1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
|
/**
* Copyright (C) 2018-present MongoDB, Inc.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the Server Side Public License, version 1,
* as published by MongoDB, Inc.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* Server Side Public License for more details.
*
* You should have received a copy of the Server Side Public License
* along with this program. If not, see
* <http://www.mongodb.com/licensing/server-side-public-license>.
*
* As a special exception, the copyright holders give permission to link the
* code of portions of this program with the OpenSSL library under certain
* conditions as described in each individual source file and distribute
* linked combinations including the program with the OpenSSL library. You
* must comply with the Server Side Public License in all respects for
* all of the code used other than as permitted herein. If you modify file(s)
* with this exception, you may extend this exception to your version of the
* file(s), but you are not obligated to do so. If you do not wish to do so,
* delete this exception statement from your version. If you delete this
* exception statement from all source files in the program, then also delete
* it in the license file.
*/
#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kSharding
#include "mongo/platform/basic.h"
#include "mongo/db/s/chunk_splitter.h"
#include "mongo/client/dbclient_cursor.h"
#include "mongo/client/query.h"
#include "mongo/db/client.h"
#include "mongo/db/dbdirectclient.h"
#include "mongo/db/namespace_string.h"
#include "mongo/db/s/chunk_split_state_driver.h"
#include "mongo/db/s/shard_filtering_metadata_refresh.h"
#include "mongo/db/s/sharding_state.h"
#include "mongo/db/s/split_chunk.h"
#include "mongo/db/s/split_vector.h"
#include "mongo/db/service_context.h"
#include "mongo/s/balancer_configuration.h"
#include "mongo/s/catalog/type_chunk.h"
#include "mongo/s/catalog_cache.h"
#include "mongo/s/chunk_manager.h"
#include "mongo/s/config_server_client.h"
#include "mongo/s/grid.h"
#include "mongo/s/shard_key_pattern.h"
#include "mongo/util/assert_util.h"
#include "mongo/util/log.h"
namespace mongo {
namespace {
/**
* Constructs the default options for the thread pool used to schedule splits.
*/
ThreadPool::Options makeDefaultThreadPoolOptions() {
ThreadPool::Options options;
options.poolName = "ChunkSplitter";
options.minThreads = 0;
options.maxThreads = 20;
// Ensure all threads have a client
options.onCreateThread = [](const std::string& threadName) {
Client::initThread(threadName.c_str());
};
return options;
}
/**
* Attempts to split the chunk described by min/maxKey at the split points provided.
*/
Status splitChunkAtMultiplePoints(OperationContext* opCtx,
const ShardId& shardId,
const NamespaceString& nss,
const ShardKeyPattern& shardKeyPattern,
const ChunkVersion& collectionVersion,
const ChunkRange& chunkRange,
const std::vector<BSONObj>& splitPoints) {
invariant(!splitPoints.empty());
const size_t kMaxSplitPoints = 8192;
if (splitPoints.size() > kMaxSplitPoints) {
return {ErrorCodes::BadValue,
str::stream() << "Cannot split chunk in more than " << kMaxSplitPoints
<< " parts at a time."};
}
const auto status = splitChunk(opCtx,
nss,
shardKeyPattern.toBSON(),
chunkRange,
splitPoints,
shardId.toString(),
collectionVersion.epoch());
return status.getStatus().withContext("split failed");
}
/**
* Attempts to move the chunk specified by minKey away from its current shard.
*/
void moveChunk(OperationContext* opCtx, const NamespaceString& nss, const BSONObj& minKey) {
// We need to have the most up-to-date view of the chunk we are about to move.
const auto routingInfo =
uassertStatusOK(Grid::get(opCtx)->catalogCache()->getCollectionRoutingInfo(opCtx, nss));
uassert(ErrorCodes::NamespaceNotSharded,
"Could not move chunk. Collection is no longer sharded",
routingInfo.cm());
const auto suggestedChunk = routingInfo.cm()->findIntersectingChunkWithSimpleCollation(minKey);
ChunkType chunkToMove;
chunkToMove.setNS(nss);
chunkToMove.setShard(suggestedChunk.getShardId());
chunkToMove.setMin(suggestedChunk.getMin());
chunkToMove.setMax(suggestedChunk.getMax());
chunkToMove.setVersion(suggestedChunk.getLastmod());
uassertStatusOK(configsvr_client::rebalanceChunk(opCtx, chunkToMove));
}
/**
* Returns the split point that will result in one of the chunks having exactly one document. Also
* returns an empty document if the split point cannot be determined.
*
* doSplitAtLower - determines which side of the split will have exactly one document. True means
* that the split point chosen will be closer to the lower bound.
*
* NOTE: this assumes that the shard key is not "special"- that is, the shardKeyPattern is simply an
* ordered list of ascending/descending field names. For example {a : 1, b : -1} is not special, but
* {a : "hashed"} is.
*/
BSONObj findExtremeKeyForShard(OperationContext* opCtx,
const NamespaceString& nss,
const ShardKeyPattern& shardKeyPattern,
bool doSplitAtLower) {
Query q;
if (doSplitAtLower) {
q.sort(shardKeyPattern.toBSON());
} else {
// need to invert shard key pattern to sort backwards
BSONObjBuilder r;
BSONObjIterator i(shardKeyPattern.toBSON());
while (i.more()) {
BSONElement e = i.next();
uassert(40617, "can only handle numbers here - which i think is correct", e.isNumber());
r.append(e.fieldName(), -1 * e.number());
}
q.sort(r.obj());
}
DBDirectClient client(opCtx);
BSONObj end;
if (doSplitAtLower) {
// Splitting close to the lower bound means that the split point will be the
// upper bound. Chunk range upper bounds are exclusive so skip a document to
// make the lower half of the split end up with a single document.
std::unique_ptr<DBClientCursor> cursor = client.query(nss,
q,
1, /* nToReturn */
1 /* nToSkip */);
uassert(40618,
str::stream() << "failed to initialize cursor during auto split due to "
<< "connection problem with "
<< client.getServerAddress(),
cursor.get() != nullptr);
if (cursor->more()) {
end = cursor->next().getOwned();
}
} else {
end = client.findOne(nss.ns(), q);
}
if (end.isEmpty()) {
return BSONObj();
}
return shardKeyPattern.extractShardKeyFromDoc(end);
}
/**
* Checks if autobalance is enabled on the current sharded collection.
*/
bool isAutoBalanceEnabled(OperationContext* opCtx,
const NamespaceString& nss,
BalancerConfiguration* balancerConfig) {
if (!balancerConfig->shouldBalanceForAutoSplit())
return false;
auto collStatus = Grid::get(opCtx)->catalogClient()->getCollection(opCtx, nss);
if (!collStatus.isOK()) {
log() << "Auto-split for " << nss << " failed to load collection metadata"
<< causedBy(redact(collStatus.getStatus()));
return false;
}
return collStatus.getValue().value.getAllowBalance();
}
const auto getChunkSplitter = ServiceContext::declareDecoration<ChunkSplitter>();
} // namespace
ChunkSplitter::ChunkSplitter() : _threadPool(makeDefaultThreadPoolOptions()) {
_threadPool.startup();
}
ChunkSplitter::~ChunkSplitter() {
_threadPool.shutdown();
_threadPool.join();
}
ChunkSplitter& ChunkSplitter::get(OperationContext* opCtx) {
return get(opCtx->getServiceContext());
}
ChunkSplitter& ChunkSplitter::get(ServiceContext* serviceContext) {
return getChunkSplitter(serviceContext);
}
void ChunkSplitter::onShardingInitialization(bool isPrimary) {
stdx::lock_guard<stdx::mutex> scopedLock(_mutex);
_isPrimary = isPrimary;
}
void ChunkSplitter::onStepUp() {
stdx::lock_guard<stdx::mutex> lg(_mutex);
if (_isPrimary) {
return;
}
_isPrimary = true;
log() << "The ChunkSplitter has started and will accept autosplit tasks.";
}
void ChunkSplitter::onStepDown() {
stdx::lock_guard<stdx::mutex> lg(_mutex);
if (!_isPrimary) {
return;
}
_isPrimary = false;
log() << "The ChunkSplitter has stopped and will no longer run new autosplit tasks. Any "
<< "autosplit tasks that have already started will be allowed to finish.";
}
void ChunkSplitter::waitForIdle() {
_threadPool.waitForIdle();
}
void ChunkSplitter::trySplitting(std::shared_ptr<ChunkSplitStateDriver> chunkSplitStateDriver,
const NamespaceString& nss,
const BSONObj& min,
const BSONObj& max,
long dataWritten) {
if (!_isPrimary) {
return;
}
uassertStatusOK(_threadPool.schedule(
[ this, csd = std::move(chunkSplitStateDriver), nss, min, max, dataWritten ]() noexcept {
_runAutosplit(csd, nss, min, max, dataWritten);
}));
}
void ChunkSplitter::_runAutosplit(std::shared_ptr<ChunkSplitStateDriver> chunkSplitStateDriver,
const NamespaceString& nss,
const BSONObj& min,
const BSONObj& max,
long dataWritten) {
if (!_isPrimary) {
return;
}
try {
const auto opCtx = cc().makeOperationContext();
const auto routingInfo = uassertStatusOK(
Grid::get(opCtx.get())->catalogCache()->getCollectionRoutingInfo(opCtx.get(), nss));
const auto cm = routingInfo.cm();
uassert(ErrorCodes::NamespaceNotSharded,
"Could not split chunk. Collection is no longer sharded",
cm);
const auto chunk = cm->findIntersectingChunkWithSimpleCollation(min);
const auto& shardKeyPattern = cm->getShardKeyPattern();
const auto balancerConfig = Grid::get(opCtx.get())->getBalancerConfiguration();
// Ensure we have the most up-to-date balancer configuration
uassertStatusOK(balancerConfig->refreshAndCheck(opCtx.get()));
if (!balancerConfig->getShouldAutoSplit()) {
return;
}
const uint64_t maxChunkSizeBytes = balancerConfig->getMaxChunkSizeBytes();
LOG(1) << "about to initiate autosplit: " << redact(chunk.toString())
<< " dataWritten since last check: " << dataWritten
<< " maxChunkSizeBytes: " << maxChunkSizeBytes;
chunkSplitStateDriver->prepareSplit();
auto splitPoints = uassertStatusOK(splitVector(opCtx.get(),
nss,
shardKeyPattern.toBSON(),
chunk.getMin(),
chunk.getMax(),
false,
boost::none,
boost::none,
boost::none,
maxChunkSizeBytes));
if (splitPoints.size() <= 1) {
LOG(1)
<< "ChunkSplitter attempted split but not enough split points were found for chunk "
<< redact(chunk.toString());
// Reset our size estimate that we had prior to splitVector to 0, while still counting
// the bytes that have been written in parallel to this split task
chunkSplitStateDriver->abandonPrepare();
// No split points means there isn't enough data to split on; 1 split point means we
// have between half the chunk size to full chunk size so there is no need to split yet
return;
}
// We assume that if the chunk being split is the first (or last) one on the collection,
// this chunk is likely to see more insertions. Instead of splitting mid-chunk, we use the
// very first (or last) key as a split point.
//
// This heuristic is skipped for "special" shard key patterns that are not likely to produce
// monotonically increasing or decreasing values (e.g. hashed shard keys).
// Keeps track of the minKey of the top chunk after the split so we can migrate the chunk.
BSONObj topChunkMinKey;
const auto skpGlobalMin = shardKeyPattern.getKeyPattern().globalMin();
const auto skpGlobalMax = shardKeyPattern.getKeyPattern().globalMax();
if (KeyPattern::isOrderedKeyPattern(shardKeyPattern.toBSON())) {
if (skpGlobalMin.woCompare(min) == 0) {
// MinKey is infinity (This is the first chunk on the collection)
BSONObj key = findExtremeKeyForShard(opCtx.get(), nss, shardKeyPattern, true);
if (!key.isEmpty()) {
splitPoints.front() = key.getOwned();
topChunkMinKey = skpGlobalMin;
}
} else if (skpGlobalMax.woCompare(max) == 0) {
// MaxKey is infinity (This is the last chunk on the collection)
BSONObj key = findExtremeKeyForShard(opCtx.get(), nss, shardKeyPattern, false);
if (!key.isEmpty()) {
splitPoints.back() = key.getOwned();
topChunkMinKey = key.getOwned();
}
}
}
uassertStatusOK(splitChunkAtMultiplePoints(opCtx.get(),
chunk.getShardId(),
nss,
shardKeyPattern,
cm->getVersion(),
ChunkRange(min, max),
splitPoints));
chunkSplitStateDriver->commitSplit();
const bool shouldBalance = isAutoBalanceEnabled(opCtx.get(), nss, balancerConfig);
log() << "autosplitted " << nss << " chunk: " << redact(chunk.toString()) << " into "
<< (splitPoints.size() + 1) << " parts (maxChunkSizeBytes " << maxChunkSizeBytes
<< ")"
<< (topChunkMinKey.isEmpty() ? "" : " (top chunk migration suggested" +
(std::string)(shouldBalance ? ")" : ", but no migrations allowed)"));
// Because the ShardServerOpObserver uses the metadata from the CSS for tracking incoming
// writes, if we split a chunk but do not force a CSS refresh, subsequent inserts will see
// stale metadata and so will not trigger a chunk split. If we force metadata refresh here,
// we can limit the amount of time that the op observer is tracking writes on the parent
// chunk rather than on its child chunks.
forceShardFilteringMetadataRefresh(opCtx.get(), nss, false);
// Balance the resulting chunks if the autobalance option is enabled and if we split at the
// first or last chunk on the collection as part of top chunk optimization.
if (!shouldBalance || topChunkMinKey.isEmpty()) {
return;
}
// Tries to move the top chunk out of the shard to prevent the hot spot from staying on a
// single shard. This is based on the assumption that succeeding inserts will fall on the
// top chunk.
moveChunk(opCtx.get(), nss, topChunkMinKey);
} catch (const DBException& ex) {
log() << "Unable to auto-split chunk " << redact(ChunkRange(min, max).toString())
<< " in nss " << nss << causedBy(redact(ex.toStatus()));
} catch (const std::exception& e) {
log() << "caught exception while splitting chunk: " << redact(e.what());
}
}
} // namespace mongo
|