summaryrefslogtreecommitdiff
path: root/src/mongo/db/s/metadata_manager.cpp
blob: 7394d7dae15f8d2c1650c420bce7a2d4db721de7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
/**
 *    Copyright (C) 2018-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kSharding

#include "mongo/platform/basic.h"

#include "mongo/db/s/metadata_manager.h"

#include <memory>

#include "mongo/base/string_data.h"
#include "mongo/bson/simple_bsonobj_comparator.h"
#include "mongo/bson/util/builder.h"
#include "mongo/db/query/internal_plans.h"
#include "mongo/db/range_arithmetic.h"
#include "mongo/db/s/collection_sharding_state.h"
#include "mongo/s/grid.h"
#include "mongo/util/assert_util.h"
#include "mongo/util/fail_point_service.h"
#include "mongo/util/log.h"
#include "mongo/util/time_support.h"

// MetadataManager maintains pointers to CollectionMetadata objects in a member list named
// _metadata.  Each CollectionMetadata contains an immutable _chunksMap of chunks assigned to this
// shard, along with details related to its own lifecycle in a member _tracker.
//
// The current chunk mapping, used by queries starting up, is at _metadata.back().  Each query,
// when it starts up, requests and holds a ScopedCollectionMetadata object, and destroys it on
// termination. Each ScopedCollectionMetadata keeps a shared_ptr to its CollectionMetadata chunk
// mapping, and to the MetadataManager itself.  CollectionMetadata mappings also keep a record of
// chunk ranges that may be deleted when it is determined that the range can no longer be in use.
//
// ScopedCollectionMetadata's destructor decrements the CollectionMetadata's usageCounter.
// Whenever a usageCounter drops to zero, we check whether any now-unused CollectionMetadata
// elements can be popped off the front of _metadata.  We need to keep the unused elements in the
// middle (as seen below) because they may schedule deletions of chunks depended on by older
// mappings.
//
// New chunk mappings are pushed onto the back of _metadata. Subsequently started queries use the
// new mapping while still-running queries continue using the older "snapshot" mappings.  We treat
// _metadata.back()'s usage count differently from the snapshots because it can't reliably be
// compared to zero; a new query may increment it at any time.
//
// (Note that the collection may be dropped or become unsharded, and even get made and sharded
// again, between construction and destruction of a ScopedCollectionMetadata).
//
// MetadataManager also contains a CollectionRangeDeleter _rangesToClean that queues orphan ranges
// being deleted in a background thread, and a mapping _receivingChunks of the ranges being migrated
// in, to avoid deleting them.  Each range deletion is paired with a notification object triggered
// when the deletion is completed or abandoned.
//
//                                        ____________________________
//  (s): std::shared_ptr<>       Clients:| ScopedCollectionMetadata   |
//   _________________________        +----(s) manager   metadata (s)------------------+
//  | CollectionShardingState |       |  |____________________________|  |             |
//  |  _metadataManager (s)   |       +-------(s) manager  metadata (s)--------------+ |
//  |____________________|____|       |     |____________________________|   |       | |
//   ____________________v________    +------------(s) manager  metadata (s)-----+   | |
//  | MetadataManager             |   |         |____________________________|   |   | |
//  |                             |<--+                                          |   | |
//  |                             |        ___________________________  (1 use)  |   | |
//  | getActiveMetadata():    /---------->| CollectionMetadata        |<---------+   | |
//  |     back(): [(s),------/    |       |  _________________________|_             | |
//  |              (s),-------------------->| CollectionMetadata        | (0 uses)   | |
//  |  _metadata:  (s)]------\    |       | |  _________________________|_           | |
//  |                         \-------------->| CollectionMetadata        |          | |
//  |  _receivingChunks           |       | | |                           | (2 uses) | |
//  |  _rangesToClean:            |       | | |  _tracker:                |<---------+ |
//  |  _________________________  |       | | |  _______________________  |<-----------+
//  | | CollectionRangeDeleter  | |       | | | | Tracker               | |
//  | |                         | |       | | | |                       | |
//  | |  _orphans [range,notif, | |       | | | | usageCounter          | |
//  | |            range,notif, | |       | | | | orphans [range,notif, | |
//  | |                 ...   ] | |       | | | |          range,notif, | |
//  | |                         | |       | | | |              ...    ] | |
//  | |_________________________| |       |_| | |_______________________| |
//  |_____________________________|         | |  _chunksMap               |
//                                          |_|  _chunkVersion            |
//                                            |  ...                      |
//                                            |___________________________|
//
//  Note that _metadata as shown here has its front() at the bottom, back() at the top. As usual,
//  new entries are pushed onto the back, popped off the front.

namespace mongo {
namespace {

using TaskExecutor = executor::TaskExecutor;
using CallbackArgs = TaskExecutor::CallbackArgs;

MONGO_FAIL_POINT_DEFINE(suspendRangeDeletion);

class UnshardedCollection : public ScopedCollectionMetadata::Impl {
public:
    UnshardedCollection() = default;

    const CollectionMetadata& get() override {
        return _metadata;
    }

private:
    CollectionMetadata _metadata;
};

const auto kUnshardedCollection = std::make_shared<UnshardedCollection>();

/**
 * Deletes ranges, in background, until done, normally using a task executor attached to the
 * ShardingState.
 *
 * Each time it completes cleaning up a range, it wakes up clients waiting on completion of that
 * range, which may then verify that their range has no more deletions scheduled, and proceed.
 */
void scheduleCleanup(executor::TaskExecutor* executor,
                     NamespaceString nss,
                     OID epoch,
                     Date_t when) {
    LOG(1) << "Scheduling cleanup on " << nss.ns() << " at " << when;
    auto swCallbackHandle = executor->scheduleWorkAt(
        when, [ executor, nss = std::move(nss), epoch = std::move(epoch) ](auto& args) {
            auto& status = args.status;
            if (ErrorCodes::isCancelationError(status.code())) {
                return;
            }
            invariant(status);

            ThreadClient tc("Collection-Range-Deleter", getGlobalServiceContext());
            {
                stdx::lock_guard<Client> lk(*tc.get());
                tc->setSystemOperationKillable(lk);
            }
            auto uniqueOpCtx = Client::getCurrent()->makeOperationContext();
            auto opCtx = uniqueOpCtx.get();

            MONGO_FAIL_POINT_PAUSE_WHILE_SET(suspendRangeDeletion);

            auto next = CollectionRangeDeleter::cleanUpNextRange(opCtx, nss, epoch);
            if (next) {
                scheduleCleanup(executor, std::move(nss), std::move(epoch), *next);
            }
        });

    if (!swCallbackHandle.isOK()) {
        log() << "Failed to schedule the orphan data cleanup task"
              << causedBy(redact(swCallbackHandle.getStatus()));
    }
}

}  // namespace

class RangePreserver : public ScopedCollectionMetadata::Impl {
public:
    // Must be called locked with the MetadataManager's _managerLock
    RangePreserver(WithLock,
                   std::shared_ptr<MetadataManager> metadataManager,
                   std::shared_ptr<MetadataManager::CollectionMetadataTracker> metadataTracker)
        : _metadataManager(std::move(metadataManager)),
          _metadataTracker(std::move(metadataTracker)) {
        ++_metadataTracker->usageCounter;
    }

    ~RangePreserver() {
        stdx::lock_guard<stdx::mutex> managerLock(_metadataManager->_managerLock);

        invariant(_metadataTracker->usageCounter != 0);
        if (--_metadataTracker->usageCounter == 0) {
            // MetadataManager doesn't care which usageCounter went to zero. It just retires all
            // that are older than the oldest metadata still in use by queries (some start out at
            // zero, some go to zero but can't be expired yet).
            //
            // Note that new instances of ScopedCollectionMetadata may get attached to
            // _metadata.back(), so its usage count can increase from zero, unlike other reference
            // counts.
            _metadataManager->_retireExpiredMetadata(managerLock);
        }
    }

    // This will only ever refer to the active metadata, so CollectionMetadata should never be
    // boost::none
    const CollectionMetadata& get() {
        invariant(_metadataTracker->metadata);
        return _metadataTracker->metadata.get();
    }

private:
    friend boost::optional<ScopedCollectionMetadata> MetadataManager::getActiveMetadata(
        std::shared_ptr<MetadataManager>, const boost::optional<LogicalTime>&);

    std::shared_ptr<MetadataManager> _metadataManager;
    std::shared_ptr<MetadataManager::CollectionMetadataTracker> _metadataTracker;
};

MetadataManager::MetadataManager(ServiceContext* serviceContext,
                                 NamespaceString nss,
                                 TaskExecutor* executor)
    : _serviceContext(serviceContext),
      _nss(std::move(nss)),
      _executor(executor),
      _receivingChunks(SimpleBSONObjComparator::kInstance.makeBSONObjIndexedMap<BSONObj>()) {}

MetadataManager::~MetadataManager() {
    clearFilteringMetadata();
}

void MetadataManager::_clearAllCleanups(WithLock lock) {
    _clearAllCleanups(
        lock,
        {ErrorCodes::InterruptedDueToReplStateChange,
         str::stream() << "Range deletions in " << _nss.ns()
                       << " abandoned because collection was dropped or became unsharded"});
}

void MetadataManager::_clearAllCleanups(WithLock, Status status) {
    for (auto& tracker : _metadata) {
        std::ignore = _rangesToClean.add(std::move(tracker->orphans));
    }
    _rangesToClean.clear(status);
}

boost::optional<ScopedCollectionMetadata> MetadataManager::getActiveMetadata(
    std::shared_ptr<MetadataManager> self, const boost::optional<LogicalTime>& atClusterTime) {
    stdx::lock_guard<stdx::mutex> lg(_managerLock);

    if (_metadata.empty()) {
        return boost::none;
    }

    auto activeMetadataTracker = _metadata.back();
    const auto& activeMetadata = activeMetadataTracker->metadata;

    // We don't keep routing history for unsharded collections, so if the collection is unsharded
    // just return the active metadata
    if (!atClusterTime || !activeMetadata->isSharded()) {
        return ScopedCollectionMetadata(std::make_shared<RangePreserver>(
            lg, std::move(self), std::move(activeMetadataTracker)));
    }

    auto chunkManager = activeMetadata->getChunkManager();
    auto chunkManagerAtClusterTime = std::make_shared<ChunkManager>(
        chunkManager->getRoutingHistory(), atClusterTime->asTimestamp());

    class MetadataAtTimestamp : public ScopedCollectionMetadata::Impl {
    public:
        MetadataAtTimestamp(CollectionMetadata metadata) : _metadata(std::move(metadata)) {}

        const CollectionMetadata& get() override {
            return _metadata;
        }

    private:
        CollectionMetadata _metadata;
    };

    return ScopedCollectionMetadata(std::make_shared<MetadataAtTimestamp>(
        CollectionMetadata(chunkManagerAtClusterTime, activeMetadata->shardId())));
}

size_t MetadataManager::numberOfMetadataSnapshots() const {
    stdx::lock_guard<stdx::mutex> lg(_managerLock);
    if (_metadata.empty())
        return 0;

    return _metadata.size() - 1;
}

int MetadataManager::numberOfEmptyMetadataSnapshots() const {
    stdx::lock_guard<stdx::mutex> lg(_managerLock);

    int emptyMetadataSnapshots = 0;
    for (const auto& collMetadataTracker : _metadata) {
        if (!collMetadataTracker->metadata)
            emptyMetadataSnapshots++;
    }

    return emptyMetadataSnapshots;
}

void MetadataManager::setFilteringMetadata(CollectionMetadata remoteMetadata) {
    stdx::lock_guard<stdx::mutex> lg(_managerLock);

    // Collection is becoming sharded
    if (_metadata.empty()) {
        LOG(0) << "Marking collection " << _nss.ns() << " as " << remoteMetadata.toStringBasic();

        invariant(_receivingChunks.empty());
        invariant(_rangesToClean.isEmpty());

        _setActiveMetadata(lg, std::move(remoteMetadata));
        return;
    }

    const auto& activeMetadata = _metadata.back()->metadata;

    // If the metadata being installed has a different epoch from ours, this means the collection
    // was dropped and recreated, so we must entirely reset the metadata state
    if (activeMetadata->getCollVersion().epoch() != remoteMetadata.getCollVersion().epoch()) {
        LOG(0) << "Updating metadata for collection " << _nss.ns() << " from "
               << activeMetadata->toStringBasic() << " to " << remoteMetadata.toStringBasic()
               << " due to epoch change";

        _receivingChunks.clear();
        _clearAllCleanups(lg);
        _metadata.clear();

        _setActiveMetadata(lg, std::move(remoteMetadata));
        return;
    }

    // We already have the same or newer version
    if (activeMetadata->getCollVersion() >= remoteMetadata.getCollVersion()) {
        LOG(1) << "Ignoring update of active metadata " << activeMetadata->toStringBasic()
               << " with an older " << remoteMetadata.toStringBasic();
        return;
    }

    LOG(0) << "Updating metadata for collection " << _nss.ns() << " from "
           << activeMetadata->toStringBasic() << " to " << remoteMetadata.toStringBasic()
           << " due to version change";

    // Resolve any receiving chunks, which might have completed by now
    for (auto it = _receivingChunks.begin(); it != _receivingChunks.end();) {
        const ChunkRange receivingRange(it->first, it->second);

        if (!remoteMetadata.rangeOverlapsChunk(receivingRange)) {
            ++it;
            continue;
        }

        // The remote metadata contains a chunk we were earlier in the process of receiving, so we
        // deem it successfully received
        LOG(2) << "Verified chunk " << redact(receivingRange.toString()) << " for collection "
               << _nss.ns() << " has been migrated to this shard earlier";

        _receivingChunks.erase(it);
        it = _receivingChunks.begin();
    }

    _setActiveMetadata(lg, std::move(remoteMetadata));
}

void MetadataManager::clearFilteringMetadata() {
    stdx::lock_guard<stdx::mutex> lg(_managerLock);
    _receivingChunks.clear();
    _clearAllCleanups(lg);
    _metadata.clear();
}

void MetadataManager::_setActiveMetadata(WithLock wl, CollectionMetadata newMetadata) {
    _metadata.emplace_back(std::make_shared<CollectionMetadataTracker>(std::move(newMetadata)));
    _retireExpiredMetadata(wl);
}

void MetadataManager::_retireExpiredMetadata(WithLock lock) {
    // Remove entries and schedule orphans for deletion only from the front of _metadata. We cannot
    // remove an entry from the middle of _metadata because a previous entry (whose usageCount is
    // not 0) could have a query that is actually still accessing those documents.
    while (_metadata.size() > 1 && !_metadata.front()->usageCounter) {
        if (!_metadata.front()->orphans.empty()) {
            LOG(0) << "Queries possibly dependent on " << _nss.ns()
                   << " range(s) finished; scheduling ranges for deletion";

            _pushListToClean(lock, std::move(_metadata.front()->orphans));
        }

        _metadata.pop_front();
    }

    // To avoid memory build up of ChunkManager objects, we can clear the CollectionMetadata object
    // in an entry when its usageCount is 0 as long as it is not the last item in _metadata (which
    // is the active metadata). If _metadata is empty, decrementing iter will be out of bounds, so
    // we must check that the size is > 1 as well.
    if (_metadata.size() > 1) {
        auto iter = _metadata.begin();
        while (iter != (--_metadata.end())) {
            if ((*iter)->usageCounter == 0) {
                (*iter)->metadata = boost::none;
            }
            ++iter;
        }
    }
}

void MetadataManager::toBSONPending(BSONArrayBuilder& bb) const {
    stdx::lock_guard<stdx::mutex> lg(_managerLock);

    for (auto it = _receivingChunks.begin(); it != _receivingChunks.end(); ++it) {
        BSONArrayBuilder pendingBB(bb.subarrayStart());
        pendingBB.append(it->first);
        pendingBB.append(it->second);
        pendingBB.done();
    }
}

void MetadataManager::append(BSONObjBuilder* builder) const {
    stdx::lock_guard<stdx::mutex> lg(_managerLock);

    _rangesToClean.append(builder);

    BSONArrayBuilder pcArr(builder->subarrayStart("pendingChunks"));
    for (const auto& entry : _receivingChunks) {
        BSONObjBuilder obj;
        ChunkRange r = ChunkRange(entry.first, entry.second);
        r.append(&obj);
        pcArr.append(obj.done());
    }
    pcArr.done();

    if (_metadata.empty()) {
        return;
    }

    BSONArrayBuilder amrArr(builder->subarrayStart("activeMetadataRanges"));
    for (const auto& entry : _metadata.back()->metadata->getChunks()) {
        BSONObjBuilder obj;
        ChunkRange r = ChunkRange(entry.first, entry.second);
        r.append(&obj);
        amrArr.append(obj.done());
    }
    amrArr.done();
}

auto MetadataManager::_pushRangeToClean(WithLock lock, ChunkRange const& range, Date_t when)
    -> CleanupNotification {
    std::list<Deletion> ranges;
    ranges.emplace_back(ChunkRange(range.getMin().getOwned(), range.getMax().getOwned()), when);
    auto& notifn = ranges.back().notification;
    _pushListToClean(lock, std::move(ranges));
    return notifn;
}

void MetadataManager::_pushListToClean(WithLock, std::list<Deletion> ranges) {
    auto when = _rangesToClean.add(std::move(ranges));
    if (when) {
        scheduleCleanup(
            _executor, _nss, _metadata.back()->metadata->getCollVersion().epoch(), *when);
    }
}

auto MetadataManager::beginReceive(ChunkRange const& range) -> CleanupNotification {
    stdx::lock_guard<stdx::mutex> lg(_managerLock);
    invariant(!_metadata.empty());

    if (_overlapsInUseChunk(lg, range)) {
        return Status{ErrorCodes::RangeOverlapConflict,
                      "Documents in target range may still be in use on the destination shard."};
    }

    _receivingChunks.emplace(range.getMin().getOwned(), range.getMax().getOwned());

    log() << "Scheduling deletion of any documents in " << _nss.ns() << " range "
          << redact(range.toString()) << " before migrating in a chunk covering the range";

    return _pushRangeToClean(lg, range, Date_t{});
}

void MetadataManager::forgetReceive(ChunkRange const& range) {
    stdx::lock_guard<stdx::mutex> lg(_managerLock);
    invariant(!_metadata.empty());

    // This is potentially a partially received chunk, which needs to be cleaned up. We know none
    // of these documents are in use, so they can go straight to the deletion queue.
    log() << "Abandoning in-migration of " << _nss.ns() << " range " << range
          << "; scheduling deletion of any documents already copied";

    invariant(!_overlapsInUseChunk(lg, range));

    auto it = _receivingChunks.find(range.getMin());
    invariant(it != _receivingChunks.end());
    _receivingChunks.erase(it);

    _pushRangeToClean(lg, range, Date_t{}).abandon();
}

auto MetadataManager::cleanUpRange(ChunkRange const& range, Date_t whenToDelete)
    -> CleanupNotification {
    stdx::lock_guard<stdx::mutex> lg(_managerLock);
    invariant(!_metadata.empty());

    auto* const activeMetadata = _metadata.back().get();
    auto* const overlapMetadata = _findNewestOverlappingMetadata(lg, range);

    if (overlapMetadata == activeMetadata) {
        return Status{ErrorCodes::RangeOverlapConflict,
                      str::stream() << "Requested deletion range overlaps a live shard chunk"};
    }

    if (rangeMapOverlaps(_receivingChunks, range.getMin(), range.getMax())) {
        return Status{ErrorCodes::RangeOverlapConflict,
                      str::stream() << "Requested deletion range overlaps a chunk being"
                                       " migrated in"};
    }

    if (!overlapMetadata) {
        // No running queries can depend on it, so queue it for deletion immediately.
        const auto whenStr = (whenToDelete == Date_t{}) ? "immediate"_sd : "deferred"_sd;
        log() << "Scheduling " << whenStr << " deletion of " << _nss.ns() << " range "
              << redact(range.toString());
        return _pushRangeToClean(lg, range, whenToDelete);
    }

    log() << "Deletion of " << _nss.ns() << " range " << redact(range.toString())
          << " will be scheduled after all possibly dependent queries finish";

    // Put it on the oldest metadata permissible; the current one might live a long time.
    auto& orphans = overlapMetadata->orphans;
    orphans.emplace_back(ChunkRange(range.getMin().getOwned(), range.getMax().getOwned()),
                         whenToDelete);

    return orphans.back().notification;
}

size_t MetadataManager::numberOfRangesToCleanStillInUse() const {
    stdx::lock_guard<stdx::mutex> lg(_managerLock);
    size_t count = 0;
    for (auto& tracker : _metadata) {
        count += tracker->orphans.size();
    }
    return count;
}

size_t MetadataManager::numberOfRangesToClean() const {
    stdx::lock_guard<stdx::mutex> lg(_managerLock);
    return _rangesToClean.size();
}

auto MetadataManager::trackOrphanedDataCleanup(ChunkRange const& range) const
    -> boost::optional<CleanupNotification> {
    stdx::lock_guard<stdx::mutex> lg(_managerLock);
    auto overlaps = _overlapsInUseCleanups(lg, range);
    if (overlaps) {
        return overlaps;
    }

    return _rangesToClean.overlaps(range);
}

auto MetadataManager::_findNewestOverlappingMetadata(WithLock, ChunkRange const& range)
    -> CollectionMetadataTracker* {
    invariant(!_metadata.empty());

    auto it = _metadata.rbegin();
    if ((*it)->metadata && (*it)->metadata->rangeOverlapsChunk(range)) {
        return (*it).get();
    }

    ++it;
    for (; it != _metadata.rend(); ++it) {
        auto& tracker = *it;
        if (tracker->usageCounter && tracker->metadata &&
            tracker->metadata->rangeOverlapsChunk(range)) {
            return tracker.get();
        }
    }

    return nullptr;
}

bool MetadataManager::_overlapsInUseChunk(WithLock lk, ChunkRange const& range) {
    auto* cm = _findNewestOverlappingMetadata(lk, range);
    return (cm != nullptr);
}

auto MetadataManager::_overlapsInUseCleanups(WithLock, ChunkRange const& range) const
    -> boost::optional<CleanupNotification> {
    invariant(!_metadata.empty());

    for (auto it = _metadata.rbegin(); it != _metadata.rend(); ++it) {
        const auto& orphans = (*it)->orphans;
        for (auto itOrphans = orphans.rbegin(); itOrphans != orphans.rend(); ++itOrphans) {
            const auto& orphan = *itOrphans;
            if (orphan.range.overlapWith(range)) {
                return orphan.notification;
            }
        }
    }

    return boost::none;
}

boost::optional<ChunkRange> MetadataManager::getNextOrphanRange(BSONObj const& from) const {
    stdx::lock_guard<stdx::mutex> lg(_managerLock);
    invariant(!_metadata.empty());
    return _metadata.back()->metadata->getNextOrphanRange(_receivingChunks, from);
}

}  // namespace mongo