summaryrefslogtreecommitdiff
path: root/src/mongo/db/s/migration_source_manager.cpp
blob: 0ea9147e6dd6aeaf805274567fff4b41d0788e91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
/**
 *    Copyright (C) 2018-present MongoDB, Inc.
 *
 *    This program is free software: you can redistribute it and/or modify
 *    it under the terms of the Server Side Public License, version 1,
 *    as published by MongoDB, Inc.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    Server Side Public License for more details.
 *
 *    You should have received a copy of the Server Side Public License
 *    along with this program. If not, see
 *    <http://www.mongodb.com/licensing/server-side-public-license>.
 *
 *    As a special exception, the copyright holders give permission to link the
 *    code of portions of this program with the OpenSSL library under certain
 *    conditions as described in each individual source file and distribute
 *    linked combinations including the program with the OpenSSL library. You
 *    must comply with the Server Side Public License in all respects for
 *    all of the code used other than as permitted herein. If you modify file(s)
 *    with this exception, you may extend this exception to your version of the
 *    file(s), but you are not obligated to do so. If you do not wish to do so,
 *    delete this exception statement from your version. If you delete this
 *    exception statement from all source files in the program, then also delete
 *    it in the license file.
 */

#define MONGO_LOG_DEFAULT_COMPONENT ::mongo::logger::LogComponent::kSharding

#include "mongo/platform/basic.h"

#include "mongo/db/s/migration_source_manager.h"

#include <memory>

#include "mongo/bson/bsonobjbuilder.h"
#include "mongo/db/catalog_raii.h"
#include "mongo/db/concurrency/write_conflict_exception.h"
#include "mongo/db/logical_clock.h"
#include "mongo/db/logical_session_cache.h"
#include "mongo/db/logical_session_id_helpers.h"
#include "mongo/db/op_observer.h"
#include "mongo/db/operation_context.h"
#include "mongo/db/read_concern.h"
#include "mongo/db/repl/replication_coordinator.h"
#include "mongo/db/s/migration_chunk_cloner_source_legacy.h"
#include "mongo/db/s/migration_coordinator.h"
#include "mongo/db/s/migration_util.h"
#include "mongo/db/s/shard_filtering_metadata_refresh.h"
#include "mongo/db/s/shard_metadata_util.h"
#include "mongo/db/s/sharding_logging.h"
#include "mongo/db/s/sharding_runtime_d_params_gen.h"
#include "mongo/db/s/sharding_state.h"
#include "mongo/db/s/sharding_state_recovery.h"
#include "mongo/db/s/sharding_statistics.h"
#include "mongo/executor/task_executor.h"
#include "mongo/executor/task_executor_pool.h"
#include "mongo/s/catalog/type_chunk.h"
#include "mongo/s/catalog/type_shard_collection.h"
#include "mongo/s/catalog_cache_loader.h"
#include "mongo/s/grid.h"
#include "mongo/s/request_types/commit_chunk_migration_request_type.h"
#include "mongo/s/request_types/set_shard_version_request.h"
#include "mongo/s/shard_key_pattern.h"
#include "mongo/util/duration.h"
#include "mongo/util/elapsed_tracker.h"
#include "mongo/util/exit.h"
#include "mongo/util/fail_point.h"
#include "mongo/util/log.h"
#include "mongo/util/scopeguard.h"

namespace mongo {

using namespace shardmetadatautil;

namespace {

const auto msmForCsr = CollectionShardingRuntime::declareDecoration<MigrationSourceManager*>();

// Wait at most this much time for the recipient to catch up sufficiently so critical section can be
// entered
const Hours kMaxWaitToEnterCriticalSectionTimeout(6);
const char kMigratedChunkVersionField[] = "migratedChunkVersion";
const char kWriteConcernField[] = "writeConcern";
const WriteConcernOptions kMajorityWriteConcern(WriteConcernOptions::kMajority,
                                                WriteConcernOptions::SyncMode::UNSET,
                                                WriteConcernOptions::kWriteConcernTimeoutMigration);

/**
 * Best-effort attempt to ensure the recipient shard has refreshed its routing table to
 * 'newCollVersion'. Fires and forgets an asychronous remote setShardVersion command.
 */
void refreshRecipientRoutingTable(OperationContext* opCtx,
                                  const NamespaceString& nss,
                                  ShardId toShard,
                                  const HostAndPort& toShardHost,
                                  const ChunkVersion& newCollVersion) {
    SetShardVersionRequest ssv = SetShardVersionRequest::makeForVersioningNoPersist(
        Grid::get(opCtx)->shardRegistry()->getConfigServerConnectionString(),
        toShard,
        ConnectionString(toShardHost),
        nss,
        newCollVersion,
        false);

    const executor::RemoteCommandRequest request(
        toShardHost,
        NamespaceString::kAdminDb.toString(),
        ssv.toBSON(),
        ReadPreferenceSetting{ReadPreference::PrimaryOnly}.toContainingBSON(),
        opCtx,
        executor::RemoteCommandRequest::kNoTimeout);

    auto executor = Grid::get(opCtx)->getExecutorPool()->getFixedExecutor();
    auto noOp = [](const executor::TaskExecutor::RemoteCommandCallbackArgs&) {};
    executor->scheduleRemoteCommand(request, noOp).getStatus().ignore();
}

bool isFCVLatest() {
    auto fcvVersion = serverGlobalParams.featureCompatibility.getVersion();

    return fcvVersion == ServerGlobalParams::FeatureCompatibility::Version::kFullyUpgradedTo44;
}

}  // namespace

MONGO_FAIL_POINT_DEFINE(doNotRefreshRecipientAfterCommit);
MONGO_FAIL_POINT_DEFINE(failMigrationCommit);
MONGO_FAIL_POINT_DEFINE(hangBeforeLeavingCriticalSection);
MONGO_FAIL_POINT_DEFINE(migrationCommitNetworkError);

MigrationSourceManager* MigrationSourceManager::get(CollectionShardingRuntime* csr,
                                                    CollectionShardingRuntime::CSRLock& csrLock) {
    return msmForCsr(csr);
}

MigrationSourceManager::MigrationSourceManager(OperationContext* opCtx,
                                               MoveChunkRequest request,
                                               ConnectionString donorConnStr,
                                               HostAndPort recipientHost)
    : _opCtx(opCtx),
      _args(std::move(request)),
      _donorConnStr(std::move(donorConnStr)),
      _recipientHost(std::move(recipientHost)),
      _stats(ShardingStatistics::get(_opCtx)) {
    invariant(!_opCtx->lockState()->isLocked());

    // Note: It is expected that the FCV cannot change while the node is donating or receiving a
    // chunk. This is guaranteed by the setFCV command serializing with donating and receiving
    // chunks via the ActiveMigrationsRegistry.
    auto fcvVersion = serverGlobalParams.featureCompatibility.getVersion();

    uassert(ErrorCodes::ConflictingOperationInProgress,
            "Can't donate chunk while FCV is upgrading/downgrading",
            fcvVersion != ServerGlobalParams::FeatureCompatibility::Version::kUpgradingTo44 &&
                fcvVersion != ServerGlobalParams::FeatureCompatibility::Version::kDowngradingTo42);

    _enableResumableRangeDeleter = isFCVLatest() && !disableResumableRangeDeleter.load();

    // Disallow moving a chunk to ourselves
    uassert(ErrorCodes::InvalidOptions,
            "Destination shard cannot be the same as source",
            _args.getFromShardId() != _args.getToShardId());

    log() << "Starting chunk migration " << redact(_args.toString())
          << " with expected collection version epoch " << _args.getVersionEpoch();

    // Force refresh of the metadata to ensure we have the latest
    forceShardFilteringMetadataRefresh(_opCtx, getNss());

    // Snapshot the committed metadata from the time the migration starts
    const auto collectionMetadataAndUUID = [&] {
        UninterruptibleLockGuard noInterrupt(_opCtx->lockState());
        AutoGetCollection autoColl(_opCtx, getNss(), MODE_IS);
        uassert(ErrorCodes::InvalidOptions,
                "cannot move chunks for a collection that doesn't exist",
                autoColl.getCollection());

        boost::optional<UUID> collectionUUID;
        collectionUUID = autoColl.getCollection()->uuid();

        auto optMetadata =
            CollectionShardingState::get(_opCtx, getNss())->getCurrentMetadataIfKnown();
        uassert(ErrorCodes::ConflictingOperationInProgress,
                "The collection's sharding state was cleared by a concurrent operation",
                optMetadata);

        auto& metadata = *optMetadata;
        uassert(ErrorCodes::IncompatibleShardingMetadata,
                "Cannot move chunks for an unsharded collection",
                metadata->isSharded());

        return std::make_tuple(std::move(metadata), std::move(collectionUUID));
    }();

    const auto& collectionMetadata = std::get<0>(collectionMetadataAndUUID);

    const auto collectionVersion = collectionMetadata->getCollVersion();
    const auto shardVersion = collectionMetadata->getShardVersion();

    // If the shard major version is zero, this means we do not have any chunks locally to migrate
    uassert(ErrorCodes::IncompatibleShardingMetadata,
            str::stream() << "cannot move chunk " << _args.toString()
                          << " because the shard doesn't contain any chunks",
            shardVersion.majorVersion() > 0);

    uassert(ErrorCodes::StaleEpoch,
            str::stream() << "cannot move chunk " << _args.toString()
                          << " because collection may have been dropped. "
                          << "current epoch: " << collectionVersion.epoch()
                          << ", cmd epoch: " << _args.getVersionEpoch(),
            _args.getVersionEpoch() == collectionVersion.epoch());

    ChunkType chunkToMove;
    chunkToMove.setMin(_args.getMinKey());
    chunkToMove.setMax(_args.getMaxKey());

    uassertStatusOKWithContext(collectionMetadata->checkChunkIsValid(chunkToMove),
                               str::stream() << "Unable to move chunk with arguments '"
                                             << redact(_args.toString()));

    _chunkVersion = collectionMetadata->getChunkManager()
                        ->findIntersectingChunkWithSimpleCollation(_args.getMinKey())
                        .getLastmod();
    _collectionEpoch = collectionVersion.epoch();
    _collectionUuid = std::get<1>(collectionMetadataAndUUID);
}

MigrationSourceManager::~MigrationSourceManager() {
    invariant(!_cloneDriver);
    _stats.totalDonorMoveChunkTimeMillis.addAndFetch(_entireOpTimer.millis());
}

NamespaceString MigrationSourceManager::getNss() const {
    return _args.getNss();
}

Status MigrationSourceManager::startClone() {
    invariant(!_opCtx->lockState()->isLocked());
    invariant(_state == kCreated);
    auto scopedGuard = makeGuard([&] { cleanupOnError(); });
    _stats.countDonorMoveChunkStarted.addAndFetch(1);

    const Status logStatus = ShardingLogging::get(_opCtx)->logChangeChecked(
        _opCtx,
        "moveChunk.start",
        getNss().ns(),
        BSON("min" << _args.getMinKey() << "max" << _args.getMaxKey() << "from"
                   << _args.getFromShardId() << "to" << _args.getToShardId()),
        ShardingCatalogClient::kMajorityWriteConcern);
    if (logStatus != Status::OK()) {
        return logStatus;
    }

    _cloneAndCommitTimer.reset();

    auto replCoord = repl::ReplicationCoordinator::get(_opCtx);
    auto replEnabled = replCoord->isReplEnabled();

    UUID migrationId = UUID::gen();
    _lsid = makeLogicalSessionId(_opCtx);

    {
        const auto metadata = _getCurrentMetadataAndCheckEpoch();

        // Having the metadata manager registered on the collection sharding state is what indicates
        // that a chunk on that collection is being migrated. With an active migration, write
        // operations require the cloner to be present in order to track changes to the chunk which
        // needs to be transmitted to the recipient.
        _cloneDriver = std::make_unique<MigrationChunkClonerSourceLegacy>(
            _args, metadata->getKeyPattern(), _donorConnStr, _recipientHost);

        boost::optional<AutoGetCollection> autoColl;
        if (replEnabled) {
            autoColl.emplace(_opCtx,
                             getNss(),
                             MODE_IX,
                             AutoGetCollection::ViewMode::kViewsForbidden,
                             _opCtx->getServiceContext()->getPreciseClockSource()->now() +
                                 Milliseconds(migrationLockAcquisitionMaxWaitMS.load()));
        } else {
            autoColl.emplace(_opCtx,
                             getNss(),
                             MODE_X,
                             AutoGetCollection::ViewMode::kViewsForbidden,
                             _opCtx->getServiceContext()->getPreciseClockSource()->now() +
                                 Milliseconds(migrationLockAcquisitionMaxWaitMS.load()));
        }

        auto csr = CollectionShardingRuntime::get(_opCtx, getNss());
        auto lockedCsr = CollectionShardingRuntime::CSRLock::lockExclusive(_opCtx, csr);
        invariant(nullptr == std::exchange(msmForCsr(csr), this));

        if (_enableResumableRangeDeleter) {
            _coordinator = std::make_unique<migrationutil::MigrationCoordinator>(
                migrationId,
                _args.getFromShardId(),
                _args.getToShardId(),
                getNss(),
                _collectionUuid.get(),
                ChunkRange(_args.getMinKey(), _args.getMaxKey()),
                _chunkVersion);
        }

        _state = kCloning;
    }

    if (replEnabled) {
        auto const readConcernArgs = repl::ReadConcernArgs(
            replCoord->getMyLastAppliedOpTime(), repl::ReadConcernLevel::kLocalReadConcern);

        uassertStatusOK(waitForReadConcern(_opCtx, readConcernArgs, false));
        setPrepareConflictBehaviorForReadConcern(
            _opCtx, readConcernArgs, PrepareConflictBehavior::kEnforce);
    }

    if (_enableResumableRangeDeleter) {
        _coordinator->startMigration(_opCtx, _args.getWaitForDelete());
    }

    Status startCloneStatus = _cloneDriver->startClone(_opCtx, migrationId, _lsid, TxnNumber{0});
    if (!startCloneStatus.isOK()) {
        return startCloneStatus;
    }

    scopedGuard.dismiss();
    return Status::OK();
}

Status MigrationSourceManager::awaitToCatchUp() {
    invariant(!_opCtx->lockState()->isLocked());
    invariant(_state == kCloning);
    auto scopedGuard = makeGuard([&] { cleanupOnError(); });
    _stats.totalDonorChunkCloneTimeMillis.addAndFetch(_cloneAndCommitTimer.millis());
    _cloneAndCommitTimer.reset();

    // Block until the cloner deems it appropriate to enter the critical section.
    Status catchUpStatus = _cloneDriver->awaitUntilCriticalSectionIsAppropriate(
        _opCtx, kMaxWaitToEnterCriticalSectionTimeout);
    if (!catchUpStatus.isOK()) {
        return catchUpStatus;
    }

    _state = kCloneCaughtUp;
    scopedGuard.dismiss();
    return Status::OK();
}

Status MigrationSourceManager::enterCriticalSection() {
    invariant(!_opCtx->lockState()->isLocked());
    invariant(_state == kCloneCaughtUp);
    auto scopedGuard = makeGuard([&] { cleanupOnError(); });
    _stats.totalDonorChunkCloneTimeMillis.addAndFetch(_cloneAndCommitTimer.millis());
    _cloneAndCommitTimer.reset();

    _notifyChangeStreamsOnRecipientFirstChunk(_getCurrentMetadataAndCheckEpoch());

    // Mark the shard as running critical operation, which requires recovery on crash.
    //
    // NOTE: The 'migrateChunkToNewShard' oplog message written by the above call to
    // '_notifyChangeStreamsOnRecipientFirstChunk' depends on this majority write to carry its local
    // write to majority committed.
    Status status = ShardingStateRecovery::startMetadataOp(_opCtx);
    if (!status.isOK()) {
        return status;
    }

    _critSec.emplace(_opCtx, _args.getNss());

    _state = kCriticalSection;

    // Persist a signal to secondaries that we've entered the critical section. This is will cause
    // secondaries to refresh their routing table when next accessed, which will block behind the
    // critical section. This ensures causal consistency by preventing a stale mongos with a cluster
    // time inclusive of the migration config commit update from accessing secondary data.
    // Note: this write must occur after the critSec flag is set, to ensure the secondary refresh
    // will stall behind the flag.
    Status signalStatus = updateShardCollectionsEntry(
        _opCtx,
        BSON(ShardCollectionType::kNssFieldName << getNss().ns()),
        BSONObj(),
        BSON(ShardCollectionType::kEnterCriticalSectionCounterFieldName << 1),
        false /*upsert*/);
    if (!signalStatus.isOK()) {
        return {
            ErrorCodes::OperationFailed,
            str::stream() << "Failed to persist critical section signal for secondaries due to: "
                          << signalStatus.toString()};
    }

    log() << "Migration successfully entered critical section";

    scopedGuard.dismiss();
    return Status::OK();
}

Status MigrationSourceManager::commitChunkOnRecipient() {
    invariant(!_opCtx->lockState()->isLocked());
    invariant(_state == kCriticalSection);
    auto scopedGuard = makeGuard([&] { cleanupOnError(); });

    // Tell the recipient shard to fetch the latest changes.
    auto commitCloneStatus = _cloneDriver->commitClone(_opCtx);

    if (MONGO_unlikely(failMigrationCommit.shouldFail()) && commitCloneStatus.isOK()) {
        commitCloneStatus = {ErrorCodes::InternalError,
                             "Failing _recvChunkCommit due to failpoint."};
    }

    if (!commitCloneStatus.isOK()) {
        return commitCloneStatus.getStatus().withContext("commit clone failed");
    }

    _recipientCloneCounts = commitCloneStatus.getValue()["counts"].Obj().getOwned();

    _state = kCloneCompleted;
    scopedGuard.dismiss();
    return Status::OK();
}

Status MigrationSourceManager::commitChunkMetadataOnConfig() {
    invariant(!_opCtx->lockState()->isLocked());
    invariant(_state == kCloneCompleted);
    auto scopedGuard = makeGuard([&] { cleanupOnError(); });

    // If we have chunks left on the FROM shard, bump the version of one of them as well. This will
    // change the local collection major version, which indicates to other processes that the chunk
    // metadata has changed and they should refresh.
    BSONObjBuilder builder;

    {
        const auto metadata = _getCurrentMetadataAndCheckEpoch();

        ChunkType migratedChunkType;
        migratedChunkType.setMin(_args.getMinKey());
        migratedChunkType.setMax(_args.getMaxKey());
        migratedChunkType.setVersion(_chunkVersion);

        CommitChunkMigrationRequest::appendAsCommand(
            &builder,
            getNss(),
            _args.getFromShardId(),
            _args.getToShardId(),
            migratedChunkType,
            metadata->getCollVersion(),
            LogicalClock::get(_opCtx)->getClusterTime().asTimestamp());

        builder.append(kWriteConcernField, kMajorityWriteConcern.toBSON());
    }

    // Read operations must begin to wait on the critical section just before we send the commit
    // operation to the config server
    _critSec->enterCommitPhase();

    _state = kCommittingOnConfig;

    Timer t;

    auto commitChunkMigrationResponse =
        Grid::get(_opCtx)->shardRegistry()->getConfigShard()->runCommandWithFixedRetryAttempts(
            _opCtx,
            ReadPreferenceSetting{ReadPreference::PrimaryOnly},
            "admin",
            builder.obj(),
            Shard::RetryPolicy::kIdempotent);

    if (MONGO_unlikely(migrationCommitNetworkError.shouldFail())) {
        commitChunkMigrationResponse = Status(
            ErrorCodes::InternalError, "Failpoint 'migrationCommitNetworkError' generated error");
    }

    Status migrationCommitStatus =
        Shard::CommandResponse::getEffectiveStatus(commitChunkMigrationResponse);

    if (!migrationCommitStatus.isOK()) {
        migrationutil::ensureChunkVersionIsGreaterThan(_opCtx, _args.getRange(), _chunkVersion);
    }

    migrationutil::refreshFilteringMetadataUntilSuccess(_opCtx, getNss());

    const auto refreshedMetadata = _getCurrentMetadataAndCheckEpoch();

    if (refreshedMetadata->keyBelongsToMe(_args.getMinKey())) {
        // This condition may only happen if the migration commit has failed for any reason
        if (migrationCommitStatus.isOK()) {
            return {ErrorCodes::ConflictingOperationInProgress,
                    "Migration commit succeeded but refresh found that the chunk is still owned; "
                    "this node may be a stale primary of its replica set, and the new primary may "
                    "have re-received the chunk"};
        }

        if (_enableResumableRangeDeleter) {
            _coordinator->setMigrationDecision(
                migrationutil::MigrationCoordinator::Decision::kAborted);
        }

        // The chunk modification was not applied, so report the original error
        return migrationCommitStatus.withContext("Chunk move was not successful");
    }

    // Migration succeeded
    LOG(0) << "Migration succeeded and updated collection version to "
           << refreshedMetadata->getCollVersion();

    if (_enableResumableRangeDeleter) {
        _coordinator->setMigrationDecision(
            migrationutil::MigrationCoordinator::Decision::kCommitted);
    }

    hangBeforeLeavingCriticalSection.pauseWhileSet();

    scopedGuard.dismiss();

    _stats.totalCriticalSectionCommitTimeMillis.addAndFetch(t.millis());

    // Exit the critical section and ensure that all the necessary state is fully persisted before
    // scheduling orphan cleanup.
    _cleanup();

    ShardingLogging::get(_opCtx)->logChange(
        _opCtx,
        "moveChunk.commit",
        getNss().ns(),
        BSON("min" << _args.getMinKey() << "max" << _args.getMaxKey() << "from"
                   << _args.getFromShardId() << "to" << _args.getToShardId() << "counts"
                   << _recipientCloneCounts),
        ShardingCatalogClient::kMajorityWriteConcern);

    const ChunkRange range(_args.getMinKey(), _args.getMaxKey());

    if (!MONGO_unlikely(doNotRefreshRecipientAfterCommit.shouldFail())) {
        // Best-effort make the recipient refresh its routing table to the new collection
        // version.
        refreshRecipientRoutingTable(_opCtx,
                                     getNss(),
                                     _args.getToShardId(),
                                     _recipientHost,
                                     refreshedMetadata->getCollVersion());
    }

    std::string orphanedRangeCleanUpErrMsg = str::stream()
        << "Moved chunks successfully but failed to clean up " << getNss().ns() << " range "
        << redact(range.toString()) << " due to: ";

    if (_enableResumableRangeDeleter) {
        if (_args.getWaitForDelete()) {
            log() << "Waiting for cleanup of " << getNss().ns() << " range "
                  << redact(range.toString());

            auto deleteStatus = CollectionShardingRuntime::waitForClean(
                _opCtx, getNss(), _collectionUuid.get(), range);

            if (!deleteStatus.isOK()) {
                return {ErrorCodes::OrphanedRangeCleanUpFailed,
                        orphanedRangeCleanUpErrMsg + redact(deleteStatus)};
            }
        }
    } else {
        auto cleanupCompleteFuture = [&] {
            auto const whenToClean = _args.getWaitForDelete() ? CollectionShardingRuntime::kNow
                                                              : CollectionShardingRuntime::kDelayed;
            UninterruptibleLockGuard noInterrupt(_opCtx->lockState());
            AutoGetCollection autoColl(_opCtx, getNss(), MODE_IS);
            return CollectionShardingRuntime::get(_opCtx, getNss())
                ->cleanUpRange(range, whenToClean);
        }();

        if (_args.getWaitForDelete()) {
            log() << "Waiting for cleanup of " << getNss().ns() << " range "
                  << redact(range.toString());

            auto deleteStatus = cleanupCompleteFuture.getNoThrow(_opCtx);

            if (!deleteStatus.isOK()) {
                return {ErrorCodes::OrphanedRangeCleanUpFailed,
                        orphanedRangeCleanUpErrMsg + redact(deleteStatus)};
            }

            return Status::OK();
        }

        if (cleanupCompleteFuture.isReady() && !cleanupCompleteFuture.getNoThrow(_opCtx).isOK()) {
            return {ErrorCodes::OrphanedRangeCleanUpFailed,
                    orphanedRangeCleanUpErrMsg + redact(cleanupCompleteFuture.getNoThrow(_opCtx))};
        } else {
            log() << "Leaving cleanup of " << getNss().ns() << " range " << redact(range.toString())
                  << " to complete in background";
        }
    }

    return Status::OK();
}

void MigrationSourceManager::cleanupOnError() {
    if (_state == kDone) {
        return;
    }

    ShardingLogging::get(_opCtx)->logChange(
        _opCtx,
        "moveChunk.error",
        getNss().ns(),
        BSON("min" << _args.getMinKey() << "max" << _args.getMaxKey() << "from"
                   << _args.getFromShardId() << "to" << _args.getToShardId()),
        ShardingCatalogClient::kMajorityWriteConcern);

    try {
        _cleanup();
    } catch (const DBException& ex) {
        warning() << "Failed to clean up migration: " << redact(_args.toString())
                  << "due to: " << redact(ex);
    }
}

void MigrationSourceManager::abortDueToConflictingIndexOperation() {
    stdx::lock_guard<Client> lk(*_opCtx->getClient());
    _opCtx->markKilled();
    _stats.countDonorMoveChunkAbortConflictingIndexOperation.addAndFetch(1);
}

ScopedCollectionMetadata MigrationSourceManager::_getCurrentMetadataAndCheckEpoch() {
    auto metadata = [&] {
        UninterruptibleLockGuard noInterrupt(_opCtx->lockState());
        AutoGetCollection autoColl(_opCtx, getNss(), MODE_IS);
        auto* const css = CollectionShardingRuntime::get(_opCtx, getNss());

        const auto optMetadata = css->getCurrentMetadataIfKnown();
        uassert(ErrorCodes::ConflictingOperationInProgress,
                "The collection's sharding state was cleared by a concurrent operation",
                optMetadata);
        return *optMetadata;
    }();

    uassert(ErrorCodes::ConflictingOperationInProgress,
            str::stream() << "The collection was dropped or recreated since the migration began. "
                          << "Expected collection epoch: " << _collectionEpoch.toString()
                          << ", but found: "
                          << (metadata->isSharded() ? metadata->getCollVersion().epoch().toString()
                                                    : "unsharded collection."),
            metadata->isSharded() && metadata->getCollVersion().epoch() == _collectionEpoch);

    return metadata;
}

void MigrationSourceManager::_notifyChangeStreamsOnRecipientFirstChunk(
    const ScopedCollectionMetadata& metadata) {
    // If this is not the first donation, there is nothing to be done
    if (metadata->getChunkManager()->getVersion(_args.getToShardId()).isSet())
        return;

    const std::string dbgMessage = str::stream()
        << "Migrating chunk from shard " << _args.getFromShardId() << " to shard "
        << _args.getToShardId() << " with no chunks for this collection";

    // The message expected by change streams
    const auto o2Message = BSON("type"
                                << "migrateChunkToNewShard"
                                << "from" << _args.getFromShardId() << "to"
                                << _args.getToShardId());

    auto const serviceContext = _opCtx->getClient()->getServiceContext();

    UninterruptibleLockGuard noInterrupt(_opCtx->lockState());
    AutoGetCollection autoColl(_opCtx, NamespaceString::kRsOplogNamespace, MODE_IX);
    writeConflictRetry(
        _opCtx, "migrateChunkToNewShard", NamespaceString::kRsOplogNamespace.ns(), [&] {
            WriteUnitOfWork uow(_opCtx);
            serviceContext->getOpObserver()->onInternalOpMessage(
                _opCtx, getNss(), _collectionUuid, BSON("msg" << dbgMessage), o2Message);
            uow.commit();
        });
}

void MigrationSourceManager::_cleanup() {
    invariant(_state != kDone);

    auto cloneDriver = [&]() {
        // Unregister from the collection's sharding state and exit the migration critical section.
        UninterruptibleLockGuard noInterrupt(_opCtx->lockState());
        AutoGetCollection autoColl(_opCtx, getNss(), MODE_IX);
        auto* const csr = CollectionShardingRuntime::get(_opCtx, getNss());
        auto csrLock = CollectionShardingRuntime::CSRLock::lockExclusive(_opCtx, csr);

        if (_state != kCreated) {
            invariant(msmForCsr(csr));
            invariant(_cloneDriver);
        }

        // While we are in kCreated, the MigrationSourceManager may or may not be already be
        // installed on the CollectionShardingRuntime.
        if (_state != kCreated || (_state == kCreated && msmForCsr(csr))) {
            auto oldMsmOnCsr = std::exchange(msmForCsr(csr), nullptr);
            invariant(this == oldMsmOnCsr);
        }

        _critSec.reset();
        return std::move(_cloneDriver);
    }();

    // The cleanup operations below are potentially blocking or acquire other locks, so perform them
    // outside of the collection X lock

    if (cloneDriver) {
        cloneDriver->cancelClone(_opCtx);
    }

    if (_state == kCriticalSection || _state == kCloneCompleted || _state == kCommittingOnConfig) {
        _stats.totalCriticalSectionTimeMillis.addAndFetch(_cloneAndCommitTimer.millis());

        // NOTE: The order of the operations below is important and the comments explain the
        // reasoning behind it

        // Wait for the updates to the cache of the routing table to be fully written to disk before
        // clearing the 'minOpTime recovery' document. This way, we ensure that all nodes from a
        // shard, which donated a chunk will always be at the shard version of the last migration it
        // performed.
        //
        // If the metadata is not persisted before clearing the 'inMigration' flag below, it is
        // possible that the persisted metadata is rolled back after step down, but the write which
        // cleared the 'inMigration' flag is not, a secondary node will report itself at an older
        // shard version.
        CatalogCacheLoader::get(_opCtx).waitForCollectionFlush(_opCtx, getNss());

        // Clear the 'minOpTime recovery' document so that the next time a node from this shard
        // becomes a primary, it won't have to recover the config server optime.
        ShardingStateRecovery::endMetadataOp(_opCtx);
    }

    if (_enableResumableRangeDeleter) {
        if (_state >= kCloning && _state < kCommittingOnConfig) {
            invariant(_coordinator);
            _coordinator->setMigrationDecision(
                migrationutil::MigrationCoordinator::Decision::kAborted);
        }
        {
            // This can be called on an exception path after the OperationContext has been
            // interrupted, so use a new OperationContext. Note, it's valid to call
            // getServiceContext on an interrupted OperationContext.
            auto newClient = _opCtx->getServiceContext()->makeClient("MigrationCoordinator");
            {
                stdx::lock_guard<Client> lk(*newClient.get());
                newClient->setSystemOperationKillable(lk);
            }
            AlternativeClientRegion acr(newClient);
            auto newOpCtxPtr = cc().makeOperationContext();
            auto newOpCtx = newOpCtxPtr.get();
            _coordinator->completeMigration(newOpCtx);
        }

        LogicalSessionCache::get(_opCtx)->endSessions({_lsid});
    }

    _state = kDone;
}

BSONObj MigrationSourceManager::getMigrationStatusReport() const {
    return migrationutil::makeMigrationStatusDocument(getNss(),
                                                      _args.getFromShardId(),
                                                      _args.getToShardId(),
                                                      true,
                                                      _args.getMinKey(),
                                                      _args.getMaxKey());
}

}  // namespace mongo