rsLog;
    _selfIndex = myIndex;
    if (_selfIndex >= 0) {
        log() << "This node is " << _rsConfig.getMemberAt(_selfIndex).getHostAndPort()
              << " in the config";
    } else {
        log() << "This node is not a member of the config";
    }

    _cancelCatchupTakeover_inlock();
    _cancelPriorityTakeover_inlock();
    _cancelAndRescheduleElectionTimeout_inlock();

    const PostMemberStateUpdateAction action = _updateMemberStateFromTopologyCoordinator(lk);
    if (_selfIndex >= 0) {
        // Don't send heartbeats if we're not in the config, if we get re-added one of the
        // nodes in the set will contact us.
        _startHeartbeats_inlock();
    } else {
        // If we're still REMOVED, clear the seedList.
        _seedList.clear();
    }
    _updateLastCommittedOpTimeAndWallTime(lk);

    return action;
}

void ReplicationCoordinatorImpl::_wakeReadyWaiters(WithLock lk) {
    _replicationWaiterList.signalIf_inlock([this](Waiter* waiter) {
        return _doneWaitingForReplication_inlock(waiter->opTime, *waiter->writeConcern);
    });

    if (_wMajorityWriteAvailabilityWaiter) {
        WriteConcernOptions kMajorityWriteConcern(
            WriteConcernOptions::kMajority,
            WriteConcernOptions::SyncMode::UNSET,
            // The timeout isn't used by _doneWaitingForReplication_inlock.
            WriteConcernOptions::kNoTimeout);
        kMajorityWriteConcern =
            _populateUnsetWriteConcernOptionsSyncMode(lk, kMajorityWriteConcern);

        if (_doneWaitingForReplication_inlock(_wMajorityWriteAvailabilityWaiter->opTime,
                                              kMajorityWriteConcern)) {
            _wMajorityWriteAvailabilityWaiter->notify_inlock();
            _wMajorityWriteAvailabilityWaiter.reset();
        }
    }
}

Status ReplicationCoordinatorImpl::processReplSetUpdatePosition(const UpdatePositionArgs& updates,
                                                                long long* configVersion) {
    stdx::unique_lock<Latch> lock(_mutex);
    Status status = Status::OK();
    bool somethingChanged = false;
    for (UpdatePositionArgs::UpdateIterator update = updates.updatesBegin();
         update != updates.updatesEnd();
         ++update) {
        status = _setLastOptime(lock, *update, configVersion);
        if (!status.isOK()) {
            break;
        }
        somethingChanged = true;
    }

    if (somethingChanged && !_getMemberState_inlock().primary()) {
        lock.unlock();
        // Must do this outside _mutex
        _externalState->forwardSlaveProgress();
    }
    return status;
}

bool ReplicationCoordinatorImpl::buildsIndexes() {
    stdx::lock_guard<Latch> lk(_mutex);
    if (_selfIndex == -1) {
        return true;
    }
    const MemberConfig& self = _rsConfig.getMemberAt(_selfIndex);
    return self.shouldBuildIndexes();
}

std::vector<HostAndPort> ReplicationCoordinatorImpl::getHostsWrittenTo(const OpTime& op,
                                                                       bool durablyWritten) {
    stdx::lock_guard<Latch> lk(_mutex);
    return _topCoord->getHostsWrittenTo(op, durablyWritten);
}

std::vector<HostAndPort> ReplicationCoordinatorImpl::getOtherNodesInReplSet() const {
    stdx::lock_guard<Latch> lk(_mutex);
    invariant(_settings.usingReplSets());

    std::vector<HostAndPort> nodes;
    if (_selfIndex == -1) {
        return nodes;
    }

    for (int i = 0; i < _rsConfig.getNumMembers(); ++i) {
        if (i == _selfIndex)
            continue;

        nodes.push_back(_rsConfig.getMemberAt(i).getHostAndPort());
    }
    return nodes;
}

Status ReplicationCoordinatorImpl::checkIfWriteConcernCanBeSatisfied(
    const WriteConcernOptions& writeConcern) const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _checkIfWriteConcernCanBeSatisfied_inlock(writeConcern);
}

Status ReplicationCoordinatorImpl::_checkIfWriteConcernCanBeSatisfied_inlock(
    const WriteConcernOptions& writeConcern) const {
    if (getReplicationMode() == modeNone) {
        return Status(ErrorCodes::NoReplicationEnabled,
                      "No replication enabled when checking if write concern can be satisfied");
    }

    invariant(getReplicationMode() == modeReplSet);
    return _rsConfig.checkIfWriteConcernCanBeSatisfied(writeConcern);
}

Status ReplicationCoordinatorImpl::checkIfCommitQuorumCanBeSatisfied(
    const CommitQuorumOptions& commitQuorum) const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _checkIfCommitQuorumCanBeSatisfied(lock, commitQuorum);
}

Status ReplicationCoordinatorImpl::_checkIfCommitQuorumCanBeSatisfied(
    WithLock, const CommitQuorumOptions& commitQuorum) const {
    if (getReplicationMode() == modeNone) {
        return Status(ErrorCodes::NoReplicationEnabled,
                      "No replication enabled when checking if commit quorum can be satisfied");
    }

    invariant(getReplicationMode() == modeReplSet);

    std::vector<MemberConfig> memberConfig(_rsConfig.membersBegin(), _rsConfig.membersEnd());

    // We need to ensure that the 'commitQuorum' can be satisfied by all the members of this
    // replica set.
    bool commitQuorumCanBeSatisfied =
        _topCoord->checkIfCommitQuorumCanBeSatisfied(commitQuorum, memberConfig);
    if (!commitQuorumCanBeSatisfied) {
        return Status(ErrorCodes::UnsatisfiableCommitQuorum,
                      str::stream() << "Commit quorum cannot be satisfied with the current replica "
                                    << "set configuration");
    }
    return Status::OK();
}

StatusWith<bool> ReplicationCoordinatorImpl::checkIfCommitQuorumIsSatisfied(
    const CommitQuorumOptions& commitQuorum,
    const std::vector<HostAndPort>& commitReadyMembers) const {
    // If the 'commitQuorum' cannot be satisfied with all the members of this replica set, we
    // need to inform the caller to avoid hanging while waiting for satisfiability of the
    // 'commitQuorum' with 'commitReadyMembers' due to replica set reconfigurations.
    stdx::lock_guard<Latch> lock(_mutex);
    Status status = _checkIfCommitQuorumCanBeSatisfied(lock, commitQuorum);
    if (!status.isOK()) {
        return status;
    }

    // Return whether or not the 'commitQuorum' is satisfied by the 'commitReadyMembers'.
    return _topCoord->checkIfCommitQuorumIsSatisfied(commitQuorum, commitReadyMembers);
}

WriteConcernOptions ReplicationCoordinatorImpl::getGetLastErrorDefault() {
    stdx::lock_guard<Latch> lock(_mutex);
    if (_rsConfig.isInitialized()) {
        return _rsConfig.getDefaultWriteConcern();
    }
    return WriteConcernOptions();
}

Status ReplicationCoordinatorImpl::checkReplEnabledForCommand(BSONObjBuilder* result) {
    if (!_settings.usingReplSets()) {
        if (serverGlobalParams.clusterRole == ClusterRole::ConfigServer) {
            result->append("info", "configsvr");  // for shell prompt
        }
        return Status(ErrorCodes::NoReplicationEnabled, "not running with --replSet");
    }

    if (getMemberState().startup()) {
        result->append("info", "run rs.initiate(...) if not yet done for the set");
        return Status(ErrorCodes::NotYetInitialized, "no replset config has been received");
    }

    return Status::OK();
}

bool ReplicationCoordinatorImpl::isReplEnabled() const {
    return getReplicationMode() != modeNone;
}

HostAndPort ReplicationCoordinatorImpl::chooseNewSyncSource(const OpTime& lastOpTimeFetched) {
    stdx::lock_guard<Latch> lk(_mutex);

    HostAndPort oldSyncSource = _topCoord->getSyncSourceAddress();
    // Always allow chaining while in catchup and drain mode.
    auto memberState = _getMemberState_inlock();
    auto chainingPreference = memberState.primary()
        ? TopologyCoordinator::ChainingPreference::kAllowChaining
        : TopologyCoordinator::ChainingPreference::kUseConfiguration;
    ReadPreference readPreference = ReadPreference::Nearest;
    // Handle special case of initial sync source read preference.
    // This sync source will be cleared when we go to secondary mode, because we will perform
    // a postMemberState action of kOnFollowerModeStateChange which calls chooseNewSyncSource().
    if (memberState.startup2() && _selfIndex != -1) {
        if (!initialSyncSourceReadPreference.empty()) {
            try {
                readPreference =
                    ReadPreference_parse(IDLParserErrorContext("initialSyncSourceReadPreference"),
                                         initialSyncSourceReadPreference);
            } catch (const DBException& e) {
                fassertFailedWithStatus(3873100, e.toStatus());
            }
            // If read preference is explictly set, it takes precedence over chaining: false.
            chainingPreference = TopologyCoordinator::ChainingPreference::kAllowChaining;
        }
    }
    HostAndPort newSyncSource = _topCoord->chooseNewSyncSource(
        _replExecutor->now(), lastOpTimeFetched, chainingPreference, readPreference);
    auto primary = _topCoord->getCurrentPrimaryMember();
    // If read preference is SecondaryOnly, we should never choose the primary.
    invariant(readPreference != ReadPreference::SecondaryOnly || !primary ||
              primary->getHostAndPort() != newSyncSource);

    // If we lost our sync source, schedule new heartbeats immediately to update our knowledge
    // of other members's state, allowing us to make informed sync source decisions.
    if (newSyncSource.empty() && !oldSyncSource.empty() && _selfIndex >= 0 &&
        !_getMemberState_inlock().primary()) {
        _restartHeartbeats_inlock();
    }

    return newSyncSource;
}

void ReplicationCoordinatorImpl::_unblacklistSyncSource(
    const executor::TaskExecutor::CallbackArgs& cbData, const HostAndPort& host) {
    if (cbData.status == ErrorCodes::CallbackCanceled)
        return;

    stdx::lock_guard<Latch> lock(_mutex);
    _topCoord->unblacklistSyncSource(host, _replExecutor->now());
}

void ReplicationCoordinatorImpl::blacklistSyncSource(const HostAndPort& host, Date_t until) {
    stdx::lock_guard<Latch> lock(_mutex);
    _topCoord->blacklistSyncSource(host, until);
    _scheduleWorkAt(until, [=](const executor::TaskExecutor::CallbackArgs& cbData) {
        _unblacklistSyncSource(cbData, host);
    });
}

void ReplicationCoordinatorImpl::resetLastOpTimesFromOplog(OperationContext* opCtx,
                                                           DataConsistency consistency) {
    auto lastOpTimeAndWallTimeStatus = _externalState->loadLastOpTimeAndWallTime(opCtx);
    OpTimeAndWallTime lastOpTimeAndWallTime = {OpTime(), Date_t()};
    if (!lastOpTimeAndWallTimeStatus.getStatus().isOK()) {
        warning() << "Failed to load timestamp and/or wall clock time of most recently applied "
                     "operation; "
                  << lastOpTimeAndWallTimeStatus.getStatus();
    } else {
        lastOpTimeAndWallTime = lastOpTimeAndWallTimeStatus.getValue();
    }

    // Update the global timestamp before setting last applied opTime forward so the last applied
    // optime is never greater than the latest in-memory cluster time.
    _externalState->setGlobalTimestamp(opCtx->getServiceContext(),
                                       lastOpTimeAndWallTime.opTime.getTimestamp());

    stdx::unique_lock<Latch> lock(_mutex);
    bool isRollbackAllowed = true;
    _setMyLastAppliedOpTimeAndWallTime(lock, lastOpTimeAndWallTime, isRollbackAllowed, consistency);
    _setMyLastDurableOpTimeAndWallTime(lock, lastOpTimeAndWallTime, isRollbackAllowed);
    _reportUpstream_inlock(std::move(lock));
}

bool ReplicationCoordinatorImpl::shouldChangeSyncSource(
    const HostAndPort& currentSource,
    const rpc::ReplSetMetadata& replMetadata,
    boost::optional<rpc::OplogQueryMetadata> oqMetadata) {
    stdx::lock_guard<Latch> lock(_mutex);
    return _topCoord->shouldChangeSyncSource(
        currentSource, replMetadata, oqMetadata, _replExecutor->now());
}

void ReplicationCoordinatorImpl::_updateLastCommittedOpTimeAndWallTime(WithLock lk) {
    if (_topCoord->updateLastCommittedOpTimeAndWallTime()) {
        _setStableTimestampForStorage(lk);
    }
    // Wake up any threads waiting for replication that now have their replication
    // check satisfied.  We must do this regardless of whether we updated the lastCommittedOpTime,
    // as lastCommittedOpTime may be based on durable optimes whereas some waiters may be
    // waiting on applied (but not necessarily durable) optimes.
    _wakeReadyWaiters(lk);
}

boost::optional<OpTimeAndWallTime> ReplicationCoordinatorImpl::_chooseStableOpTimeFromCandidates(
    WithLock lk,
    const std::set<OpTimeAndWallTime>& candidates,
    OpTimeAndWallTime maximumStableOpTime) {

    // No optime candidates.
    if (candidates.empty()) {
        return boost::none;
    }

    auto maximumStableTimestamp = maximumStableOpTime.opTime.getTimestamp();
    if (_readWriteAbility->canAcceptNonLocalWrites(lk) && _storage->supportsDocLocking(_service)) {
        // If the storage engine supports document level locking, then it is possible for oplog
        // writes to commit out of order. In that case, we don't want to set the stable timestamp
        // ahead of the all_durable timestamp. This is not a problem for oplog application
        // because we only set lastApplied between batches when the all_durable timestamp cannot
        // be behind. During oplog application the all_durable timestamp can jump around since
        // we first write oplog entries to the oplog and then go back and apply them.
        //
        // We must construct an upper bound for the stable optime candidates such that the upper
        // bound is at most 'maximumStableOpTime' and any candidate with a timestamp higher than the
        // all_durable is greater than the upper bound. If the timestamp of 'maximumStableOpTime'
        // is <= the all_durable, then we use 'maximumStableOpTime'. Otherwise, we construct an
        // optime using the all_durable and the term of 'maximumStableOpTime'. We must argue that
        // there are no stable optime candidates with a timestamp greater than the all_durable and
        // a term less than that of 'maximumStableOpTime'. Suppose there were. The
        // 'maximumStableOpTime' is either the commit point or the lastApplied, so the all_durable
        // can only be behind 'maximumStableOpTime' on a primary. If there is a candidate with a
        // higher timestamp than the all_durable but a lower term than 'maximumStableOpTime', then
        // the all_durable corresponds to a write in an earlier term than the current one. But
        // this is not possible on a primary, since on step-up, the primary storage commits a 'new
        // primary' oplog entry in the new term before accepting any new writes, so the all
        // durable must be in the current term.
        maximumStableTimestamp = std::min(_storage->getAllDurableTimestamp(_service),
                                          maximumStableOpTime.opTime.getTimestamp());
    }

    MONGO_FAIL_POINT_BLOCK(holdStableTimestampAtSpecificTimestamp, data) {
        const BSONObj& dataObj = data.getData();
        const auto holdStableTimestamp = dataObj["timestamp"].timestamp();
        maximumStableTimestamp = std::min(maximumStableTimestamp, holdStableTimestamp);
    }

    maximumStableOpTime = {OpTime(maximumStableTimestamp, maximumStableOpTime.opTime.getTerm()),
                           maximumStableOpTime.wallTime};

    // Find the greatest optime candidate that is less than or equal to 'maximumStableOpTime'. To do
    // this we first find the upper bound of 'maximumStableOpTime', which points to the smallest
    // element in 'candidates' that is greater than 'maximumStableOpTime'. We then step back one
    // element, which should give us the largest element in 'candidates' that is less than or equal
    // to the 'maximumStableOpTime'.
    auto upperBoundIter = candidates.upper_bound(maximumStableOpTime);

    // All optime candidates are greater than the commit point.
    if (upperBoundIter == candidates.begin()) {
        return boost::none;
    }
    // There is a valid stable optime.
    else {
        auto stableOpTime = *std::prev(upperBoundIter);
        invariant(stableOpTime.opTime.getTimestamp() <= maximumStableTimestamp,
                  str::stream() << "stableOpTime: " << stableOpTime.opTime.toString()
                                << " maximumStableTimestamp: "
                                << maximumStableTimestamp.toString());
        return stableOpTime;
    }
}

void ReplicationCoordinatorImpl::_cleanupStableOpTimeCandidates(
    std::set<OpTimeAndWallTime>* candidates, OpTimeAndWallTime stableOpTime) {
    // Discard optime candidates earlier than the current stable optime, since we don't need
    // them anymore. To do this, we find the lower bound of the 'stableOpTime' which is the first
    // element that is greater than or equal to the 'stableOpTime'. Then we discard everything up
    // to but not including this lower bound i.e. 'deletePoint'.
    auto deletePoint = candidates->lower_bound(stableOpTime);

    // Delete the entire range of unneeded optimes.
    candidates->erase(candidates->begin(), deletePoint);
}

boost::optional<OpTimeAndWallTime>
ReplicationCoordinatorImpl::chooseStableOpTimeFromCandidates_forTest(
    const std::set<OpTimeAndWallTime>& candidates, const OpTimeAndWallTime& maximumStableOpTime) {
    stdx::lock_guard<Latch> lk(_mutex);
    return _chooseStableOpTimeFromCandidates(lk, candidates, maximumStableOpTime);
}
void ReplicationCoordinatorImpl::cleanupStableOpTimeCandidates_forTest(
    std::set<OpTimeAndWallTime>* candidates, OpTimeAndWallTime stableOpTime) {
    _cleanupStableOpTimeCandidates(candidates, stableOpTime);
}

std::set<OpTimeAndWallTime> ReplicationCoordinatorImpl::getStableOpTimeCandidates_forTest() {
    stdx::unique_lock<Latch> lk(_mutex);
    return _stableOpTimeCandidates;
}

void ReplicationCoordinatorImpl::attemptToAdvanceStableTimestamp() {
    stdx::unique_lock<Latch> lk(_mutex);
    _setStableTimestampForStorage(lk);
}

boost::optional<OpTimeAndWallTime> ReplicationCoordinatorImpl::_recalculateStableOpTime(
    WithLock lk) {
    auto commitPoint = _topCoord->getLastCommittedOpTimeAndWallTime();
    if (_currentCommittedSnapshot) {
        auto snapshotOpTime = _currentCommittedSnapshot->opTime;
        invariant(snapshotOpTime.getTimestamp() <= commitPoint.opTime.getTimestamp(),
                  str::stream() << "snapshotOpTime: " << snapshotOpTime.toString()
                                << " commitPoint: " << commitPoint.opTime.toString());
        invariant(snapshotOpTime <= commitPoint.opTime,
                  str::stream() << "snapshotOpTime: " << snapshotOpTime.toString()
                                << " commitPoint: " << commitPoint.opTime.toString());
    }

    // When majority read concern is disabled, the stable opTime is set to the lastApplied, rather
    // than the commit point.
    auto maximumStableOpTime = serverGlobalParams.enableMajorityReadConcern
        ? commitPoint
        : _topCoord->getMyLastAppliedOpTimeAndWallTime();

    // Compute the current stable optime.
    auto stableOpTime =
        _chooseStableOpTimeFromCandidates(lk, _stableOpTimeCandidates, maximumStableOpTime);
    if (stableOpTime) {
        // Check that the selected stable optime does not exceed our maximum.
        invariant(
            stableOpTime.get().opTime.getTimestamp() <= maximumStableOpTime.opTime.getTimestamp(),
            str::stream() << "stableOpTime: " << stableOpTime.get().opTime.toString()
                          << " maximumStableOpTime: " << maximumStableOpTime.opTime.toString());
        invariant(stableOpTime.get().opTime <= maximumStableOpTime.opTime,
                  str::stream() << "stableOpTime: " << stableOpTime.get().opTime.toString()
                                << " maximumStableOpTime: "
                                << maximumStableOpTime.opTime.toString());
    }

    return stableOpTime;
}

MONGO_FAIL_POINT_DEFINE(disableSnapshotting);

void ReplicationCoordinatorImpl::_setStableTimestampForStorage(WithLock lk) {
    if (!_shouldSetStableTimestamp) {
        LOG(2) << "Not setting stable timestamp for storage.";
        return;
    }
    // Get the current stable optime.
    auto stableOpTime = _recalculateStableOpTime(lk);

    // If there is a valid stable optime, set it for the storage engine, and then remove any
    // old, unneeded stable optime candidates.
    if (stableOpTime) {
        LOG(2) << "Setting replication's stable optime to " << stableOpTime.value();

        if (!gTestingSnapshotBehaviorInIsolation) {
            // Update committed snapshot and wake up any threads waiting on read concern or
            // write concern.
            if (serverGlobalParams.enableMajorityReadConcern) {
                // When majority read concern is enabled, the committed snapshot is set to the new
                // stable optime.
                if (_updateCommittedSnapshot(lk, stableOpTime.value())) {
                    // Update the stable timestamp for the storage engine.
                    _storage->setStableTimestamp(getServiceContext(),
                                                 stableOpTime->opTime.getTimestamp());
                }
            } else {
                const auto lastCommittedOpTime = _topCoord->getLastCommittedOpTimeAndWallTime();
                if (!lastCommittedOpTime.opTime.isNull()) {
                    // When majority read concern is disabled, we set the stable timestamp to
                    // be less than or equal to the all committed timestamp. This makes sure that
                    // the committed snapshot is not past the all committed timestamp to guarantee
                    // we can always read our own majority committed writes. This problem is
                    // specific to the case where we have a single node replica set and the
                    // lastCommittedOpTime is set to be the lastApplied which can be ahead of the
                    // allCommitted.
                    auto newCommittedSnapshot = std::min(lastCommittedOpTime, *stableOpTime);
                    _updateCommittedSnapshot(lk, newCommittedSnapshot);
                }
                // Set the stable timestamp regardless of whether the majority commit point moved
                // forward. If we are in rollback state, however, do not alter the stable timestamp,
                // since it may be moved backwards explicitly by the rollback-via-refetch process.
                if (!MONGO_FAIL_POINT(disableSnapshotting) && !_memberState.rollback()) {
                    _storage->setStableTimestamp(getServiceContext(),
                                                 stableOpTime->opTime.getTimestamp());
                }
            }
        }
        _cleanupStableOpTimeCandidates(&_stableOpTimeCandidates, stableOpTime.get());
    }
}

void ReplicationCoordinatorImpl::advanceCommitPoint(
    const OpTimeAndWallTime& committedOpTimeAndWallTime, bool fromSyncSource) {
    stdx::unique_lock<Latch> lk(_mutex);
    _advanceCommitPoint(lk, committedOpTimeAndWallTime, fromSyncSource);
}

void ReplicationCoordinatorImpl::_advanceCommitPoint(
    WithLock lk, const OpTimeAndWallTime& committedOpTimeAndWallTime, bool fromSyncSource) {
    if (_topCoord->advanceLastCommittedOpTimeAndWallTime(committedOpTimeAndWallTime,
                                                         fromSyncSource)) {
        if (_getMemberState_inlock().arbiter()) {
            // Arbiters do not store replicated data, so we consider their data trivially
            // consistent.
            _setMyLastAppliedOpTimeAndWallTime(
                lk, committedOpTimeAndWallTime, false, DataConsistency::Consistent);
        }

        _setStableTimestampForStorage(lk);
        // Even if we have no new snapshot, we need to notify waiters that the commit point moved.
        _externalState->notifyOplogMetadataWaiters(committedOpTimeAndWallTime.opTime);
    }
}

OpTime ReplicationCoordinatorImpl::getLastCommittedOpTime() const {
    stdx::unique_lock<Latch> lk(_mutex);
    return _topCoord->getLastCommittedOpTime();
}

OpTimeAndWallTime ReplicationCoordinatorImpl::getLastCommittedOpTimeAndWallTime() const {
    stdx::unique_lock<Latch> lk(_mutex);
    return _topCoord->getLastCommittedOpTimeAndWallTime();
}

Status ReplicationCoordinatorImpl::processReplSetRequestVotes(
    OperationContext* opCtx,
    const ReplSetRequestVotesArgs& args,
    ReplSetRequestVotesResponse* response) {

    auto termStatus = updateTerm(opCtx, args.getTerm());
    if (!termStatus.isOK() && termStatus.code() != ErrorCodes::StaleTerm)
        return termStatus;

    {
        stdx::lock_guard<Latch> lk(_mutex);

        // We should only enter terminal shutdown from global terminal exit.  In that case, rather
        // than voting in a term we don't plan to stay alive in, refuse to vote.
        if (_inTerminalShutdown) {
            return Status(ErrorCodes::ShutdownInProgress, "In the process of shutting down");
        }

        if (_selfIndex == -1) {
            return Status(ErrorCodes::InvalidReplicaSetConfig,
                          "Invalid replica set config, or this node is not a member");
        }

        _topCoord->processReplSetRequestVotes(args, response);
    }

    if (!args.isADryRun()) {
        const int candidateIndex = args.getCandidateIndex();
        LastVote lastVote{args.getTerm(), candidateIndex};

        const bool votedForCandidate = response->getVoteGranted();

        if (votedForCandidate) {
            Status status = _externalState->storeLocalLastVoteDocument(opCtx, lastVote);
            if (!status.isOK()) {
                error() << "replSetRequestVotes failed to store LastVote document; " << status;
                return status;
            }
        }

        // If the vote was not granted to the candidate, we still want to track metrics around the
        // node's participation in the election.
        const long long electionTerm = args.getTerm();
        const Date_t lastVoteDate = _replExecutor->now();
        const int electionCandidateMemberId =
            _rsConfig.getMemberAt(candidateIndex).getId().getData();
        const std::string voteReason = response->getReason();
        const OpTime lastAppliedOpTime = _topCoord->getMyLastAppliedOpTime();
        const OpTime maxAppliedOpTime = _topCoord->latestKnownOpTime();
        const double priorityAtElection = _rsConfig.getMemberAt(_selfIndex).getPriority();

        ReplicationMetrics::get(getServiceContext())
            .setElectionParticipantMetrics(votedForCandidate,
                                           electionTerm,
                                           lastVoteDate,
                                           electionCandidateMemberId,
                                           voteReason,
                                           lastAppliedOpTime,
                                           maxAppliedOpTime,
                                           priorityAtElection);
    }
    return Status::OK();
}

void ReplicationCoordinatorImpl::prepareReplMetadata(const BSONObj& metadataRequestObj,
                                                     const OpTime& lastOpTimeFromClient,
                                                     BSONObjBuilder* builder) const {

    bool hasReplSetMetadata = metadataRequestObj.hasField(rpc::kReplSetMetadataFieldName);
    bool hasOplogQueryMetadata = metadataRequestObj.hasField(rpc::kOplogQueryMetadataFieldName);
    // Don't take any locks if we do not need to.
    if (!hasReplSetMetadata && !hasOplogQueryMetadata) {
        return;
    }

    // Avoid retrieving Rollback ID if we do not need it for _prepareOplogQueryMetadata_inlock().
    int rbid = -1;
    if (hasOplogQueryMetadata) {
        rbid = _replicationProcess->getRollbackID();
        invariant(-1 != rbid);
    }

    stdx::lock_guard<Latch> lk(_mutex);

    if (hasReplSetMetadata) {
        _prepareReplSetMetadata_inlock(lastOpTimeFromClient, builder);
    }

    if (hasOplogQueryMetadata) {
        _prepareOplogQueryMetadata_inlock(rbid, builder);
    }
}

void ReplicationCoordinatorImpl::_prepareReplSetMetadata_inlock(const OpTime& lastOpTimeFromClient,
                                                                BSONObjBuilder* builder) const {
    OpTime lastVisibleOpTime =
        std::max(lastOpTimeFromClient, _getCurrentCommittedSnapshotOpTime_inlock());
    auto metadata = _topCoord->prepareReplSetMetadata(lastVisibleOpTime);
    metadata.writeToMetadata(builder).transitional_ignore();
}

void ReplicationCoordinatorImpl::_prepareOplogQueryMetadata_inlock(int rbid,
                                                                   BSONObjBuilder* builder) const {
    _topCoord->prepareOplogQueryMetadata(rbid).writeToMetadata(builder).transitional_ignore();
}

bool ReplicationCoordinatorImpl::getWriteConcernMajorityShouldJournal() {
    return getConfig().getWriteConcernMajorityShouldJournal();
}

bool ReplicationCoordinatorImpl::getWriteConcernMajorityShouldJournal_inlock() const {
    return _rsConfig.getWriteConcernMajorityShouldJournal();
}

Status ReplicationCoordinatorImpl::processHeartbeatV1(const ReplSetHeartbeatArgsV1& args,
                                                      ReplSetHeartbeatResponse* response) {
    {
        stdx::lock_guard<Latch> lock(_mutex);
        if (_rsConfigState == kConfigPreStart || _rsConfigState == kConfigStartingUp) {
            return Status(ErrorCodes::NotYetInitialized,
                          "Received heartbeat while still initializing replication system");
        }
    }

    Status result(ErrorCodes::InternalError, "didn't set status in prepareHeartbeatResponse");
    stdx::lock_guard<Latch> lk(_mutex);

    auto senderHost(args.getSenderHost());
    const Date_t now = _replExecutor->now();
    result = _topCoord->prepareHeartbeatResponseV1(now, args, _settings.ourSetName(), response);

    if ((result.isOK() || result == ErrorCodes::InvalidReplicaSetConfig) && _selfIndex < 0) {
        // If this node does not belong to the configuration it knows about, send heartbeats
        // back to any node that sends us a heartbeat, in case one of those remote nodes has
        // a configuration that contains us.  Chances are excellent that it will, since that
        // is the only reason for a remote node to send this node a heartbeat request.
        if (!senderHost.empty() && _seedList.insert(senderHost).second) {
            _scheduleHeartbeatToTarget_inlock(senderHost, -1, now);
        }
    } else if (result.isOK() && response->getConfigVersion() < args.getConfigVersion()) {
        // Schedule a heartbeat to the sender to fetch the new config.
        // We cannot cancel the enqueued heartbeat, but either this one or the enqueued heartbeat
        // will trigger reconfig, which cancels and reschedules all heartbeats.
        if (args.hasSender()) {
            int senderIndex = _rsConfig.findMemberIndexByHostAndPort(senderHost);
            _scheduleHeartbeatToTarget_inlock(senderHost, senderIndex, now);
        }
    }
    return result;
}

long long ReplicationCoordinatorImpl::getTerm() {
    // Note: no mutex acquisition here, as we are reading an Atomic variable.
    return _termShadow.load();
}

EventHandle ReplicationCoordinatorImpl::updateTerm_forTest(
    long long term, TopologyCoordinator::UpdateTermResult* updateResult) {
    stdx::lock_guard<Latch> lock(_mutex);

    EventHandle finishEvh;
    finishEvh = _updateTerm_inlock(term, updateResult);
    return finishEvh;
}

Status ReplicationCoordinatorImpl::updateTerm(OperationContext* opCtx, long long term) {
    // Term is only valid if we are replicating.
    if (getReplicationMode() != modeReplSet) {
        return {ErrorCodes::BadValue, "cannot supply 'term' without active replication"};
    }

    // Check we haven't acquired any lock, because potential stepdown needs global lock.
    dassert(!opCtx->lockState()->isLocked() || opCtx->lockState()->isNoop());
    TopologyCoordinator::UpdateTermResult updateTermResult;
    EventHandle finishEvh;

    {
        stdx::lock_guard<Latch> lock(_mutex);
        finishEvh = _updateTerm_inlock(term, &updateTermResult);
    }

    // Wait for potential stepdown to finish.
    if (finishEvh.isValid()) {
        _replExecutor->waitForEvent(finishEvh);
    }
    if (updateTermResult == TopologyCoordinator::UpdateTermResult::kUpdatedTerm ||
        updateTermResult == TopologyCoordinator::UpdateTermResult::kTriggerStepDown) {
        return {ErrorCodes::StaleTerm, "Replication term of this node was stale; retry query"};
    }

    return Status::OK();
}

EventHandle ReplicationCoordinatorImpl::_updateTerm_inlock(
    long long term, TopologyCoordinator::UpdateTermResult* updateTermResult) {

    auto now = _replExecutor->now();
    TopologyCoordinator::UpdateTermResult localUpdateTermResult = _topCoord->updateTerm(term, now);
    if (localUpdateTermResult == TopologyCoordinator::UpdateTermResult::kUpdatedTerm) {
        // When the node discovers a new term, the new term date metrics are now out-of-date, so we
        // clear them.
        ReplicationMetrics::get(getServiceContext()).clearParticipantNewTermDates();

        _termShadow.store(term);
        _cancelPriorityTakeover_inlock();
        _cancelAndRescheduleElectionTimeout_inlock();
    }

    if (updateTermResult) {
        *updateTermResult = localUpdateTermResult;
    }

    if (localUpdateTermResult == TopologyCoordinator::UpdateTermResult::kTriggerStepDown) {
        if (!_pendingTermUpdateDuringStepDown || *_pendingTermUpdateDuringStepDown < term) {
            _pendingTermUpdateDuringStepDown = term;
        }
        if (_topCoord->prepareForUnconditionalStepDown()) {
            log() << "stepping down from primary, because a new term has begun: " << term;
            ReplicationMetrics::get(getServiceContext()).incrementNumStepDownsCausedByHigherTerm();
            return _stepDownStart();
        } else {
            LOG(2) << "Updated term but not triggering stepdown because we are already in the "
                      "process of stepping down";
        }
    }
    return EventHandle();
}

void ReplicationCoordinatorImpl::waitUntilSnapshotCommitted(OperationContext* opCtx,
                                                            const Timestamp& untilSnapshot) {
    stdx::unique_lock<Latch> lock(_mutex);

    uassert(ErrorCodes::NotYetInitialized,
            "Cannot use snapshots until replica set is finished initializing.",
            _rsConfigState != kConfigUninitialized && _rsConfigState != kConfigInitiating);

    opCtx->waitForConditionOrInterrupt(_currentCommittedSnapshotCond, lock, [&] {
        return _currentCommittedSnapshot &&
            _currentCommittedSnapshot->opTime.getTimestamp() >= untilSnapshot;
    });
}

size_t ReplicationCoordinatorImpl::getNumUncommittedSnapshots() {
    return _uncommittedSnapshotsSize.load();
}

void ReplicationCoordinatorImpl::createWMajorityWriteAvailabilityDateWaiter(OpTime opTime) {
    stdx::lock_guard<Latch> lk(_mutex);
    auto opTimeCB = [this, opTime]() {
        ReplicationMetrics::get(getServiceContext())
            .setWMajorityWriteAvailabilityDate(_replExecutor->now());
    };
    _wMajorityWriteAvailabilityWaiter = std::make_unique<CallbackWaiter>(opTime, opTimeCB);
}

bool ReplicationCoordinatorImpl::_updateCommittedSnapshot(
    WithLock lk, const OpTimeAndWallTime& newCommittedSnapshot) {
    if (gTestingSnapshotBehaviorInIsolation) {
        return false;
    }

    // If we are in ROLLBACK state, do not set any new _currentCommittedSnapshot, as it will be
    // cleared at the end of rollback anyway.
    if (_memberState.rollback()) {
        log() << "Not updating committed snapshot because we are in rollback";
        return false;
    }
    invariant(!newCommittedSnapshot.opTime.isNull());

    // The new committed snapshot should be <= the current replication commit point.
    OpTime lastCommittedOpTime = _topCoord->getLastCommittedOpTime();
    invariant(newCommittedSnapshot.opTime.getTimestamp() <= lastCommittedOpTime.getTimestamp());
    invariant(newCommittedSnapshot.opTime <= lastCommittedOpTime);

    // The new committed snapshot should be >= the current snapshot.
    if (_currentCommittedSnapshot) {
        invariant(newCommittedSnapshot.opTime.getTimestamp() >=
                  _currentCommittedSnapshot->opTime.getTimestamp());
        invariant(newCommittedSnapshot.opTime >= _currentCommittedSnapshot->opTime);
    }
    if (MONGO_FAIL_POINT(disableSnapshotting))
        return false;
    _currentCommittedSnapshot = newCommittedSnapshot;
    _currentCommittedSnapshotCond.notify_all();

    _externalState->updateCommittedSnapshot(newCommittedSnapshot.opTime);

    // Wake up any threads waiting for read concern or write concern.
    _wakeReadyWaiters(lk);
    return true;
}

void ReplicationCoordinatorImpl::dropAllSnapshots() {
    stdx::lock_guard<Latch> lock(_mutex);
    _dropAllSnapshots_inlock();
}

void ReplicationCoordinatorImpl::_dropAllSnapshots_inlock() {
    _currentCommittedSnapshot = boost::none;
    _externalState->dropAllSnapshots();
}

void ReplicationCoordinatorImpl::waitForElectionFinish_forTest() {
    if (_electionFinishedEvent.isValid()) {
        _replExecutor->waitForEvent(_electionFinishedEvent);
    }
}

void ReplicationCoordinatorImpl::waitForElectionDryRunFinish_forTest() {
    if (_electionDryRunFinishedEvent.isValid()) {
        _replExecutor->waitForEvent(_electionDryRunFinishedEvent);
    }
}

CallbackHandle ReplicationCoordinatorImpl::_scheduleWorkAt(Date_t when, CallbackFn work) {
    auto cbh =
        _replExecutor->scheduleWorkAt(when, [work = std::move(work)](const CallbackArgs& args) {
            if (args.status == ErrorCodes::CallbackCanceled) {
                return;
            }
            work(args);
        });
    if (cbh == ErrorCodes::ShutdownInProgress) {
        return {};
    }
    return fassert(28800, cbh);
}

EventHandle ReplicationCoordinatorImpl::_makeEvent() {
    auto eventResult = this->_replExecutor->makeEvent();
    if (eventResult.getStatus() == ErrorCodes::ShutdownInProgress) {
        return EventHandle();
    }
    fassert(28825, eventResult.getStatus());
    return eventResult.getValue();
}

WriteConcernOptions ReplicationCoordinatorImpl::populateUnsetWriteConcernOptionsSyncMode(
    WriteConcernOptions wc) {
    stdx::lock_guard<Latch> lock(_mutex);
    return _populateUnsetWriteConcernOptionsSyncMode(lock, wc);
}

WriteConcernOptions ReplicationCoordinatorImpl::_populateUnsetWriteConcernOptionsSyncMode(
    WithLock lk, WriteConcernOptions wc) {
    WriteConcernOptions writeConcern(wc);
    if (writeConcern.syncMode == WriteConcernOptions::SyncMode::UNSET) {
        if (writeConcern.wMode == WriteConcernOptions::kMajority &&
            getWriteConcernMajorityShouldJournal_inlock()) {
            writeConcern.syncMode = WriteConcernOptions::SyncMode::JOURNAL;
        } else {
            writeConcern.syncMode = WriteConcernOptions::SyncMode::NONE;
        }
    }
    return writeConcern;
}

CallbackFn ReplicationCoordinatorImpl::_wrapAsCallbackFn(const stdx::function<void()>& work) {
    return [work](const CallbackArgs& cbData) {
        if (cbData.status == ErrorCodes::CallbackCanceled) {
            return;
        }

        work();
    };
}

Status ReplicationCoordinatorImpl::stepUpIfEligible(bool skipDryRun) {

    auto reason = skipDryRun ? StartElectionReasonEnum::kStepUpRequestSkipDryRun
                             : StartElectionReasonEnum::kStepUpRequest;
    _startElectSelfIfEligibleV1(reason);

    EventHandle finishEvent;
    {
        stdx::lock_guard<Latch> lk(_mutex);
        finishEvent = _electionFinishedEvent;
    }
    if (finishEvent.isValid()) {
        _replExecutor->waitForEvent(finishEvent);
    }
    {
        // Step up is considered successful only if we are currently a primary and we are not in the
        // process of stepping down. If we know we are going to step down, we should fail the
        // replSetStepUp command so caller can retry if necessary.
        stdx::lock_guard<Latch> lk(_mutex);
        if (!_getMemberState_inlock().primary())
            return Status(ErrorCodes::CommandFailed, "Election failed.");
        else if (_topCoord->isSteppingDown())
            return Status(ErrorCodes::CommandFailed, "Election failed due to concurrent stepdown.");
    }
    return Status::OK();
}

executor::TaskExecutor::EventHandle ReplicationCoordinatorImpl::_cancelElectionIfNeeded_inlock() {
    if (_topCoord->getRole() != TopologyCoordinator::Role::kCandidate) {
        return {};
    }
    invariant(_voteRequester);
    _voteRequester->cancel();
    return _electionFinishedEvent;
}

int64_t ReplicationCoordinatorImpl::_nextRandomInt64_inlock(int64_t limit) {
    return _random.nextInt64(limit);
}

bool ReplicationCoordinatorImpl::setContainsArbiter() const {
    stdx::lock_guard<Latch> lock(_mutex);
    return _rsConfig.containsArbiter();
}

void ReplicationCoordinatorImpl::ReadWriteAbility::setCanAcceptNonLocalWrites(
    WithLock lk, OperationContext* opCtx, bool canAcceptWrites) {
    // We must be holding the RSTL in mode X to change _canAcceptNonLocalWrites.
    invariant(opCtx);
    invariant(opCtx->lockState()->isRSTLExclusive());
    if (canAcceptWrites == canAcceptNonLocalWrites(lk)) {
        return;
    }
    _canAcceptNonLocalWrites.store(canAcceptWrites);
}

bool ReplicationCoordinatorImpl::ReadWriteAbility::canAcceptNonLocalWrites(WithLock) const {
    return _canAcceptNonLocalWrites.loadRelaxed();
}

bool ReplicationCoordinatorImpl::ReadWriteAbility::canAcceptNonLocalWrites_UNSAFE() const {
    return _canAcceptNonLocalWrites.loadRelaxed();
}

bool ReplicationCoordinatorImpl::ReadWriteAbility::canAcceptNonLocalWrites(
    OperationContext* opCtx) const {
    // We must be holding the RSTL.
    invariant(opCtx);
    invariant(opCtx->lockState()->isRSTLLocked());
    return _canAcceptNonLocalWrites.loadRelaxed();
}

bool ReplicationCoordinatorImpl::ReadWriteAbility::canServeNonLocalReads_UNSAFE() const {
    return _canServeNonLocalReads.loadRelaxed();
}

bool ReplicationCoordinatorImpl::ReadWriteAbility::canServeNonLocalReads(
    OperationContext* opCtx) const {
    // We must be holding the RSTL.
    invariant(opCtx);
    invariant(opCtx->lockState()->isRSTLLocked());
    return _canServeNonLocalReads.loadRelaxed();
}

void ReplicationCoordinatorImpl::ReadWriteAbility::setCanServeNonLocalReads(OperationContext* opCtx,
                                                                            unsigned int newVal) {
    // We must be holding the RSTL in mode X to change _canServeNonLocalReads.
    invariant(opCtx);
    invariant(opCtx->lockState()->isRSTLExclusive());
    _canServeNonLocalReads.store(newVal);
}

void ReplicationCoordinatorImpl::ReadWriteAbility::setCanServeNonLocalReads_UNSAFE(
    unsigned int newVal) {
    _canServeNonLocalReads.store(newVal);
}

}  // namespace repl
}  // namespace mongo