summaryrefslogtreecommitdiff
path: root/src/mongo/db/s/balancer/balancer_defragmentation_policy_impl.cpp
blob: 2cadf4e26b043624c318a05f5a7f4b6c1168b568 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
/**
 *    Copyright (C) 2021-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#include "mongo/db/s/balancer/balancer_defragmentation_policy_impl.h"
#include "mongo/db/dbdirectclient.h"
#include "mongo/db/persistent_task_store.h"
#include "mongo/db/s/balancer/cluster_statistics.h"
#include "mongo/db/s/config/sharding_catalog_manager.h"
#include "mongo/logv2/log.h"
#include "mongo/s/balancer_configuration.h"
#include "mongo/s/catalog/type_chunk.h"
#include "mongo/s/grid.h"
#include "mongo/s/request_types/move_range_request_gen.h"
#include "mongo/s/sharding_feature_flags_gen.h"

#include <fmt/format.h>
#include <tuple>

#define MONGO_LOGV2_DEFAULT_COMPONENT ::mongo::logv2::LogComponent::kSharding


using namespace fmt::literals;

namespace mongo {

namespace {

MONGO_FAIL_POINT_DEFINE(skipDefragmentationPhaseTransition);
MONGO_FAIL_POINT_DEFINE(afterBuildingNextDefragmentationPhase);

using ShardStatistics = ClusterStatistics::ShardStatistics;

const std::string kCurrentPhase("currentPhase");
const std::string kProgress("progress");
const std::string kNoPhase("none");
const std::string kRemainingChunksToProcess("remainingChunksToProcess");

ShardVersion getShardVersion(OperationContext* opCtx,
                             const ShardId& shardId,
                             const NamespaceString& nss) {
    auto cm = Grid::get(opCtx)->catalogCache()->getShardedCollectionRoutingInfo(opCtx, nss);
    const auto placementVersion = cm.getVersion(shardId);
    return ShardVersion(placementVersion, CollectionIndexes(placementVersion, boost::none));
}

std::vector<ChunkType> getCollectionChunks(OperationContext* opCtx, const CollectionType& coll) {
    return uassertStatusOK(Grid::get(opCtx)->catalogClient()->getChunks(
        opCtx,
        BSON(ChunkType::collectionUUID() << coll.getUuid()) /*query*/,
        BSON(ChunkType::min() << 1) /*sort*/,
        boost::none /*limit*/,
        nullptr /*opTime*/,
        coll.getEpoch(),
        coll.getTimestamp(),
        repl::ReadConcernLevel::kLocalReadConcern,
        boost::none));
}

uint64_t getCollectionMaxChunkSizeBytes(OperationContext* opCtx, const CollectionType& coll) {
    const auto balancerConfig = Grid::get(opCtx)->getBalancerConfiguration();
    uassertStatusOK(balancerConfig->refreshAndCheck(opCtx));
    return coll.getMaxChunkSizeBytes().value_or(balancerConfig->getMaxChunkSizeBytes());
}

ZoneInfo getCollectionZones(OperationContext* opCtx, const CollectionType& coll) {
    auto zones = uassertStatusOK(
        ZoneInfo::getZonesForCollection(opCtx, coll.getNss(), coll.getKeyPattern()));
    return zones;
}

bool isRetriableForDefragmentation(const Status& status) {
    if (ErrorCodes::isA<ErrorCategory::RetriableError>(status))
        return true;

    if (status == ErrorCodes::StaleConfig) {
        if (auto staleInfo = status.extraInfo<StaleConfigInfo>()) {
            // If the staleInfo error contains a "wanted" version, this means the donor shard which
            // returned this error has its versioning information up-to-date (as opposed to UNKNOWN)
            // and it couldn't find the chunk that the defragmenter expected. Such a situation can
            // only arise as a result of manual split/merge/move concurrently with the defragmenter.
            return !staleInfo->getVersionWanted();
        }
    }

    return false;
}

void handleActionResult(OperationContext* opCtx,
                        const NamespaceString& nss,
                        const UUID& uuid,
                        const DefragmentationPhaseEnum currentPhase,
                        const Status& status,
                        std::function<void()> onSuccess,
                        std::function<void()> onRetriableError,
                        std::function<void()> onNonRetriableError) {
    if (status.isOK()) {
        onSuccess();
        return;
    }

    if (status == ErrorCodes::StaleConfig) {
        if (auto staleInfo = status.extraInfo<StaleConfigInfo>()) {
            Grid::get(opCtx)
                ->catalogCache()
                ->invalidateShardOrEntireCollectionEntryForShardedCollection(
                    nss, staleInfo->getVersionWanted(), staleInfo->getShardId());
        }
    }

    if (isRetriableForDefragmentation(status)) {
        LOGV2_DEBUG(6261701,
                    1,
                    "Hit retriable error while defragmenting collection",
                    "namespace"_attr = nss,
                    "uuid"_attr = uuid,
                    "currentPhase"_attr = currentPhase,
                    "error"_attr = redact(status));
        onRetriableError();
    } else {
        LOGV2_ERROR(6258601,
                    "Defragmentation for collection hit non-retriable error",
                    "namespace"_attr = nss,
                    "uuid"_attr = uuid,
                    "currentPhase"_attr = currentPhase,
                    "error"_attr = redact(status));
        onNonRetriableError();
    }
}

bool areMergeable(const ChunkType& firstChunk,
                  const ChunkType& secondChunk,
                  const ZoneInfo& collectionZones) {
    return firstChunk.getShard() == secondChunk.getShard() &&
        collectionZones.getZoneForChunk(firstChunk.getRange()) ==
        collectionZones.getZoneForChunk(secondChunk.getRange()) &&
        SimpleBSONObjComparator::kInstance.evaluate(firstChunk.getMax() == secondChunk.getMin());
}

class MergeAndMeasureChunksPhase : public DefragmentationPhase {
public:
    static std::unique_ptr<MergeAndMeasureChunksPhase> build(OperationContext* opCtx,
                                                             const CollectionType& coll) {
        auto collectionChunks = getCollectionChunks(opCtx, coll);
        const auto collectionZones = getCollectionZones(opCtx, coll);

        stdx::unordered_map<ShardId, PendingActions> pendingActionsByShards;
        // Find ranges of chunks; for single-chunk ranges, request DataSize; for multi-range, issue
        // merge
        while (!collectionChunks.empty()) {
            auto upperRangeBound = std::prev(collectionChunks.cend());
            auto lowerRangeBound = upperRangeBound;
            while (lowerRangeBound != collectionChunks.cbegin() &&
                   areMergeable(*std::prev(lowerRangeBound), *lowerRangeBound, collectionZones)) {
                --lowerRangeBound;
            }
            if (lowerRangeBound != upperRangeBound) {
                pendingActionsByShards[upperRangeBound->getShard()].rangesToMerge.emplace_back(
                    lowerRangeBound->getMin(), upperRangeBound->getMax());
            } else {
                if (!upperRangeBound->getEstimatedSizeBytes().has_value()) {
                    pendingActionsByShards[upperRangeBound->getShard()]
                        .rangesWithoutDataSize.emplace_back(upperRangeBound->getMin(),
                                                            upperRangeBound->getMax());
                }
            }
            collectionChunks.erase(lowerRangeBound, std::next(upperRangeBound));
        }
        return std::unique_ptr<MergeAndMeasureChunksPhase>(
            new MergeAndMeasureChunksPhase(coll.getNss(),
                                           coll.getUuid(),
                                           coll.getKeyPattern().toBSON(),
                                           std::move(pendingActionsByShards)));
    }

    DefragmentationPhaseEnum getType() const override {
        return DefragmentationPhaseEnum::kMergeAndMeasureChunks;
    }

    DefragmentationPhaseEnum getNextPhase() const override {
        return _nextPhase;
    }

    boost::optional<DefragmentationAction> popNextStreamableAction(
        OperationContext* opCtx) override {
        boost::optional<DefragmentationAction> nextAction = boost::none;
        if (!_pendingActionsByShards.empty()) {
            auto it = _shardToProcess ? _pendingActionsByShards.find(*_shardToProcess)
                                      : _pendingActionsByShards.begin();

            invariant(it != _pendingActionsByShards.end());

            auto& [shardId, pendingActions] = *it;
            auto shardVersion = getShardVersion(opCtx, shardId, _nss);

            if (pendingActions.rangesWithoutDataSize.size() > pendingActions.rangesToMerge.size()) {
                const auto& rangeToMeasure = pendingActions.rangesWithoutDataSize.back();
                nextAction = boost::optional<DefragmentationAction>(DataSizeInfo(
                    shardId, _nss, _uuid, rangeToMeasure, shardVersion, _shardKey, false));
                pendingActions.rangesWithoutDataSize.pop_back();
            } else if (!pendingActions.rangesToMerge.empty()) {
                const auto& rangeToMerge = pendingActions.rangesToMerge.back();
                nextAction = boost::optional<DefragmentationAction>(
                    MergeInfo(shardId, _nss, _uuid, shardVersion, rangeToMerge));
                pendingActions.rangesToMerge.pop_back();
            }
            if (nextAction.has_value()) {
                ++_outstandingActions;
                if (pendingActions.rangesToMerge.empty() &&
                    pendingActions.rangesWithoutDataSize.empty()) {
                    it = _pendingActionsByShards.erase(it, std::next(it));
                } else {
                    ++it;
                }
            }
            if (it != _pendingActionsByShards.end()) {
                _shardToProcess = it->first;
            } else {
                _shardToProcess = boost::none;
            }
        }
        return nextAction;
    }

    boost::optional<MigrateInfo> popNextMigration(
        OperationContext* opCtx, stdx::unordered_set<ShardId>* usedShards) override {
        return boost::none;
    }

    void applyActionResult(OperationContext* opCtx,
                           const DefragmentationAction& action,
                           const DefragmentationActionResponse& response) override {
        ScopeGuard scopedGuard([&] { --_outstandingActions; });
        if (_aborted) {
            return;
        }
        stdx::visit(
            OverloadedVisitor{[&](const MergeInfo& mergeAction) {
                                  auto& mergeResponse = stdx::get<Status>(response);
                                  auto& shardingPendingActions =
                                      _pendingActionsByShards[mergeAction.shardId];
                                  handleActionResult(
                                      opCtx,
                                      _nss,
                                      _uuid,
                                      getType(),
                                      mergeResponse,
                                      [&]() {
                                          shardingPendingActions.rangesWithoutDataSize.emplace_back(
                                              mergeAction.chunkRange);
                                      },
                                      [&]() {
                                          shardingPendingActions.rangesToMerge.emplace_back(
                                              mergeAction.chunkRange);
                                      },
                                      [&]() { _abort(getType()); });
                              },
                              [&](const DataSizeInfo& dataSizeAction) {
                                  auto& dataSizeResponse =
                                      stdx::get<StatusWith<DataSizeResponse>>(response);
                                  handleActionResult(
                                      opCtx,
                                      _nss,
                                      _uuid,
                                      getType(),
                                      dataSizeResponse.getStatus(),
                                      [&]() {
                                          ChunkType chunk(dataSizeAction.uuid,
                                                          dataSizeAction.chunkRange,
                                                          dataSizeAction.version,
                                                          dataSizeAction.shardId);
                                          auto catalogManager = ShardingCatalogManager::get(opCtx);
                                          catalogManager->setChunkEstimatedSize(
                                              opCtx,
                                              chunk,
                                              dataSizeResponse.getValue().sizeBytes,
                                              ShardingCatalogClient::kMajorityWriteConcern);
                                      },
                                      [&]() {
                                          auto& shardingPendingActions =
                                              _pendingActionsByShards[dataSizeAction.shardId];
                                          shardingPendingActions.rangesWithoutDataSize.emplace_back(
                                              dataSizeAction.chunkRange);
                                      },
                                      [&]() { _abort(getType()); });
                              },
                              [&](const AutoSplitVectorInfo& _) {
                                  uasserted(ErrorCodes::BadValue, "Unexpected action type");
                              },
                              [&](const SplitInfoWithKeyPattern& _) {
                                  uasserted(ErrorCodes::BadValue, "Unexpected action type");
                              },
                              [&](const MigrateInfo& _) {
                                  uasserted(ErrorCodes::BadValue, "Unexpected action type");
                              }},
            action);
    }

    bool isComplete() const override {
        return _pendingActionsByShards.empty() && _outstandingActions == 0;
    }

    void userAbort() override {
        _abort(DefragmentationPhaseEnum::kSplitChunks);
    }

    BSONObj reportProgress() const override {

        size_t rangesToMerge = 0, rangesWithoutDataSize = 0;
        for (const auto& [_, pendingActions] : _pendingActionsByShards) {
            rangesToMerge += pendingActions.rangesToMerge.size();
            rangesWithoutDataSize += pendingActions.rangesWithoutDataSize.size();
        }
        auto remainingChunksToProcess =
            static_cast<long long>(_outstandingActions + rangesToMerge + rangesWithoutDataSize);

        return BSON(kRemainingChunksToProcess << remainingChunksToProcess);
    }

private:
    struct PendingActions {
        std::vector<ChunkRange> rangesToMerge;
        std::vector<ChunkRange> rangesWithoutDataSize;
    };
    MergeAndMeasureChunksPhase(
        const NamespaceString& nss,
        const UUID& uuid,
        const BSONObj& shardKey,
        stdx::unordered_map<ShardId, PendingActions>&& pendingActionsByShards)
        : _nss(nss),
          _uuid(uuid),
          _shardKey(shardKey),
          _pendingActionsByShards(std::move(pendingActionsByShards)) {}

    void _abort(const DefragmentationPhaseEnum nextPhase) {
        _aborted = true;
        _nextPhase = nextPhase;
        _pendingActionsByShards.clear();
    }

    const NamespaceString _nss;
    const UUID _uuid;
    const BSONObj _shardKey;
    stdx::unordered_map<ShardId, PendingActions> _pendingActionsByShards;
    boost::optional<ShardId> _shardToProcess;
    size_t _outstandingActions{0};
    bool _aborted{false};
    DefragmentationPhaseEnum _nextPhase{DefragmentationPhaseEnum::kMoveAndMergeChunks};
};

class MoveAndMergeChunksPhase : public DefragmentationPhase {
public:
    static std::unique_ptr<MoveAndMergeChunksPhase> build(
        OperationContext* opCtx,
        const CollectionType& coll,
        std::vector<ShardStatistics>&& collectionShardStats) {
        auto collectionZones = getCollectionZones(opCtx, coll);

        stdx::unordered_map<ShardId, ShardInfo> shardInfos;
        for (const auto& shardStats : collectionShardStats) {
            shardInfos.emplace(shardStats.shardId,
                               ShardInfo(shardStats.currSizeBytes, shardStats.isDraining));
        }

        auto collectionChunks = getCollectionChunks(opCtx, coll);
        const auto maxChunkSizeBytes = getCollectionMaxChunkSizeBytes(opCtx, coll);
        const uint64_t smallChunkSizeThresholdBytes =
            (maxChunkSizeBytes / 100) * kSmallChunkSizeThresholdPctg;

        return std::unique_ptr<MoveAndMergeChunksPhase>(
            new MoveAndMergeChunksPhase(coll.getNss(),
                                        coll.getUuid(),
                                        std::move(collectionChunks),
                                        std::move(shardInfos),
                                        std::move(collectionZones),
                                        smallChunkSizeThresholdBytes));
    }

    DefragmentationPhaseEnum getType() const override {
        return DefragmentationPhaseEnum::kMoveAndMergeChunks;
    }

    DefragmentationPhaseEnum getNextPhase() const override {
        return _nextPhase;
    }

    boost::optional<DefragmentationAction> popNextStreamableAction(
        OperationContext* opCtx) override {
        if (_actionableMerges.empty()) {
            return boost::none;
        }

        _outstandingMerges.push_back(std::move(_actionableMerges.front()));
        _actionableMerges.pop_front();
        const auto& nextRequest = _outstandingMerges.back();
        auto version = getShardVersion(opCtx, nextRequest.getDestinationShard(), _nss);
        return boost::optional<DefragmentationAction>(
            nextRequest.asMergeInfo(_uuid, _nss, version));
    }

    boost::optional<MigrateInfo> popNextMigration(
        OperationContext* opCtx, stdx::unordered_set<ShardId>* usedShards) override {
        for (const auto& shardId : _shardProcessingOrder) {
            if (usedShards->count(shardId) != 0) {
                // the shard is already busy in a migration
                continue;
            }

            ChunkRangeInfoIterator nextSmallChunk;
            std::list<ChunkRangeInfoIterator> candidateSiblings;
            if (!_findNextSmallChunkInShard(
                    shardId, *usedShards, &nextSmallChunk, &candidateSiblings)) {
                // there isn't a chunk in this shard that can currently be moved and merged with one
                // of its siblings.
                continue;
            }

            // We have a chunk that can be moved&merged with at least one sibling. Choose one...
            invariant(candidateSiblings.size() <= 2);
            auto targetSibling = candidateSiblings.front();
            if (auto challenger = candidateSiblings.back(); targetSibling != challenger) {
                auto targetScore = _rankMergeableSibling(*nextSmallChunk, *targetSibling);
                auto challengerScore = _rankMergeableSibling(*nextSmallChunk, *challenger);
                if (challengerScore > targetScore ||
                    (challengerScore == targetScore &&
                     _shardInfos.at(challenger->shard).currentSizeBytes <
                         _shardInfos.at(targetSibling->shard).currentSizeBytes)) {
                    targetSibling = challenger;
                }
            }

            // ... then build up the migration request, marking the needed resources as busy.
            nextSmallChunk->busyInOperation = true;
            targetSibling->busyInOperation = true;
            usedShards->insert(nextSmallChunk->shard);
            usedShards->insert(targetSibling->shard);
            auto smallChunkVersion = getShardVersion(opCtx, nextSmallChunk->shard, _nss);
            _outstandingMigrations.emplace_back(nextSmallChunk, targetSibling);
            return _outstandingMigrations.back().asMigrateInfo(_uuid, _nss, smallChunkVersion);
        }

        return boost::none;
    }

    void applyActionResult(OperationContext* opCtx,
                           const DefragmentationAction& action,
                           const DefragmentationActionResponse& response) override {
        stdx::visit(
            OverloadedVisitor{
                [&](const MigrateInfo& migrationAction) {
                    auto& migrationResponse = stdx::get<Status>(response);
                    auto match =
                        std::find_if(_outstandingMigrations.begin(),
                                     _outstandingMigrations.end(),
                                     [&migrationAction](const MoveAndMergeRequest& request) {
                                         return (migrationAction.minKey.woCompare(
                                                     request.getMigrationMinKey()) == 0);
                                     });
                    invariant(match != _outstandingMigrations.end());
                    MoveAndMergeRequest moveRequest(std::move(*match));
                    _outstandingMigrations.erase(match);

                    if (_aborted) {
                        return;
                    }

                    if (migrationResponse.isOK()) {
                        Grid::get(opCtx)
                            ->catalogCache()
                            ->invalidateShardOrEntireCollectionEntryForShardedCollection(
                                _nss, boost::none, moveRequest.getDestinationShard());

                        auto transferredAmount = moveRequest.getMovedDataSizeBytes();
                        _shardInfos.at(moveRequest.getSourceShard()).currentSizeBytes -=
                            transferredAmount;
                        _shardInfos.at(moveRequest.getDestinationShard()).currentSizeBytes +=
                            transferredAmount;
                        _shardProcessingOrder.sort([this](const ShardId& lhs, const ShardId& rhs) {
                            return _shardInfos.at(lhs).currentSizeBytes >
                                _shardInfos.at(rhs).currentSizeBytes;
                        });
                        _actionableMerges.push_back(std::move(moveRequest));
                        return;
                    }

                    LOGV2_DEBUG(6290000,
                                1,
                                "Migration failed during collection defragmentation",
                                "namespace"_attr = _nss,
                                "uuid"_attr = _uuid,
                                "currentPhase"_attr = getType(),
                                "error"_attr = redact(migrationResponse));

                    moveRequest.chunkToMove->busyInOperation = false;
                    moveRequest.chunkToMergeWith->busyInOperation = false;

                    if (isRetriableForDefragmentation(migrationResponse)) {
                        // The migration will be eventually retried
                        return;
                    }

                    const auto exceededTimeLimit = [&] {
                        // All errors thrown by the migration destination shard are converted
                        // into OperationFailed. Thus we need to inspect the error message to
                        // match the real error code.

                        // TODO SERVER-62990 introduce and propagate specific error code for
                        // migration failed due to range deletion pending
                        return migrationResponse == ErrorCodes::OperationFailed &&
                            migrationResponse.reason().find(ErrorCodes::errorString(
                                ErrorCodes::ExceededTimeLimit)) != std::string::npos;
                    };

                    if (exceededTimeLimit()) {
                        // The migration failed because there is still a range deletion
                        // pending on the recipient.
                        moveRequest.chunkToMove->shardsToAvoid.emplace(
                            moveRequest.getDestinationShard());
                        return;
                    }

                    LOGV2_ERROR(6290001,
                                "Encountered non-retriable error on migration during "
                                "collection defragmentation",
                                "namespace"_attr = _nss,
                                "uuid"_attr = _uuid,
                                "currentPhase"_attr = getType(),
                                "error"_attr = redact(migrationResponse));
                    _abort(DefragmentationPhaseEnum::kMergeAndMeasureChunks);
                },
                [&](const MergeInfo& mergeAction) {
                    auto& mergeResponse = stdx::get<Status>(response);
                    auto match = std::find_if(_outstandingMerges.begin(),
                                              _outstandingMerges.end(),
                                              [&mergeAction](const MoveAndMergeRequest& request) {
                                                  return mergeAction.chunkRange.containsKey(
                                                      request.getMigrationMinKey());
                                              });
                    invariant(match != _outstandingMerges.end());
                    MoveAndMergeRequest mergeRequest(std::move(*match));
                    _outstandingMerges.erase(match);

                    auto onSuccess = [&] {
                        // The sequence is complete; update the state of the merged chunk...
                        auto& mergedChunk = mergeRequest.chunkToMergeWith;

                        Grid::get(opCtx)
                            ->catalogCache()
                            ->invalidateShardOrEntireCollectionEntryForShardedCollection(
                                _nss, boost::none, mergedChunk->shard);

                        auto& chunkToDelete = mergeRequest.chunkToMove;
                        mergedChunk->range = mergeRequest.asMergedRange();
                        mergedChunk->estimatedSizeBytes += chunkToDelete->estimatedSizeBytes;
                        mergedChunk->busyInOperation = false;
                        auto deletedChunkShard = chunkToDelete->shard;
                        // the lookup data structures...
                        _removeIteratorFromSmallChunks(chunkToDelete, deletedChunkShard);
                        if (mergedChunk->estimatedSizeBytes > _smallChunkSizeThresholdBytes) {
                            _removeIteratorFromSmallChunks(mergedChunk, mergedChunk->shard);
                        } else {
                            // Keep the list of small chunk iterators in the recipient sorted
                            auto match = _smallChunksByShard.find(mergedChunk->shard);
                            if (match != _smallChunksByShard.end()) {
                                auto& [_, smallChunksInRecipient] = *match;
                                smallChunksInRecipient.sort(compareChunkRangeInfoIterators);
                            }
                        }
                        //... and the collection
                        _collectionChunks.erase(chunkToDelete);
                    };

                    auto onRetriableError = [&] {
                        _actionableMerges.push_back(std::move(mergeRequest));
                    };

                    auto onNonRetriableError = [&]() {
                        _abort(DefragmentationPhaseEnum::kMergeAndMeasureChunks);
                    };

                    if (!_aborted) {
                        handleActionResult(opCtx,
                                           _nss,
                                           _uuid,
                                           getType(),
                                           mergeResponse,
                                           onSuccess,
                                           onRetriableError,
                                           onNonRetriableError);
                    }
                },
                [&](const DataSizeInfo& dataSizeAction) {
                    uasserted(ErrorCodes::BadValue, "Unexpected action type");
                },
                [&](const AutoSplitVectorInfo& _) {
                    uasserted(ErrorCodes::BadValue, "Unexpected action type");
                },
                [&](const SplitInfoWithKeyPattern& _) {
                    uasserted(ErrorCodes::BadValue, "Unexpected action type");
                }},
            action);
    }

    bool isComplete() const override {
        return _smallChunksByShard.empty() && _outstandingMigrations.empty() &&
            _actionableMerges.empty() && _outstandingMerges.empty();
    }

    void userAbort() override {
        _abort(DefragmentationPhaseEnum::kSplitChunks);
    }

    BSONObj reportProgress() const override {
        size_t numSmallChunks = 0;
        for (const auto& [shardId, smallChunks] : _smallChunksByShard) {
            numSmallChunks += smallChunks.size();
        }
        return BSON(kRemainingChunksToProcess << static_cast<long long>(numSmallChunks));
    }

private:
    // Internal representation of the chunk metadata required to generate a MoveAndMergeRequest
    struct ChunkRangeInfo {
        ChunkRangeInfo(ChunkRange&& range, const ShardId& shard, long long estimatedSizeBytes)
            : range(std::move(range)),
              shard(shard),
              estimatedSizeBytes(estimatedSizeBytes),
              busyInOperation(false) {}
        ChunkRange range;
        const ShardId shard;
        long long estimatedSizeBytes;
        bool busyInOperation;
        // Last time we failed to find a suitable destination shard due to temporary constraints
        boost::optional<Date_t> lastFailedAttemptTime;
        // Shards that still have a deletion pending for this range
        stdx::unordered_set<ShardId> shardsToAvoid;
    };

    struct ShardInfo {
        ShardInfo(uint64_t currentSizeBytes, bool draining)
            : currentSizeBytes(currentSizeBytes), draining(draining) {}

        bool isDraining() const {
            return draining;
        }

        uint64_t currentSizeBytes;
        const bool draining;
    };

    using ChunkRangeInfos = std::list<ChunkRangeInfo>;
    using ChunkRangeInfoIterator = ChunkRangeInfos::iterator;

    static bool compareChunkRangeInfoIterators(const ChunkRangeInfoIterator& lhs,
                                               const ChunkRangeInfoIterator& rhs) {
        // Small chunks are ordered by decreasing order of estimatedSizeBytes
        // except the ones that we failed to move due to temporary constraints that will be at the
        // end of the list ordered by last attempt time
        auto lhsLastFailureTime = lhs->lastFailedAttemptTime.value_or(Date_t::min());
        auto rhsLastFailureTime = rhs->lastFailedAttemptTime.value_or(Date_t::min());
        return std::tie(lhsLastFailureTime, lhs->estimatedSizeBytes) <
            std::tie(rhsLastFailureTime, rhs->estimatedSizeBytes);
    }

    // Helper class to generate the Migration and Merge actions required to join together the chunks
    // specified in the constructor
    struct MoveAndMergeRequest {
    public:
        MoveAndMergeRequest(const ChunkRangeInfoIterator& chunkToMove,
                            const ChunkRangeInfoIterator& chunkToMergeWith)
            : chunkToMove(chunkToMove),
              chunkToMergeWith(chunkToMergeWith),
              _isChunkToMergeLeftSibling(
                  chunkToMergeWith->range.getMax().woCompare(chunkToMove->range.getMin()) == 0) {}

        MigrateInfo asMigrateInfo(const UUID& collUuid,
                                  const NamespaceString& nss,
                                  const ChunkVersion& version) const {
            return MigrateInfo(chunkToMergeWith->shard,
                               chunkToMove->shard,
                               nss,
                               collUuid,
                               chunkToMove->range.getMin(),
                               chunkToMove->range.getMax(),
                               version,
                               ForceJumbo::kForceBalancer);
        }

        ChunkRange asMergedRange() const {
            return ChunkRange(_isChunkToMergeLeftSibling ? chunkToMergeWith->range.getMin()
                                                         : chunkToMove->range.getMin(),
                              _isChunkToMergeLeftSibling ? chunkToMove->range.getMax()
                                                         : chunkToMergeWith->range.getMax());
        }

        MergeInfo asMergeInfo(const UUID& collUuid,
                              const NamespaceString& nss,
                              const ChunkVersion& version) const {
            return MergeInfo(chunkToMergeWith->shard, nss, collUuid, version, asMergedRange());
        }

        const ShardId& getSourceShard() const {
            return chunkToMove->shard;
        }

        const ShardId& getDestinationShard() const {
            return chunkToMergeWith->shard;
        }

        const BSONObj& getMigrationMinKey() const {
            return chunkToMove->range.getMin();
        }

        uint64_t getMovedDataSizeBytes() const {
            return chunkToMove->estimatedSizeBytes;
        }

        ChunkRangeInfoIterator chunkToMove;
        ChunkRangeInfoIterator chunkToMergeWith;

    private:
        bool _isChunkToMergeLeftSibling;
    };

    static constexpr uint64_t kSmallChunkSizeThresholdPctg = 25;

    const NamespaceString _nss;

    const UUID _uuid;

    // The collection routing table - expressed in ChunkRangeInfo
    ChunkRangeInfos _collectionChunks;

    // List of indexes to elements in _collectionChunks that are eligible to be moved.
    std::map<ShardId, std::list<ChunkRangeInfoIterator>> _smallChunksByShard;

    stdx::unordered_map<ShardId, ShardInfo> _shardInfos;

    // Sorted list of shard IDs by decreasing current size (@see _shardInfos)
    std::list<ShardId> _shardProcessingOrder;

    // Set of attributes representing the currently active move&merge sequences
    std::list<MoveAndMergeRequest> _outstandingMigrations;
    std::list<MoveAndMergeRequest> _actionableMerges;
    std::list<MoveAndMergeRequest> _outstandingMerges;

    ZoneInfo _zoneInfo;

    const int64_t _smallChunkSizeThresholdBytes;

    bool _aborted{false};

    DefragmentationPhaseEnum _nextPhase{DefragmentationPhaseEnum::kMergeChunks};

    MoveAndMergeChunksPhase(const NamespaceString& nss,
                            const UUID& uuid,
                            std::vector<ChunkType>&& collectionChunks,
                            stdx::unordered_map<ShardId, ShardInfo>&& shardInfos,
                            ZoneInfo&& collectionZones,
                            uint64_t smallChunkSizeThresholdBytes)
        : _nss(nss),
          _uuid(uuid),
          _collectionChunks(),
          _smallChunksByShard(),
          _shardInfos(std::move(shardInfos)),
          _shardProcessingOrder(),
          _outstandingMigrations(),
          _actionableMerges(),
          _outstandingMerges(),
          _zoneInfo(std::move(collectionZones)),
          _smallChunkSizeThresholdBytes(smallChunkSizeThresholdBytes) {

        // Load the collection routing table in a std::list to ease later manipulation
        for (auto&& chunk : collectionChunks) {
            if (!chunk.getEstimatedSizeBytes().has_value()) {
                LOGV2_WARNING(
                    6172701,
                    "Chunk with no estimated size detected while building MoveAndMergeChunksPhase",
                    "namespace"_attr = _nss,
                    "uuid"_attr = _uuid,
                    "range"_attr = chunk.getRange());
                _abort(DefragmentationPhaseEnum::kMergeAndMeasureChunks);
                return;
            }
            const uint64_t estimatedChunkSize = chunk.getEstimatedSizeBytes().value();
            _collectionChunks.emplace_back(chunk.getRange(), chunk.getShard(), estimatedChunkSize);
        }

        // Compose the index of small chunks
        for (auto chunkIt = _collectionChunks.begin(); chunkIt != _collectionChunks.end();
             ++chunkIt) {
            if (chunkIt->estimatedSizeBytes <= _smallChunkSizeThresholdBytes) {
                _smallChunksByShard[chunkIt->shard].emplace_back(chunkIt);
            }
        }
        // Each small chunk within a shard must be sorted by increasing chunk size
        for (auto& [_, smallChunksInShard] : _smallChunksByShard) {
            smallChunksInShard.sort(compareChunkRangeInfoIterators);
        }

        // Set the initial shard processing order
        for (const auto& [shardId, _] : _shardInfos) {
            _shardProcessingOrder.push_back(shardId);
        }
        _shardProcessingOrder.sort([this](const ShardId& lhs, const ShardId& rhs) {
            return _shardInfos.at(lhs).currentSizeBytes > _shardInfos.at(rhs).currentSizeBytes;
        });
    }

    void _abort(const DefragmentationPhaseEnum nextPhase) {
        _aborted = true;
        _nextPhase = nextPhase;
        _actionableMerges.clear();
        _smallChunksByShard.clear();
        _shardProcessingOrder.clear();
    }

    // Returns the list of siblings that are eligible to be move&merged with the specified chunk,
    // based  on shard zones and data capacity. (It does NOT take into account whether chunks are
    // currently involved in a move/merge operation).
    std::list<ChunkRangeInfoIterator> _getChunkSiblings(
        const ChunkRangeInfoIterator& chunkIt) const {
        std::list<ChunkRangeInfoIterator> siblings;
        auto canBeMoveAndMerged = [this](const ChunkRangeInfoIterator& chunkIt,
                                         const ChunkRangeInfoIterator& siblingIt) {
            auto onSameZone = _zoneInfo.getZoneForChunk(chunkIt->range) ==
                _zoneInfo.getZoneForChunk(siblingIt->range);
            auto destinationAvailable = chunkIt->shard == siblingIt->shard ||
                !_shardInfos.at(siblingIt->shard).isDraining();
            return (onSameZone && destinationAvailable);
        };

        if (auto rightSibling = std::next(chunkIt);
            rightSibling != _collectionChunks.end() && canBeMoveAndMerged(chunkIt, rightSibling)) {
            siblings.push_back(rightSibling);
        }
        if (chunkIt != _collectionChunks.begin()) {
            auto leftSibling = std::prev(chunkIt);
            if (canBeMoveAndMerged(chunkIt, leftSibling)) {
                siblings.push_back(leftSibling);
            }
        }
        return siblings;
    }

    // Computes whether there is a chunk in the specified shard that can be moved&merged with one or
    // both of its siblings. Chunks/siblings that are currently being moved/merged are not eligible.
    //
    // The function also clears the internal state from elements that cannot be processed by the
    // phase (chunks with no siblings, shards with no small chunks).
    //
    // Returns true on success (storing the related info in nextSmallChunk + smallChunkSiblings),
    // false otherwise.
    bool _findNextSmallChunkInShard(const ShardId& shard,
                                    const stdx::unordered_set<ShardId>& usedShards,
                                    ChunkRangeInfoIterator* nextSmallChunk,
                                    std::list<ChunkRangeInfoIterator>* smallChunkSiblings) {
        auto matchingShardInfo = _smallChunksByShard.find(shard);
        if (matchingShardInfo == _smallChunksByShard.end()) {
            return false;
        }

        smallChunkSiblings->clear();
        auto& smallChunksInShard = matchingShardInfo->second;
        for (auto candidateIt = smallChunksInShard.begin();
             candidateIt != smallChunksInShard.end();) {
            if ((*candidateIt)->busyInOperation) {
                ++candidateIt;
                continue;
            }
            auto candidateSiblings = _getChunkSiblings(*candidateIt);
            if (candidateSiblings.empty()) {
                // The current chunk cannot be processed by the algorithm - remove it.
                candidateIt = smallChunksInShard.erase(candidateIt);
                continue;
            }

            size_t siblingsDiscardedDueToRangeDeletion = 0;

            for (const auto& sibling : candidateSiblings) {
                if (sibling->busyInOperation || usedShards.count(sibling->shard)) {
                    continue;
                }
                if ((*candidateIt)->shardsToAvoid.count(sibling->shard)) {
                    ++siblingsDiscardedDueToRangeDeletion;
                    continue;
                }
                smallChunkSiblings->push_back(sibling);
            }

            if (!smallChunkSiblings->empty()) {
                *nextSmallChunk = *candidateIt;
                return true;
            }


            if (siblingsDiscardedDueToRangeDeletion == candidateSiblings.size()) {
                // All the siblings have been discarded because an overlapping range deletion is
                // still pending on the destination shard.
                if (!(*candidateIt)->lastFailedAttemptTime) {
                    // This is the first time we discard this chunk due to overlapping range
                    // deletions pending. Enqueue it back on the list so we will try to move it
                    // again when we will have drained all the other chunks for this shard.
                    LOGV2_DEBUG(6290002,
                                1,
                                "Postponing small chunk processing due to pending range deletion "
                                "on recipient shard(s)",
                                "namespace"_attr = _nss,
                                "uuid"_attr = _uuid,
                                "range"_attr = (*candidateIt)->range,
                                "estimatedSizeBytes"_attr = (*candidateIt)->estimatedSizeBytes,
                                "numCandidateSiblings"_attr = candidateSiblings.size());
                    (*candidateIt)->lastFailedAttemptTime = Date_t::now();
                    (*candidateIt)->shardsToAvoid.clear();
                    smallChunksInShard.emplace_back(*candidateIt);
                } else {
                    LOGV2(6290003,
                          "Discarding small chunk due to pending range deletion on recipient shard",
                          "namespace"_attr = _nss,
                          "uuid"_attr = _uuid,
                          "range"_attr = (*candidateIt)->range,
                          "estimatedSizeBytes"_attr = (*candidateIt)->estimatedSizeBytes,
                          "numCandidateSiblings"_attr = candidateSiblings.size(),
                          "lastFailedAttempt"_attr = (*candidateIt)->lastFailedAttemptTime);
                }
                candidateIt = smallChunksInShard.erase(candidateIt);
                continue;
            }

            ++candidateIt;
        }
        // No candidate could be found - clear the shard entry if needed
        if (smallChunksInShard.empty()) {
            _smallChunksByShard.erase(matchingShardInfo);
        }
        return false;
    }

    uint32_t _rankMergeableSibling(const ChunkRangeInfo& chunkTobeMovedAndMerged,
                                   const ChunkRangeInfo& mergeableSibling) {
        static constexpr uint32_t kNoMoveRequired = 1 << 3;
        static constexpr uint32_t kConvenientMove = 1 << 2;
        static constexpr uint32_t kMergeSolvesTwoPendingChunks = 1 << 1;
        static constexpr uint32_t kMergeSolvesOnePendingChunk = 1;
        uint32_t ranking = 0;
        if (chunkTobeMovedAndMerged.shard == mergeableSibling.shard) {
            ranking += kNoMoveRequired;
        } else if (chunkTobeMovedAndMerged.estimatedSizeBytes <
                   mergeableSibling.estimatedSizeBytes) {
            ranking += kConvenientMove;
        }
        auto estimatedMergedSize =
            chunkTobeMovedAndMerged.estimatedSizeBytes + mergeableSibling.estimatedSizeBytes;
        if (estimatedMergedSize > _smallChunkSizeThresholdBytes) {
            ranking += mergeableSibling.estimatedSizeBytes < _smallChunkSizeThresholdBytes
                ? kMergeSolvesTwoPendingChunks
                : kMergeSolvesOnePendingChunk;
        }

        return ranking;
    }

    void _removeIteratorFromSmallChunks(const ChunkRangeInfoIterator& chunkIt,
                                        const ShardId& parentShard) {
        auto matchingShardIt = _smallChunksByShard.find(parentShard);
        if (matchingShardIt == _smallChunksByShard.end()) {
            return;
        }
        auto& smallChunksInShard = matchingShardIt->second;
        auto match = std::find(smallChunksInShard.begin(), smallChunksInShard.end(), chunkIt);
        if (match == smallChunksInShard.end()) {
            return;
        }
        smallChunksInShard.erase(match);
        if (smallChunksInShard.empty()) {
            _smallChunksByShard.erase(parentShard);
        }
    }
};

class MergeChunksPhase : public DefragmentationPhase {
public:
    static std::unique_ptr<MergeChunksPhase> build(OperationContext* opCtx,
                                                   const CollectionType& coll) {
        auto collectionChunks = getCollectionChunks(opCtx, coll);
        const auto collectionZones = getCollectionZones(opCtx, coll);

        // Find ranges of mergeable chunks
        stdx::unordered_map<ShardId, std::vector<ChunkRange>> unmergedRangesByShard;
        while (!collectionChunks.empty()) {
            auto upperRangeBound = std::prev(collectionChunks.cend());
            auto lowerRangeBound = upperRangeBound;
            while (lowerRangeBound != collectionChunks.cbegin() &&
                   areMergeable(*std::prev(lowerRangeBound), *lowerRangeBound, collectionZones)) {
                --lowerRangeBound;
            }
            if (lowerRangeBound != upperRangeBound) {
                unmergedRangesByShard[upperRangeBound->getShard()].emplace_back(
                    lowerRangeBound->getMin(), upperRangeBound->getMax());
            }

            collectionChunks.erase(lowerRangeBound, std::next(upperRangeBound));
        }
        return std::unique_ptr<MergeChunksPhase>(
            new MergeChunksPhase(coll.getNss(), coll.getUuid(), std::move(unmergedRangesByShard)));
    }

    DefragmentationPhaseEnum getType() const override {
        return DefragmentationPhaseEnum::kMergeChunks;
    }

    DefragmentationPhaseEnum getNextPhase() const override {
        return _nextPhase;
    }

    boost::optional<DefragmentationAction> popNextStreamableAction(
        OperationContext* opCtx) override {
        if (_unmergedRangesByShard.empty()) {
            return boost::none;
        }

        auto it = _shardToProcess ? _unmergedRangesByShard.find(*_shardToProcess)
                                  : _unmergedRangesByShard.begin();

        invariant(it != _unmergedRangesByShard.end());

        auto& [shardId, unmergedRanges] = *it;
        invariant(!unmergedRanges.empty());
        auto shardVersion = getShardVersion(opCtx, shardId, _nss);
        const auto& rangeToMerge = unmergedRanges.back();
        boost::optional<DefragmentationAction> nextAction = boost::optional<DefragmentationAction>(
            MergeInfo(shardId, _nss, _uuid, shardVersion, rangeToMerge));
        unmergedRanges.pop_back();
        ++_outstandingActions;
        if (unmergedRanges.empty()) {
            it = _unmergedRangesByShard.erase(it, std::next(it));
        } else {
            ++it;
        }
        if (it != _unmergedRangesByShard.end()) {
            _shardToProcess = it->first;
        } else {
            _shardToProcess = boost::none;
        }

        return nextAction;
    }

    boost::optional<MigrateInfo> popNextMigration(
        OperationContext* opCtx, stdx::unordered_set<ShardId>* usedShards) override {
        return boost::none;
    }

    void applyActionResult(OperationContext* opCtx,
                           const DefragmentationAction& action,
                           const DefragmentationActionResponse& response) override {
        ScopeGuard scopedGuard([&] { --_outstandingActions; });
        if (_aborted) {
            return;
        }
        stdx::visit(
            OverloadedVisitor{[&](const MergeInfo& mergeAction) {
                                  auto& mergeResponse = stdx::get<Status>(response);
                                  auto onSuccess = [] {};
                                  auto onRetriableError = [&] {
                                      _unmergedRangesByShard[mergeAction.shardId].emplace_back(
                                          mergeAction.chunkRange);
                                  };
                                  auto onNonretriableError = [this] { _abort(getType()); };
                                  handleActionResult(opCtx,
                                                     _nss,
                                                     _uuid,
                                                     getType(),
                                                     mergeResponse,
                                                     onSuccess,
                                                     onRetriableError,
                                                     onNonretriableError);
                              },
                              [&](const DataSizeInfo& _) {
                                  uasserted(ErrorCodes::BadValue, "Unexpected action type");
                              },
                              [&](const AutoSplitVectorInfo& _) {
                                  uasserted(ErrorCodes::BadValue, "Unexpected action type");
                              },
                              [&](const SplitInfoWithKeyPattern& _) {
                                  uasserted(ErrorCodes::BadValue, "Unexpected action type");
                              },
                              [&](const MigrateInfo& _) {
                                  uasserted(ErrorCodes::BadValue, "Unexpected action type");
                              }},
            action);
    }

    bool isComplete() const override {
        return _unmergedRangesByShard.empty() && _outstandingActions == 0;
    }

    void userAbort() override {
        _abort(DefragmentationPhaseEnum::kSplitChunks);
    }

    BSONObj reportProgress() const override {
        size_t rangesToMerge = 0;
        for (const auto& [_, unmergedRanges] : _unmergedRangesByShard) {
            rangesToMerge += unmergedRanges.size();
        }
        auto remainingRangesToProcess = static_cast<long long>(_outstandingActions + rangesToMerge);

        return BSON(kRemainingChunksToProcess << remainingRangesToProcess);
    }

private:
    MergeChunksPhase(const NamespaceString& nss,
                     const UUID& uuid,
                     stdx::unordered_map<ShardId, std::vector<ChunkRange>>&& unmergedRangesByShard)
        : _nss(nss), _uuid(uuid), _unmergedRangesByShard(std::move(unmergedRangesByShard)) {}

    void _abort(const DefragmentationPhaseEnum nextPhase) {
        _aborted = true;
        _nextPhase = nextPhase;
        _unmergedRangesByShard.clear();
    }

    const NamespaceString _nss;
    const UUID _uuid;
    stdx::unordered_map<ShardId, std::vector<ChunkRange>> _unmergedRangesByShard;
    boost::optional<ShardId> _shardToProcess;
    size_t _outstandingActions{0};
    bool _aborted{false};
    DefragmentationPhaseEnum _nextPhase{DefragmentationPhaseEnum::kSplitChunks};
};

class SplitChunksPhase : public DefragmentationPhase {
public:
    static std::unique_ptr<SplitChunksPhase> build(OperationContext* opCtx,
                                                   const CollectionType& coll) {
        auto collectionChunks = uassertStatusOK(Grid::get(opCtx)->catalogClient()->getChunks(
            opCtx,
            BSON(ChunkType::collectionUUID() << coll.getUuid()) /*query*/,
            BSON(ChunkType::min() << 1) /*sort*/,
            boost::none /*limit*/,
            nullptr /*opTime*/,
            coll.getEpoch(),
            coll.getTimestamp(),
            repl::ReadConcernLevel::kLocalReadConcern,
            boost::none));

        stdx::unordered_map<ShardId, PendingActions> pendingActionsByShards;

        uint64_t maxChunkSizeBytes = getCollectionMaxChunkSizeBytes(opCtx, coll);

        // Issue AutoSplitVector for all chunks with estimated size greater than max chunk size or
        // with no estimated size.
        for (const auto& chunk : collectionChunks) {
            auto chunkSize = chunk.getEstimatedSizeBytes();
            if (!chunkSize || (uint64_t)chunkSize.value() > maxChunkSizeBytes) {
                pendingActionsByShards[chunk.getShard()].rangesToFindSplitPoints.emplace_back(
                    chunk.getMin(), chunk.getMax());
            }
        }

        return std::unique_ptr<SplitChunksPhase>(
            new SplitChunksPhase(coll.getNss(),
                                 coll.getUuid(),
                                 coll.getKeyPattern().toBSON(),
                                 maxChunkSizeBytes,
                                 std::move(pendingActionsByShards)));
    }

    DefragmentationPhaseEnum getType() const override {
        return DefragmentationPhaseEnum::kSplitChunks;
    }

    DefragmentationPhaseEnum getNextPhase() const override {
        return _nextPhase;
    }

    boost::optional<DefragmentationAction> popNextStreamableAction(
        OperationContext* opCtx) override {
        boost::optional<DefragmentationAction> nextAction = boost::none;
        if (!_pendingActionsByShards.empty()) {
            auto it = _shardToProcess ? _pendingActionsByShards.find(*_shardToProcess)
                                      : _pendingActionsByShards.begin();

            invariant(it != _pendingActionsByShards.end());

            auto& [shardId, pendingActions] = *it;
            auto shardVersion = getShardVersion(opCtx, shardId, _nss);

            if (!pendingActions.rangesToSplit.empty()) {
                const auto& [rangeToSplit, splitPoints] = pendingActions.rangesToSplit.back();
                nextAction = boost::optional<DefragmentationAction>(
                    SplitInfoWithKeyPattern(shardId,
                                            _nss,
                                            shardVersion,
                                            rangeToSplit.getMin(),
                                            rangeToSplit.getMax(),
                                            splitPoints,
                                            _uuid,
                                            _shardKey));
                pendingActions.rangesToSplit.pop_back();
            } else if (!pendingActions.rangesToFindSplitPoints.empty()) {
                const auto& rangeToAutoSplit = pendingActions.rangesToFindSplitPoints.back();
                nextAction = boost::optional<DefragmentationAction>(
                    AutoSplitVectorInfo(shardId,
                                        _nss,
                                        _uuid,
                                        shardVersion,
                                        _shardKey,
                                        rangeToAutoSplit.getMin(),
                                        rangeToAutoSplit.getMax(),
                                        _maxChunkSizeBytes));
                pendingActions.rangesToFindSplitPoints.pop_back();
            }
            if (nextAction.has_value()) {
                ++_outstandingActions;
                if (pendingActions.rangesToFindSplitPoints.empty() &&
                    pendingActions.rangesToSplit.empty()) {
                    it = _pendingActionsByShards.erase(it, std::next(it));
                } else {
                    ++it;
                }
            }
            if (it != _pendingActionsByShards.end()) {
                _shardToProcess = it->first;
            } else {
                _shardToProcess = boost::none;
            }
        }
        return nextAction;
    }

    boost::optional<MigrateInfo> popNextMigration(
        OperationContext* opCtx, stdx::unordered_set<ShardId>* usedShards) override {
        return boost::none;
    }

    void applyActionResult(OperationContext* opCtx,
                           const DefragmentationAction& action,
                           const DefragmentationActionResponse& response) override {
        ScopeGuard scopedGuard([&] { --_outstandingActions; });
        if (_aborted) {
            return;
        }
        stdx::visit(
            OverloadedVisitor{
                [&](const MergeInfo& _) {
                    uasserted(ErrorCodes::BadValue, "Unexpected action type");
                },
                [&](const DataSizeInfo& _) {
                    uasserted(ErrorCodes::BadValue, "Unexpected action type");
                },
                [&](const AutoSplitVectorInfo& autoSplitVectorAction) {
                    auto& splitVectorResponse =
                        stdx::get<StatusWith<AutoSplitVectorResponse>>(response);
                    handleActionResult(
                        opCtx,
                        _nss,
                        _uuid,
                        getType(),
                        splitVectorResponse.getStatus(),
                        [&]() {
                            auto& splitPoints = splitVectorResponse.getValue().getSplitKeys();
                            if (!splitPoints.empty()) {
                                auto& pendingActions =
                                    _pendingActionsByShards[autoSplitVectorAction.shardId];
                                pendingActions.rangesToSplit.push_back(
                                    std::make_pair(ChunkRange(autoSplitVectorAction.minKey,
                                                              autoSplitVectorAction.maxKey),
                                                   splitPoints));
                                if (splitVectorResponse.getValue().getContinuation()) {
                                    pendingActions.rangesToFindSplitPoints.emplace_back(
                                        splitPoints.back(), autoSplitVectorAction.maxKey);
                                }
                            }
                        },
                        [&]() {
                            auto& pendingActions =
                                _pendingActionsByShards[autoSplitVectorAction.shardId];
                            pendingActions.rangesToFindSplitPoints.emplace_back(
                                autoSplitVectorAction.minKey, autoSplitVectorAction.maxKey);
                        },
                        [&]() { _abort(getType()); });
                },
                [&](const SplitInfoWithKeyPattern& splitAction) {
                    auto& splitResponse = stdx::get<Status>(response);
                    handleActionResult(
                        opCtx,
                        _nss,
                        _uuid,
                        getType(),
                        splitResponse,
                        []() {},
                        [&]() {
                            auto& pendingActions =
                                _pendingActionsByShards[splitAction.info.shardId];
                            pendingActions.rangesToSplit.push_back(std::make_pair(
                                ChunkRange(splitAction.info.minKey, splitAction.info.maxKey),
                                splitAction.info.splitKeys));
                        },
                        [&]() { _abort(getType()); });
                },
                [&](const MigrateInfo& _) {
                    uasserted(ErrorCodes::BadValue, "Unexpected action type");
                }},
            action);
    }

    bool isComplete() const override {
        return _pendingActionsByShards.empty() && _outstandingActions == 0;
    }

    void userAbort() override {}

    BSONObj reportProgress() const override {
        size_t rangesToFindSplitPoints = 0, rangesToSplit = 0;
        for (const auto& [shardId, pendingActions] : _pendingActionsByShards) {
            rangesToFindSplitPoints += pendingActions.rangesToFindSplitPoints.size();
            rangesToSplit += pendingActions.rangesToSplit.size();
        }
        auto remainingChunksToProcess =
            static_cast<long long>(_outstandingActions + rangesToFindSplitPoints + rangesToSplit);
        return BSON(kRemainingChunksToProcess << remainingChunksToProcess);
    }

private:
    struct PendingActions {
        std::vector<ChunkRange> rangesToFindSplitPoints;
        std::vector<std::pair<ChunkRange, SplitPoints>> rangesToSplit;
    };
    SplitChunksPhase(const NamespaceString& nss,
                     const UUID& uuid,
                     const BSONObj& shardKey,
                     const long long& maxChunkSizeBytes,
                     stdx::unordered_map<ShardId, PendingActions>&& pendingActionsByShards)
        : _nss(nss),
          _uuid(uuid),
          _shardKey(shardKey),
          _maxChunkSizeBytes(maxChunkSizeBytes),
          _pendingActionsByShards(std::move(pendingActionsByShards)) {}

    void _abort(const DefragmentationPhaseEnum nextPhase) {
        _aborted = true;
        _nextPhase = nextPhase;
        _pendingActionsByShards.clear();
    }

    const NamespaceString _nss;
    const UUID _uuid;
    const BSONObj _shardKey;
    const long long _maxChunkSizeBytes;
    stdx::unordered_map<ShardId, PendingActions> _pendingActionsByShards;
    boost::optional<ShardId> _shardToProcess;
    size_t _outstandingActions{0};
    bool _aborted{false};
    DefragmentationPhaseEnum _nextPhase{DefragmentationPhaseEnum::kFinished};
};

}  // namespace

void BalancerDefragmentationPolicyImpl::startCollectionDefragmentation(OperationContext* opCtx,
                                                                       const CollectionType& coll) {
    {
        stdx::lock_guard<Latch> lk(_stateMutex);
        const auto& uuid = coll.getUuid();
        if (!coll.getDefragmentCollection() || _defragmentationStates.contains(uuid)) {
            return;
        }
        _initializeCollectionState(lk, opCtx, coll);
    }
    _onStateUpdated();
}

void BalancerDefragmentationPolicyImpl::abortCollectionDefragmentation(OperationContext* opCtx,
                                                                       const NamespaceString& nss) {
    stdx::lock_guard<Latch> lk(_stateMutex);
    auto coll = Grid::get(opCtx)->catalogClient()->getCollection(opCtx, nss, {});
    if (coll.getDefragmentCollection()) {
        if (_defragmentationStates.contains(coll.getUuid())) {
            // Notify phase to abort current phase
            _defragmentationStates.at(coll.getUuid())->userAbort();
            _onStateUpdated();
        }
        // Change persisted phase to kSplitChunks
        _persistPhaseUpdate(opCtx, DefragmentationPhaseEnum::kSplitChunks, coll.getUuid());
    }
}

void BalancerDefragmentationPolicyImpl::interruptAllDefragmentations() {
    stdx::lock_guard<Latch> lk(_stateMutex);
    _defragmentationStates.clear();
}

bool BalancerDefragmentationPolicyImpl::isDefragmentingCollection(const UUID& uuid) {
    stdx::lock_guard<Latch> lk(_stateMutex);
    return _defragmentationStates.contains(uuid);
}

BSONObj BalancerDefragmentationPolicyImpl::reportProgressOn(const UUID& uuid) {
    stdx::lock_guard<Latch> lk(_stateMutex);
    auto match = _defragmentationStates.find(uuid);
    if (match == _defragmentationStates.end() || !match->second) {
        return BSON(kCurrentPhase << kNoPhase);
    }
    const auto& collDefragmentationPhase = match->second;
    return BSON(
        kCurrentPhase << DefragmentationPhase_serializer(collDefragmentationPhase->getType())
                      << kProgress << collDefragmentationPhase->reportProgress());
}

MigrateInfoVector BalancerDefragmentationPolicyImpl::selectChunksToMove(
    OperationContext* opCtx, stdx::unordered_set<ShardId>* usedShards) {
    MigrateInfoVector chunksToMove;
    {
        stdx::lock_guard<Latch> lk(_stateMutex);

        std::vector<UUID> collectionUUIDs;
        collectionUUIDs.reserve(_defragmentationStates.size());
        for (const auto& defragState : _defragmentationStates) {
            collectionUUIDs.push_back(defragState.first);
        }
        std::shuffle(collectionUUIDs.begin(), collectionUUIDs.end(), _random);

        auto popCollectionUUID =
            [&](std::vector<UUID>::iterator elemIt) -> std::vector<UUID>::iterator {
            if (std::next(elemIt) == collectionUUIDs.end()) {
                return collectionUUIDs.erase(elemIt);
            }

            *elemIt = std::move(collectionUUIDs.back());
            collectionUUIDs.pop_back();
            return elemIt;
        };

        while (!collectionUUIDs.empty()) {
            for (auto it = collectionUUIDs.begin(); it != collectionUUIDs.end();) {
                const auto& collUUID = *it;

                try {
                    auto defragStateIt = _defragmentationStates.find(collUUID);
                    if (defragStateIt == _defragmentationStates.end()) {
                        it = popCollectionUUID(it);
                        continue;
                    };

                    auto& collDefragmentationPhase = defragStateIt->second;
                    if (!collDefragmentationPhase) {
                        _defragmentationStates.erase(defragStateIt);
                        it = popCollectionUUID(it);
                        continue;
                    }
                    auto actionableMigration =
                        collDefragmentationPhase->popNextMigration(opCtx, usedShards);
                    if (!actionableMigration.has_value()) {
                        it = popCollectionUUID(it);
                        continue;
                    }
                    chunksToMove.push_back(std::move(*actionableMigration));
                    ++it;
                } catch (DBException& e) {
                    // Catch getCollection and getShardVersion errors. Should only occur if
                    // collection has been removed.
                    LOGV2_ERROR(6172700,
                                "Error while getting next migration",
                                "uuid"_attr = collUUID,
                                "error"_attr = redact(e));
                    _defragmentationStates.erase(collUUID);
                    it = popCollectionUUID(it);
                }
            }
        }
    }

    if (chunksToMove.empty() && usedShards->empty()) {
        // If the policy cannot produce new migrations even in absence of temporary constraints, it
        // is possible that some streaming actions must be processed first. Notify an update of the
        // internal state to make it happen.
        _onStateUpdated();
    }
    return chunksToMove;
}

StringData BalancerDefragmentationPolicyImpl::getName() const {
    return StringData(kPolicyName);
}

boost::optional<DefragmentationAction> BalancerDefragmentationPolicyImpl::getNextStreamingAction(
    OperationContext* opCtx) {
    stdx::lock_guard<Latch> lk(_stateMutex);
    // Visit the defrag state in round robin fashion starting from a random one
    auto stateIt = [&] {
        auto it = _defragmentationStates.begin();
        if (_defragmentationStates.size() > 1) {
            std::uniform_int_distribution<size_t> uniDist{0, _defragmentationStates.size() - 1};
            std::advance(it, uniDist(_random));
        }
        return it;
    }();

    for (auto stateToVisit = _defragmentationStates.size(); stateToVisit != 0; --stateToVisit) {
        try {
            _advanceToNextActionablePhase(opCtx, stateIt->first);
            auto& currentCollectionDefragmentationState = stateIt->second;
            if (currentCollectionDefragmentationState) {
                // Get next action
                auto nextAction =
                    currentCollectionDefragmentationState->popNextStreamableAction(opCtx);
                if (nextAction) {
                    return nextAction;
                }
                ++stateIt;
            } else {
                stateIt = _defragmentationStates.erase(stateIt, std::next(stateIt));
            }
        } catch (DBException& e) {
            // Catch getCollection and getShardVersion errors. Should only occur if collection has
            // been removed.
            LOGV2_ERROR(6153301,
                        "Error while getting next defragmentation action",
                        "uuid"_attr = stateIt->first,
                        "error"_attr = redact(e));
            stateIt = _defragmentationStates.erase(stateIt, std::next(stateIt));
        }

        if (stateIt == _defragmentationStates.end()) {
            stateIt = _defragmentationStates.begin();
        }
    }

    return boost::none;
}

bool BalancerDefragmentationPolicyImpl::_advanceToNextActionablePhase(OperationContext* opCtx,
                                                                      const UUID& collUuid) {
    auto& currentPhase = _defragmentationStates.at(collUuid);
    auto phaseTransitionNeeded = [&currentPhase] {
        return currentPhase && currentPhase->isComplete() &&
            MONGO_likely(!skipDefragmentationPhaseTransition.shouldFail());
    };
    bool advanced = false;
    boost::optional<CollectionType> coll(boost::none);
    while (phaseTransitionNeeded()) {
        if (!coll) {
            coll = Grid::get(opCtx)->catalogClient()->getCollection(opCtx, collUuid);
        }
        currentPhase = _transitionPhases(opCtx, *coll, currentPhase->getNextPhase());
        advanced = true;
    }
    return advanced;
}

void BalancerDefragmentationPolicyImpl::applyActionResult(
    OperationContext* opCtx,
    const DefragmentationAction& action,
    const DefragmentationActionResponse& response) {
    {
        stdx::lock_guard<Latch> lk(_stateMutex);
        DefragmentationPhase* targetState = nullptr;
        stdx::visit(
            [&](auto&& act) {
                if (_defragmentationStates.contains(act.uuid)) {
                    targetState = _defragmentationStates.at(act.uuid).get();
                }
            },
            action);

        if (targetState) {
            targetState->applyActionResult(opCtx, action, response);
        }
    }
    _onStateUpdated();
}

std::unique_ptr<DefragmentationPhase> BalancerDefragmentationPolicyImpl::_transitionPhases(
    OperationContext* opCtx,
    const CollectionType& coll,
    DefragmentationPhaseEnum nextPhase,
    bool shouldPersistPhase) {
    std::unique_ptr<DefragmentationPhase> nextPhaseObject(nullptr);
    if (nextPhase == DefragmentationPhaseEnum::kSplitChunks &&
        feature_flags::gNoMoreAutoSplitter.isEnabled(serverGlobalParams.featureCompatibility)) {
        nextPhase = DefragmentationPhaseEnum::kFinished;
    }

    try {
        if (shouldPersistPhase) {
            _persistPhaseUpdate(opCtx, nextPhase, coll.getUuid());
        }
        switch (nextPhase) {
            case DefragmentationPhaseEnum::kMergeAndMeasureChunks:
                nextPhaseObject = MergeAndMeasureChunksPhase::build(opCtx, coll);
                break;
            case DefragmentationPhaseEnum::kMoveAndMergeChunks: {
                auto collectionShardStats =
                    uassertStatusOK(_clusterStats->getCollStats(opCtx, coll.getNss()));
                nextPhaseObject =
                    MoveAndMergeChunksPhase::build(opCtx, coll, std::move(collectionShardStats));
            } break;
            case DefragmentationPhaseEnum::kMergeChunks:
                nextPhaseObject = MergeChunksPhase::build(opCtx, coll);
                break;
            case DefragmentationPhaseEnum::kSplitChunks:
                nextPhaseObject = SplitChunksPhase::build(opCtx, coll);
                break;
            case DefragmentationPhaseEnum::kFinished:
                _clearDefragmentationState(opCtx, coll.getUuid());
                break;
        }
        afterBuildingNextDefragmentationPhase.pauseWhileSet();
        LOGV2(6172702,
              "Collection defragmentation transitioned to new phase",
              "namespace"_attr = coll.getNss(),
              "phase"_attr = nextPhaseObject
                  ? DefragmentationPhase_serializer(nextPhaseObject->getType())
                  : kNoPhase,
              "details"_attr = nextPhaseObject ? nextPhaseObject->reportProgress() : BSONObj());
    } catch (const DBException& e) {
        LOGV2_ERROR(6153101,
                    "Error while building defragmentation phase on collection",
                    "namespace"_attr = coll.getNss(),
                    "uuid"_attr = coll.getUuid(),
                    "phase"_attr = nextPhase,
                    "error"_attr = e);
    }
    return nextPhaseObject;
}

void BalancerDefragmentationPolicyImpl::_initializeCollectionState(WithLock,
                                                                   OperationContext* opCtx,
                                                                   const CollectionType& coll) {
    if (MONGO_unlikely(skipDefragmentationPhaseTransition.shouldFail())) {
        return;
    }
    auto phaseToBuild = coll.getDefragmentationPhase()
        ? coll.getDefragmentationPhase().value()
        : DefragmentationPhaseEnum::kMergeAndMeasureChunks;
    auto collectionPhase =
        _transitionPhases(opCtx, coll, phaseToBuild, !coll.getDefragmentationPhase().has_value());
    while (collectionPhase && collectionPhase->isComplete() &&
           MONGO_likely(!skipDefragmentationPhaseTransition.shouldFail())) {
        collectionPhase = _transitionPhases(opCtx, coll, collectionPhase->getNextPhase());
    }
    if (collectionPhase) {
        auto [_, inserted] =
            _defragmentationStates.insert_or_assign(coll.getUuid(), std::move(collectionPhase));
        dassert(inserted);
    }
}

void BalancerDefragmentationPolicyImpl::_persistPhaseUpdate(OperationContext* opCtx,
                                                            DefragmentationPhaseEnum phase,
                                                            const UUID& uuid) {
    DBDirectClient dbClient(opCtx);
    write_ops::UpdateCommandRequest updateOp(CollectionType::ConfigNS);
    updateOp.setUpdates({[&] {
        write_ops::UpdateOpEntry entry;
        entry.setQ(BSON(CollectionType::kUuidFieldName << uuid));
        entry.setU(write_ops::UpdateModification::parseFromClassicUpdate(
            BSON("$set" << BSON(CollectionType::kDefragmentationPhaseFieldName
                                << DefragmentationPhase_serializer(phase)))));
        return entry;
    }()});
    auto response = write_ops::checkWriteErrors(dbClient.update(updateOp));
    uassert(ErrorCodes::NoMatchingDocument,
            "Collection {} not found while persisting phase change"_format(uuid.toString()),
            response.getN() > 0);
    WriteConcernResult ignoreResult;
    const auto latestOpTime = repl::ReplClientInfo::forClient(opCtx->getClient()).getLastOp();
    uassertStatusOK(waitForWriteConcern(
        opCtx, latestOpTime, WriteConcerns::kMajorityWriteConcernShardingTimeout, &ignoreResult));
}

void BalancerDefragmentationPolicyImpl::_clearDefragmentationState(OperationContext* opCtx,
                                                                   const UUID& uuid) {
    DBDirectClient dbClient(opCtx);

    // Clear datasize estimates from chunks
    write_ops::checkWriteErrors(dbClient.update(write_ops::UpdateCommandRequest(
        ChunkType::ConfigNS, {[&] {
            write_ops::UpdateOpEntry entry;
            entry.setQ(BSON(CollectionType::kUuidFieldName << uuid));
            entry.setU(write_ops::UpdateModification::parseFromClassicUpdate(
                BSON("$unset" << BSON(ChunkType::estimatedSizeBytes.name() << ""))));
            entry.setMulti(true);
            return entry;
        }()})));

    // Clear defragmentation phase and defragmenting flag from collection
    write_ops::checkWriteErrors(dbClient.update(write_ops::UpdateCommandRequest(
        CollectionType::ConfigNS, {[&] {
            write_ops::UpdateOpEntry entry;
            entry.setQ(BSON(CollectionType::kUuidFieldName << uuid));
            entry.setU(write_ops::UpdateModification::parseFromClassicUpdate(BSON(
                "$unset" << BSON(CollectionType::kDefragmentCollectionFieldName
                                 << "" << CollectionType::kDefragmentationPhaseFieldName << ""))));
            return entry;
        }()})));

    WriteConcernResult ignoreResult;
    const auto latestOpTime = repl::ReplClientInfo::forClient(opCtx->getClient()).getLastOp();
    uassertStatusOK(waitForWriteConcern(
        opCtx, latestOpTime, WriteConcerns::kMajorityWriteConcernShardingTimeout, &ignoreResult));
}

}  // namespace mongo