summaryrefslogtreecommitdiff
path: root/src/mongo/db/s/metadata_manager.cpp
blob: faa062e947622e094af85271db0f96472ccca04d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/**
 *    Copyright (C) 2016 MongoDB Inc.
 *
 *    This program is free software: you can redistribute it and/or  modify
 *    it under the terms of the GNU Affero General Public License, version 3,
 *    as published by the Free Software Foundation.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU Affero General Public License for more details.
 *
 *    You should have received a copy of the GNU Affero General Public License
 *    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the GNU Affero General Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kSharding

#include "mongo/platform/basic.h"

#include "mongo/db/s/metadata_manager.h"

#include "mongo/bson/simple_bsonobj_comparator.h"
#include "mongo/db/range_arithmetic.h"
#include "mongo/db/s/collection_range_deleter.h"
#include "mongo/db/s/sharding_state.h"
#include "mongo/stdx/memory.h"
#include "mongo/util/log.h"

namespace mongo {

using CallbackArgs = executor::TaskExecutor::CallbackArgs;

MetadataManager::MetadataManager(ServiceContext* sc, NamespaceString nss)
    : _nss(std::move(nss)),
      _serviceContext(sc),
      _activeMetadataTracker(stdx::make_unique<CollectionMetadataTracker>(nullptr)),
      _receivingChunks(SimpleBSONObjComparator::kInstance.makeBSONObjIndexedMap<CachedChunkInfo>()),
      _rangesToClean(
          SimpleBSONObjComparator::kInstance.makeBSONObjIndexedMap<RangeToCleanDescriptor>()) {}

MetadataManager::~MetadataManager() {
    stdx::lock_guard<stdx::mutex> scopedLock(_managerLock);
    invariant(!_activeMetadataTracker || _activeMetadataTracker->usageCounter == 0);
}

ScopedCollectionMetadata MetadataManager::getActiveMetadata() {
    stdx::lock_guard<stdx::mutex> scopedLock(_managerLock);
    if (!_activeMetadataTracker) {
        return ScopedCollectionMetadata();
    }

    return ScopedCollectionMetadata(this, _activeMetadataTracker.get());
}

void MetadataManager::refreshActiveMetadata(std::unique_ptr<CollectionMetadata> remoteMetadata) {
    stdx::lock_guard<stdx::mutex> scopedLock(_managerLock);

    // Collection was never sharded in the first place. This check is necessary in order to avoid
    // extraneous logging in the not-a-shard case, because all call sites always try to get the
    // collection sharding information regardless of whether the node is sharded or not.
    if (!remoteMetadata && !_activeMetadataTracker->metadata) {
        invariant(_receivingChunks.empty());
        invariant(_rangesToClean.empty());
        return;
    }

    // Collection is becoming unsharded
    if (!remoteMetadata) {
        log() << "Marking collection " << _nss.ns() << " with "
              << _activeMetadataTracker->metadata->toStringBasic() << " as no longer sharded";

        _receivingChunks.clear();
        _rangesToClean.clear();

        _setActiveMetadata_inlock(nullptr);
        return;
    }

    // We should never be setting unsharded metadata
    invariant(!remoteMetadata->getCollVersion().isWriteCompatibleWith(ChunkVersion::UNSHARDED()));
    invariant(!remoteMetadata->getShardVersion().isWriteCompatibleWith(ChunkVersion::UNSHARDED()));

    // Collection is becoming sharded
    if (!_activeMetadataTracker->metadata) {
        log() << "Marking collection " << _nss.ns() << " as sharded with "
              << remoteMetadata->toStringBasic();

        invariant(_receivingChunks.empty());
        invariant(_rangesToClean.empty());

        _setActiveMetadata_inlock(std::move(remoteMetadata));
        return;
    }

    // If the metadata being installed has a different epoch from ours, this means the collection
    // was dropped and recreated, so we must entirely reset the metadata state
    if (_activeMetadataTracker->metadata->getCollVersion().epoch() !=
        remoteMetadata->getCollVersion().epoch()) {
        log() << "Overwriting metadata for collection " << _nss.ns() << " from "
              << _activeMetadataTracker->metadata->toStringBasic() << " to "
              << remoteMetadata->toStringBasic() << " due to epoch change";

        _receivingChunks.clear();
        _rangesToClean.clear();

        _setActiveMetadata_inlock(std::move(remoteMetadata));
        return;
    }

    // We already have newer version
    if (_activeMetadataTracker->metadata->getCollVersion() >= remoteMetadata->getCollVersion()) {
        LOG(1) << "Ignoring refresh of active metadata "
               << _activeMetadataTracker->metadata->toStringBasic() << " with an older "
               << remoteMetadata->toStringBasic();
        return;
    }

    log() << "Refreshing metadata for collection " << _nss.ns() << " from "
          << _activeMetadataTracker->metadata->toStringBasic() << " to "
          << remoteMetadata->toStringBasic();

    // Resolve any receiving chunks, which might have completed by now
    for (auto it = _receivingChunks.begin(); it != _receivingChunks.end();) {
        const BSONObj min = it->first;
        const BSONObj max = it->second.getMaxKey();

        // Our pending range overlaps at least one chunk
        if (rangeMapContains(remoteMetadata->getChunks(), min, max)) {
            // The remote metadata contains a chunk we were earlier in the process of receiving, so
            // we deem it successfully received.
            LOG(2) << "Verified chunk " << redact(ChunkRange(min, max).toString())
                   << " for collection " << _nss.ns() << " has been migrated to this shard earlier";

            _receivingChunks.erase(it++);
            continue;
        } else if (!rangeMapOverlaps(remoteMetadata->getChunks(), min, max)) {
            ++it;
            continue;
        }

        // Partial overlap indicates that the earlier migration has failed, but the chunk being
        // migrated underwent some splits and other migrations and ended up here again. In this
        // case, we will request full reload of the metadata. Currently this cannot happen, because
        // all migrations are with the explicit knowledge of the recipient shard. However, we leave
        // the option open so that chunk splits can do empty chunk move without having to notify the
        // recipient.
        RangeVector overlappedChunks;
        getRangeMapOverlap(remoteMetadata->getChunks(), min, max, &overlappedChunks);

        for (const auto& overlapChunkMin : overlappedChunks) {
            auto itRecv = _receivingChunks.find(overlapChunkMin.first);
            invariant(itRecv != _receivingChunks.end());

            const ChunkRange receivingRange(itRecv->first, itRecv->second.getMaxKey());

            _receivingChunks.erase(itRecv);

            // Make sure any potentially partially copied chunks are scheduled to be cleaned up
            _addRangeToClean_inlock(receivingRange);
        }

        // Need to reset the iterator
        it = _receivingChunks.begin();
    }

    // For compatibility with the current range deleter, which is driven entirely by the contents of
    // the CollectionMetadata update the pending chunks
    for (const auto& receivingChunk : _receivingChunks) {
        ChunkType chunk;
        chunk.setMin(receivingChunk.first);
        chunk.setMax(receivingChunk.second.getMaxKey());
        remoteMetadata = remoteMetadata->clonePlusPending(chunk);
    }

    _setActiveMetadata_inlock(std::move(remoteMetadata));
}

void MetadataManager::beginReceive(const ChunkRange& range) {
    stdx::lock_guard<stdx::mutex> scopedLock(_managerLock);

    // Collection is not known to be sharded if the active metadata tracker is null
    invariant(_activeMetadataTracker);

    // If range is contained within pending chunks, this means a previous migration must have failed
    // and we need to clean all overlaps
    RangeVector overlappedChunks;
    getRangeMapOverlap(_receivingChunks, range.getMin(), range.getMax(), &overlappedChunks);

    for (const auto& overlapChunkMin : overlappedChunks) {
        auto itRecv = _receivingChunks.find(overlapChunkMin.first);
        invariant(itRecv != _receivingChunks.end());

        const ChunkRange receivingRange(itRecv->first, itRecv->second.getMaxKey());

        _receivingChunks.erase(itRecv);

        // Make sure any potentially partially copied chunks are scheduled to be cleaned up
        _addRangeToClean_inlock(receivingRange);
    }

    // Need to ensure that the background range deleter task won't delete the range we are about to
    // receive
    _removeRangeToClean_inlock(range, Status::OK());
    _receivingChunks.insert(
        std::make_pair(range.getMin().getOwned(),
                       CachedChunkInfo(range.getMax().getOwned(), ChunkVersion::IGNORED())));

    // For compatibility with the current range deleter, update the pending chunks on the collection
    // metadata to include the chunk being received
    ChunkType chunk;
    chunk.setMin(range.getMin());
    chunk.setMax(range.getMax());
    _setActiveMetadata_inlock(_activeMetadataTracker->metadata->clonePlusPending(chunk));
}

void MetadataManager::forgetReceive(const ChunkRange& range) {
    stdx::lock_guard<stdx::mutex> scopedLock(_managerLock);

    {
        auto it = _receivingChunks.find(range.getMin());
        invariant(it != _receivingChunks.end());

        // Verify entire ChunkRange is identical, not just the min key.
        invariant(
            SimpleBSONObjComparator::kInstance.evaluate(it->second.getMaxKey() == range.getMax()));

        _receivingChunks.erase(it);
    }

    // This is potentially a partially received data, which needs to be cleaned up
    _addRangeToClean_inlock(range);

    // For compatibility with the current range deleter, update the pending chunks on the collection
    // metadata to exclude the chunk being received, which was added in beginReceive
    ChunkType chunk;
    chunk.setMin(range.getMin());
    chunk.setMax(range.getMax());
    _setActiveMetadata_inlock(_activeMetadataTracker->metadata->cloneMinusPending(chunk));
}

RangeMap MetadataManager::getCopyOfReceivingChunks() {
    stdx::lock_guard<stdx::mutex> scopedLock(_managerLock);
    return _receivingChunks;
}

void MetadataManager::_setActiveMetadata_inlock(std::unique_ptr<CollectionMetadata> newMetadata) {
    if (_activeMetadataTracker->usageCounter > 0) {
        _metadataInUse.push_front(std::move(_activeMetadataTracker));
    }

    _activeMetadataTracker = stdx::make_unique<CollectionMetadataTracker>(std::move(newMetadata));
}

void MetadataManager::_removeMetadata_inlock(CollectionMetadataTracker* metadataTracker) {
    invariant(metadataTracker->usageCounter == 0);

    auto i = _metadataInUse.begin();
    const auto e = _metadataInUse.end();
    while (i != e) {
        if (metadataTracker == i->get()) {
            _metadataInUse.erase(i);
            return;
        }

        ++i;
    }
}

MetadataManager::CollectionMetadataTracker::CollectionMetadataTracker(
    std::unique_ptr<CollectionMetadata> m)
    : metadata(std::move(m)) {}

ScopedCollectionMetadata::ScopedCollectionMetadata() = default;

// called in lock
ScopedCollectionMetadata::ScopedCollectionMetadata(
    MetadataManager* manager, MetadataManager::CollectionMetadataTracker* tracker)
    : _manager(manager), _tracker(tracker) {
    _tracker->usageCounter++;
}

ScopedCollectionMetadata::~ScopedCollectionMetadata() {
    if (!_tracker)
        return;
    _decrementUsageCounter();
}

CollectionMetadata* ScopedCollectionMetadata::operator->() const {
    return _tracker->metadata.get();
}

CollectionMetadata* ScopedCollectionMetadata::getMetadata() const {
    return _tracker->metadata.get();
}

ScopedCollectionMetadata::ScopedCollectionMetadata(ScopedCollectionMetadata&& other) {
    *this = std::move(other);
}

ScopedCollectionMetadata& ScopedCollectionMetadata::operator=(ScopedCollectionMetadata&& other) {
    if (this != &other) {
        // If "this" was previously initialized, make sure we perform the same logic as in the
        // destructor to decrement _tracker->usageCounter for the CollectionMetadata "this" had a
        // reference to before replacing _tracker with other._tracker.
        if (_tracker) {
            _decrementUsageCounter();
        }

        _manager = other._manager;
        _tracker = other._tracker;
        other._manager = nullptr;
        other._tracker = nullptr;
    }

    return *this;
}

void ScopedCollectionMetadata::_decrementUsageCounter() {
    invariant(_manager);
    invariant(_tracker);
    stdx::lock_guard<stdx::mutex> scopedLock(_manager->_managerLock);
    invariant(_tracker->usageCounter > 0);
    if (--_tracker->usageCounter == 0) {
        _manager->_removeMetadata_inlock(_tracker);
    }
}

ScopedCollectionMetadata::operator bool() const {
    return _tracker && _tracker->metadata.get();
}

RangeMap MetadataManager::getCopyOfRangesToClean() {
    stdx::lock_guard<stdx::mutex> scopedLock(_managerLock);
    return _getCopyOfRangesToClean_inlock();
}

RangeMap MetadataManager::_getCopyOfRangesToClean_inlock() {
    RangeMap ranges = SimpleBSONObjComparator::kInstance.makeBSONObjIndexedMap<CachedChunkInfo>();
    for (auto it = _rangesToClean.begin(); it != _rangesToClean.end(); ++it) {
        ranges.insert(std::make_pair(
            it->first, CachedChunkInfo(it->second.getMax(), ChunkVersion::IGNORED())));
    }
    return ranges;
}

std::shared_ptr<Notification<Status>> MetadataManager::addRangeToClean(const ChunkRange& range) {
    stdx::lock_guard<stdx::mutex> scopedLock(_managerLock);
    return _addRangeToClean_inlock(range);
}

std::shared_ptr<Notification<Status>> MetadataManager::_addRangeToClean_inlock(
    const ChunkRange& range) {
    // This first invariant currently makes an unnecessary copy, to reuse the
    // rangeMapOverlaps helper function.
    invariant(!rangeMapOverlaps(_getCopyOfRangesToClean_inlock(), range.getMin(), range.getMax()));
    invariant(!rangeMapOverlaps(_receivingChunks, range.getMin(), range.getMax()));

    RangeToCleanDescriptor descriptor(range.getMax().getOwned());
    _rangesToClean.insert(std::make_pair(range.getMin().getOwned(), descriptor));

    // If _rangesToClean was previously empty, we need to start the collection range deleter
    if (_rangesToClean.size() == 1UL) {
        ShardingState::get(_serviceContext)->scheduleCleanup(_nss);
    }

    return descriptor.getNotification();
}

void MetadataManager::removeRangeToClean(const ChunkRange& range, Status deletionStatus) {
    stdx::lock_guard<stdx::mutex> scopedLock(_managerLock);
    _removeRangeToClean_inlock(range, deletionStatus);
}

void MetadataManager::_removeRangeToClean_inlock(const ChunkRange& range, Status deletionStatus) {
    auto it = _rangesToClean.upper_bound(range.getMin());
    // We want our iterator to point at the greatest value
    // that is still less than or equal to range.
    if (it != _rangesToClean.begin()) {
        --it;
    }

    for (; it != _rangesToClean.end() &&
         SimpleBSONObjComparator::kInstance.evaluate(it->first < range.getMax());) {
        if (SimpleBSONObjComparator::kInstance.evaluate(it->second.getMax() <= range.getMin())) {
            ++it;
            continue;
        }

        // There's overlap between *it and range so we remove *it
        // and then replace with new ranges.
        BSONObj oldMin = it->first;
        BSONObj oldMax = it->second.getMax();
        it->second.complete(deletionStatus);
        _rangesToClean.erase(it++);
        if (SimpleBSONObjComparator::kInstance.evaluate(oldMin < range.getMin())) {
            _addRangeToClean_inlock(ChunkRange(oldMin, range.getMin()));
        }

        if (SimpleBSONObjComparator::kInstance.evaluate(oldMax > range.getMax())) {
            _addRangeToClean_inlock(ChunkRange(range.getMax(), oldMax));
        }
    }
}

void MetadataManager::append(BSONObjBuilder* builder) {
    stdx::lock_guard<stdx::mutex> scopedLock(_managerLock);

    BSONArrayBuilder rtcArr(builder->subarrayStart("rangesToClean"));
    for (const auto& entry : _rangesToClean) {
        BSONObjBuilder obj;
        ChunkRange r = ChunkRange(entry.first, entry.second.getMax());
        r.append(&obj);
        rtcArr.append(obj.done());
    }
    rtcArr.done();

    BSONArrayBuilder pcArr(builder->subarrayStart("pendingChunks"));
    for (const auto& entry : _receivingChunks) {
        BSONObjBuilder obj;
        ChunkRange r = ChunkRange(entry.first, entry.second.getMaxKey());
        r.append(&obj);
        pcArr.append(obj.done());
    }
    pcArr.done();

    BSONArrayBuilder amrArr(builder->subarrayStart("activeMetadataRanges"));
    for (const auto& entry : _activeMetadataTracker->metadata->getChunks()) {
        BSONObjBuilder obj;
        ChunkRange r = ChunkRange(entry.first, entry.second.getMaxKey());
        r.append(&obj);
        amrArr.append(obj.done());
    }
    amrArr.done();
}

bool MetadataManager::hasRangesToClean() {
    stdx::lock_guard<stdx::mutex> scopedLock(_managerLock);
    return !_rangesToClean.empty();
}

bool MetadataManager::isInRangesToClean(const ChunkRange& range) {
    stdx::lock_guard<stdx::mutex> scopedLock(_managerLock);
    // For convenience, this line makes an unnecessary copy, to reuse the
    // rangeMapContains helper function.
    return rangeMapContains(_getCopyOfRangesToClean_inlock(), range.getMin(), range.getMax());
}

ChunkRange MetadataManager::getNextRangeToClean() {
    stdx::lock_guard<stdx::mutex> scopedLock(_managerLock);
    invariant(!_rangesToClean.empty());
    auto it = _rangesToClean.begin();
    return ChunkRange(it->first, it->second.getMax());
}

}  // namespace mongo